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Abstract: In brain–machine interface (BMI) systems, the performance of trained Convolutional Neural
Networks (CNNs) is significantly influenced by the quality of the training data. Another issue is the
training time of CNNs. This paper introduces a novel approach by combining transfer learning and a
Genetic Algorithm (GA) to optimize the training data of CNNs. Transfer learning is implemented
across different subjects, and the data chosen by GA aim to improve CNN performance. In addition,
the GA-selected data shed light on the similarity in brain activity between subjects. Two datasets
are used: (1) the publicly available BCI Competition IV, in which the subjects performed motor
imagery (MI) tasks, and (2) the dataset created by healthy subjects of our laboratory performing
motor movement (MO) tasks. The experimental results indicate that the brain data selected by
the GA improve the recognition accuracy of the target CNN (TCNN) using pre-trained base CNN
(BCNN). The improvement in accuracy is 11% and 4% for the BCI Competition IV and our laboratory
datasets, respectively. In addition, the GA-selected training data reduce the CNN training time.
The performance of the trained CNN, utilizing transfer learning, is tested for real-time control of a
robot manipulator.

Keywords: brain–machine interface; convolutional neural networks; genetic algorithm; data selection;
transfer learning

1. Introduction

In the future, BMI systems will have a wide range of applications, especially for
patients who partially or entirely lose their mobility. For example, BMIs are used in the
rehabilitation of post-stroke survivors whose brain damage impacts their mobility. In
such implementations, the system captures brain signals, recognizes the user’s intention,
and directly gives the command to external devices, e.g., exoskeleton, robotic hand, or
other types of prosthetic devices [1,2]. BMI systems are also applied to patients who
have completely lost their mobility by using brain signals during motion imagination
(MI tasks) [3,4]. There are also different MI applications, such as controlling the robot
manipulator [5] or the lower-limb exoskeleton via brain signals [6]. Recently, there have
been attempts to expand the application of BMI systems into more complex environments,
such as controlling vehicles or assessing the current mental state of drivers [7].

Among the various recording paradigms for brain signals, electroencephalogram
(EEG) is commonly employed. EEG is acquired by placing electrodes in multiple areas of
the subject’s scalp [8]. However, EEGs are significantly influenced by various sources of
noise, leading to a non-stationary and highly variable nature of signals. This issue is crucial
for developing robust BMI systems.

For such implementations of BMI systems, the following issues must be considered:
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1. Improving the recognition accuracy of BMI systems to decode brain signals with
high accuracy. This will improve the implementation of BMI systems, especially in
applications such as prostheses and gadgets.

2. Real-time implementation of BMI systems requires a short processing time of captured
brain signals in addition to high accuracy. The processing time is strongly related to
the number of data and processing methods.

To develop BMI systems for real-life applications, the accurate mapping of EEG data
obtained from subjects into their intended movements is essential. Previous methods have
applied k-NN (k-nearest neighbor) [9] and support vector machine (SVM) [10] for EEG
classification. In [11,12], k-means and k-median core-set data selection methods are utilized,
in which a representative subset of points is used to speed up the learning process. In [13],
the authors show that many “unforgettable” examples that are rarely incorrectly classified
once learned could be omitted without impacting generalization. In [14], the authors
proposed a Selection via Proxy (SVP) method to improve the computational efficiency
of active learning and core-set selection in deep learning. In this method, cheaper proxy
model representation is substituted with an expensive model during data selection. In [15],
the authors proposed a data selection strategy to train a neural model to obtain the most
significant data information and improve algorithm performance during training, leading
to less computations and a reduction in classification error.

More recently, CNNs have gained popularity for EEG classification due to automatic
feature extraction capabilities [16–18]. While deep learning offers high accuracy, it comes
with the drawbacks of long training time and a substantial amount of required training data.
A typical approach for BMI applications is to reduce information redundancy through data
optimization techniques such as channels optimization [19]. Nonetheless, this approach
does not solve the issue of generalization but rather finds the optimal channels, which
can be different among subjects. Transfer learning emerges as a solution to address these
challenges [20,21]. In [22], the authors analyze if specific layers are general or specific to
one model. In addition, similarity between tasks is quantified. The results show that the
transferred weights of frozen and fined-tuned layers perform better than random weights,
especially for good generalization.

