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Abstract: Learning-based control systems have shown impressive empirical performance on chal-
lenging problems in all aspects of robot control and, in particular, in walking robots such as bipeds
and quadrupeds. Unfortunately, these methods have a major critical drawback: a reduced lack of
guarantees for safety and stability. In recent years, new techniques have emerged to obtain these guar-
antees thanks to data-driven methods that allow learning certificates together with control strategies.
These techniques allow the user to verify the safety of a trained controller while providing super-
vision during training so that safety and stability requirements can directly influence the training
process. This survey presents a comprehensive and up-to-date study of the evolving field of stability
certification of neural controllers taking into account such certificates as Lyapunov functions and
barrier functions. Although specific attention is paid to legged robots, several promising strategies
for learning certificates, not yet applied to walking machines, are also reviewed.

Keywords: legged robots; stability; neural networks; reinforcement learning; locomotion control

1. Introduction

Stability is a fundamental requirement from an engineering perspective since it guar-
antees that the controlled system, under bounded disturbances, can wander in a limited
region of state space. While stability theory had a huge impact on the design of controllers
for linear systems, it is quite difficult to provide stability guarantees in the nonlinear case.
Since the beginning of 2000, barrier and Lyapunov certificates have been provided as a
practical method for formally proving the stability and safety of nonlinear and hybrid
systems [1,2]. However, it was possible to find these functions using traditional methods,
with much time and effort invested in customising unique certificates for specific systems.
The problem becomes even more difficult for multi-body mechanical structures, such as
legged machines, where assimilation to linear dynamics is often at the expense of the
reliability of the defined controller. The search for stability guarantees for this class of
complex mechanical systems becomes an urgent challenge as legged robots are becoming
increasingly popular [3,4]. They are expected to complement traditional wheeled machines
due to their dexterity and ability to explore highly unstructured terrains with minimal
invasiveness. Consider, for example, the inspection of landslide [5,6] areas for monitoring
and sensor deployment: here, you have to move through slippery and steep terrains that are
often inaccessible to robots on wheels or from the air for the presence of vegetation. These
terrains are the natural habitat of animals, especially insects and quadrupeds, showing that
the most reliable solution for natural terrain exploration is the use of legged robots [7].

Legged robots are a type of mobile robot that uses articulated limbs such as leg
mechanisms for locomotion. Thanks to their ability to change the configuration of their legs
and adapt to the surface, they can move remarkably well over natural terrain. However,
achieving the dynamic stability of a legged robot when walking or running is a major
challenge. It is crucial to determine the position of its feet and avoid falls when reaching its
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destination. This challenge arises from the fact that locomotion requires contact forces with
the environment, which are constrained by the mechanical laws of contact and the limits of
robot actuation [8].

Complex control routines require precise modelling phases. Due to the high complex-
ity of legged robot bodies and the peculiarities of their specific structures, standardised
models and associated model-based techniques are often of limited suitability for direct
application for control purposes. On the other hand, the use of sophisticated simulation
environments and the use of data recorded directly from the robot’s onboard devices makes
the use of data-driven strategies significantly relevant.

More recently, data-driven learning methods have expanded beyond such traditional
areas as image processing and general classification or regression modelling to areas closely
related to stability and safety state evaluation. While neural-network-based methods have
been used for many years for high-level navigation [9,10], there have been difficulties in
closing the loop for low-level motion control due to a lack of stability guarantees. Only
recently the first results on the fulfilment of stability and safety guarantees in the synthesis
of