Different to previous works, we combine GAs and transfer learning to select training
data, such as to improve the recognition rate and training time of BMI systems in real-time
applications. In this work, a GA is employed to select the optimal data for training the
BCNN. This ensures that after transfer learning, the TCNN achieves a superior recognition
rate and shorter training time. The evaluation is conducted on two datasets: The first is
the BCI Competition IV [23], an online dataset collected from nine subjects performing MI
tasks. The second dataset is collected from subjects in our laboratory at Hosei University,
involving several grasping motions of the right hand or motor movement (MO) tasks.

We investigate various aspects of transfer learning, including the choice of pre-trained
models, the selection of transfer layers, and the fine-tuning process. We explore the trade-
offs between model complexity and performance, aiming to strike a balance that facilitates
accurate and efficient BMI operation. Our findings contribute to the development of more
practical and data-efficient BMI systems, which hold great potential for improving the
quality of life of individuals with disabilities and expanding the scope of brain-controlled
applications. The proposed algorithm can reveal similarities between the data selected
by the GA and the data used to train the TCNN through transfer learning. In addition,
we utilize the trained CNNs to map brain signals in real time to the robot motion for
human–robot interaction applications. Robot implementation shows good performance,
with potential for a wide range of applications.

2. Method

The flowchart of the proposed method is shown in Figure 1. First, a single subject’s
EEG data, called the target data, are separated from the EEG dataset of all subjects. The
separated EEG data are used to train the TCNN. In our model, the GA selects the subjects
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whose EEG data will be used to train the BCNN. Initially, an initial population of individuals
is generated, each characterized by a set of genes serving as the binary data of each subject
to be included or not in the training of the BCNN (Figure 1). Using the selected EEG data
by the GA, we initially train the BCNN. Then, we implement transfer learning utilizing
the pre-trained BCNN as the base model. The criterion for the selection of the dataset
by the GA is to maximize the average classification accuracy of the TCNN. Based on
this evaluation criteria, the best individuals are selected, and crossover and mutation
operations are performed to generate the next generation. This iterative process is repeated
for a predetermined number of generations, and the individual with the highest fitness
is generated.
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2.1. Convolutional Neural Network (CNN)

DNNs are a category of Neural Networks that artificially replicate the human brain.
DNNs, unlike CNNs with only a few intermediate layers, consist of many intermediate
layers, enabling them to handle more complex problems.

On the other hand, a CNN is a type of DNN that incorporates repeatedly both convolu-
tional and pooling layers to extract features from the training data. In this work, EEGNet [9]
is utilized for both the BCNN and TCNN, as shown in Figure 2. The network comprises
two primary convolution blocks for spatial–temporal fusion and a simple dense layer for
classification. The first block includes two convolutional layers: a normal convolution layer
for temporal feature extraction and a depth-wise convolutional layer for frequency-specific
spatial information. The subsequent block employs a separable convolutional layer to fuse
both spatial and temporal information. Additionally, this block utilizes the ReLU activation
function, average pooling, and a dropout layer.

2.2. Transfer Learning

In our method, transfer learning is implemented by transferring parts of the pre-
trained BCNN model to train the TCNN. To improve accuracy, CNNs typically begin with
randomly initialized parameters in the initial learning phase. However, due to the random
selection of initial connection weights, a long training process is required. Therefore,
transferring a set of previously trained connection weights can be advantageous for faster
training with less data of the TCNN, as shown in Figure 3.
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There are two approaches to transfer learning: (1) fine-tuning, which involves updating
the model for the new dataset, and (2) feature extraction, which involves preventing the
update of the model during training, using only the model’s classification head. In our
implementation, we use fine-tuning.

Given the need for the model to learn complex data and recognize a wide range of
patterns, the BCNN model is initially trained with the EEG data of subjects selected by
the GA. Next, the convolutional layers’ parameters of the BCNN model are transferred to
the TCNN model, which is then fine-tuned with the target subject dataset. This approach
results in rapid parameter adjustment and often achieves a better recognition rate compared
to training the model from scratch.
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3. Datasets

Due to the diverse tasks in BMI applications, to evaluate the performance of the
proposed method, two different datasets—MCRP and MI tasks—are utilized. In MRCP
tasks, EEG signals correspond to the movement of subjects’ limbs. Conversely, in MI tasks,
EEG signals are recorded during the imaginary movements of limbs. This section provides
a detailed explanation of how the datasets are created to train and test the performance of
the proposed method.

3.1. BCI Competition IV2a

The dataset, publicly available online, was collected by Graz University of Technology.
The data are recorded from nine subjects who engaged in four motor imaginary tasks:
right hand, left hand, tongue, and both feet. Data from each subject were gathered over
6 sessions, resulting in a total of 48 sessions (12 sessions for each motor imaginary class).
Throughout the experiments, subjects were seated in front of a computer screen.

Each trial began with a cross appearing on the black screen at t = 0 s, followed by a
warning sound, as depicted in Figure 4. After 2 s (t = 2 s), a cue in the form of an arrow
pointing left, right, down, or up was shown on the monitor corresponding to one of the
four motor classes. The arrow remained on the screen for 1.25 s. This instructed the subjects
to perform the target motor imagery task until the cross vanished at t = 6 s. EEG recording
utilized twenty-two Ag/AgCl electrodes spaced 3.5 cm apart, sampled at 250 Hz, and
band-pass filtered between 0.5 Hz and 100 Hz.
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3.2. CapiLab MCRP Dataset

In our laboratory, data are collected following the Ethics Policy on Research Involving
Humans of Hosei University based on the Declaration of Helsinki.

We gathered EEG data from four subjects aged 20–22. They were seated in front of a
laptop, as shown in Figure 5a. The MCRP tasks were grasping a ball, smartphone, and a pen.
In addition, a no-motion task was added in which the subjects just rest without grasping
any object. The data acquisition method is illustrated in Figure 5b. Initially, animated
objects depicting a ball, a smartphone, and a pen were displayed on the upper part of
the monitor to remind the subjects to pay attention to the upcoming task. On the lower
part of the monitor was the animated hand. As the animated object moved down toward
the animated hand, simultaneously, a real object matching the animated one reached the
subject’s right palm. Once the animated object stopped moving, the grasping motion of the
fingers started on the monitor, which lasted 2 s. Simultaneously, the subjects grasped the
real objects.
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The electrode arrangement was according to the international 10–20 method. We
employ a Mitsar-EEG-201 system to record the user’s brain activity with 19 recording
channels. The device’s recording frequency was 500 Hz. Because each hand motion was
recorded for two seconds, each trial generated a 1000 × 19 data point matrix. A low pass
filter of 0.16 Hz and a high pass filter of 40 Hz were applied. To reduce electric line noise, a
notch filter was installed at 50 ± 5 Hz.

4. Results and Discussion

In our implementation, we divided the collected data into training data (90% of the
total data), and the remaining 10% of the data were used for validation. The GA and
CNN parameters are shown in Tables 1 and 2, respectively. The process began by selecting
one subject’s data for the TCNN. The GA then determined the dataset from the remaining
subjects to train the BCNN. In our implementation, the average recognition accuracy of
the TCNN after transfer learning is the fitness function of the GA. If the GA selected zero
subjects, training was skipped, and the accuracy was set to −0.5.

Table 1. GA parameters.

Parameter Name BCI Competition IV2a CapiLab MRCP

Crossover rate 0.3 0.3
Crossover method 2-points crossover 2-points crossover
Mutation rate 0.1 0.1
Selection algorithm Tournament Tournament
Generations 30 20
Individual 50 20

Table 2. CNN parameters.

Parameter Name BCI Competition IV2a CapiLab MRCP

Training size 90% of data 90% of data
Testing size 10% of data 10% of data
Optimizer Adam Adam
Learning rate 1 × 10−3 1 × 10−3

Batch size 64 64
Epochs 30 30

We evaluated similarity using correlation coefficients and Euclidean distances. Sup-
posing that x and y are two different signals, cross-correlation is calculated based on the
following equation:

Zk =
||x||−1

∑
i=0

XiY∗
{i−k+N1) (1)



Robotics 2024, 13, 14 7 of 12

where * denotes a complex conjugate operation. Another similarity evaluation is Euclidian
distance, which is calculated as follows:

d(x, y) =

√
n

∑
i=1

(xi − yi)
2 (2)

4.1. Results ofr BCI Competition IV2a Dataset

Because the data of Subject 4 were damaged, we removed these data from the dataset.
So, the data of eight subjects were used to evaluate the method for MI tasks. Subject 8 was
selected as the target subject. Therefore, the data of Subject 8 were selected to train the
TCNN using transfer learning. The GA selected the best data from the remaining seven
subjects to train the BCNN.

The GA population size was 50 individuals, evolving through 30 generations. Figure 6
shows the average fitness value (recognition accuracy after transfer learning) and the
standard deviation for each generation through the course of evolution. The GA converged
after 20 generations with a consistent increase in the objective function for each generation.
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Table 3 shows the values of correlation coefficient and Euclidian distance to measure
the similarity between the data of the subjects selected by the GA (Subjects 2, 3, and 7) and
the target subject (Subject 8).

Table 3. Similarity ranking result of BCI Competition IV2a via correlation coefficient and Euclidian
distance of target subject compared with each subject.

Subject
Similarity to Subject 8

Correlation Coefficient Euclidian Distance

Subject 1 0.50023 4.94123

Subject 2 0.49920 4.83422

Subject 3 0.50332 4.76755

Subject 4 0.50444 5.84189

Subject 5 0.50214 6.80476

Subject 6 0.50301 4.76024

Subject 7 0.50149 4.91620

4.2. Results of CapiLab Dataset

In these experiments, Subject 4 is selected as the target subject. The GA selects the
best subjects to train the BCNN from the remaining three subjects. There are 600 data for
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each subject (150 for each class, 19 channels × 1000 data points), resulting in a total of
2400 data/subjects. We reduced the GA population size to 20 individuals, and the termina-
tion criteria to 20 generations. The reason for having a smaller number of generations and
individuals is the small number of subjects the GA searches through.

Figure 7 shows the average fitness for each generation through the course of evolution.
The objective function increased fast during the first generations and converged by the
tenth generation. This is because the search space of the GA is small (three subjects).
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Table 4 presents the similarity between the subjects selected by the GA and those
trained by the TCNN. Table 4 demonstrates that the subjects chosen by the GA exhib-
ited the highest similarity to Subject 4, both in terms of the correlation coefficient and
Euclidean distance.

Table 4. Similarity ranking result for CapiLab dataset.

Subject
Similarity to Subject 4

Correlation Coefficient Euclidian Distance

Subject 1 0.5000511 409.5032

Subject 2 0.5020856 500.9085

Subject 3 0.5033397 502.7810

However, there is an issue requiring further investigation. As shown in Tables 3 and 4,
only two out of seven results agreed on the similarity criteria for the BCI competition
dataset, and one out of three agreed for the CapiLab dataset. We attribute this to the
convolutional operation of EEGNet, which employs depth-wise convolution for spatial–
temporal information fusion, combining temporal and spatial similarities. Another issue
is the filtering technique that is applied during data preprocessing. Some of the spatial
information was lost due to the applied filters.

4.3. Comparison of CNNs Recognition Rates Trained with All and GA-Selected Subject Data

Table 5 shows the recognition accuracy in the case of (1) all the subjects’ data being
used to train the BCNN; (2) data of the subjects selected based on the highest correlation
coefficients (Subjects 3, 4, and 6 for BCI Competition IV and Subject 3 for CapiLab); (3) data
of the subjects selected based on the lowest Euclidian distances (Subjects 2, 3, and 6 for BCI
Competition IV and Subject 1 for CapiLab); and when only the data of the subjects selected
by the GA were used. The results show that employing the GA to optimize the training
data resulted in an improvement in recognition accuracy of approximately 11% and about
4% for the BCI Competition IV and Capilab dataset, respectively. The reduction in the size
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of the training dataset significantly reduces training time, demonstrating the feasibility of
the proposed method in selecting the best subjects’ data.

Table 5. Improvement comparison between TCNN trained with all data, CC-based, ED-based
similarity, and proposed system with GA.

Datasets

Accuracy (%)

All Data Correlation
Coefficient

Euclidian
Distance GA

BCI Competition IV2a 71.43 ± 5.11 66.01 ± 6.75 77.92 ± 5.95 78.81 ± 5.92
CapiLab MCRP 81.1 ± 7.92 74.54 ± 6.71 77.54 ± 6.71 84.4 ± 5.81

4.4. Real-Time Robot Control Using Brain Signals

In the case of the Capi-lab dataset, we verified the performance of the TCNN in real-
time control of the robotic arm. The experimental setup is shown in Figure 8. The trained
TCNN (Subject 4) recognizes the object grasped by the subject using brain signals, and the
robot manipulator moves to the target object placed on the table. The subject was wearing
a gel-based EEG cap, which was connected to the EEG amplifier. In our implementation,
we utilized a KINOVA Gen 3 lightweight robot manipulator. The response time of the
robot is 2.075 s, which is 2 s for brain data collection and 0.075 s for the TCNN to recognize
the grasping object. For the experiment, we limited the speed of robot motion for safety
reasons. So, the robot reached the target object in around 2.4 s. Figure 9 shows the video
capture of three different trials. The recognition rate decreases to nearly 60% due to slight
changes in electrode positions. Therefore, collecting more training data is necessary to
improve the robustness of the developed BMI system. Such implementation increases the
applicability of BMI systems for human–robot interaction (HRI) tasks.
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4.5. Discussion

The proposed method outperformed other data selection methods and makes accurate
recognitions with a reduced amount of data. The experimental results demonstrated
significant improvements in the recognition accuracy of the TCNN when the BCNN was
trained with the GA-selected data. Moreover, beyond accuracy gains, the GA-selected
training data contributed to a notable reduction in CNN training time. This efficiency
improvement is particularly crucial for real-time robotic applications where response
time is essential. The findings from this work not only underscore the effectiveness of
the proposed approach but also highlight its potential for practical implementations. By
reducing the number of training data, the proposed method minimizes the computational
burden of CNNs. This work can be further extended for the exploration and refinement of
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hybrid techniques in BMI systems, contributing to advancements in neurotechnology and
human–machine interfaces.
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5. Conclusions

This paper presented a new approach to improve the performance of CNNs by ad-
dressing two critical challenges: the quality of training data and the training time of CNNs.
By synergistically integrating transfer learning and the GA, our methodology optimizes the
training data for CNNs, demonstrating notable improvements in recognition accuracy and
reduced training time. The utilization of transfer learning across different subjects proves
to be a key factor in our approach, generating a more generalized and robust model. The
innovative use of the GA for data selection improved CNN performance. In addition, the
results provide valuable insights into the similarities in brain activity across subjects. This
dual optimization strategy refined the neural network’s ability to recognize patterns and
contributed to a deeper understanding of brain functions. The empirical results underscore
the effectiveness of our proposed approach. Additionally, the reduction in training time is
significant for practical implementations of BMI systems. The trained CNNs also showed
good performance and effective real-time control of robot manipulators using brain signals
for human–robot interaction applications.
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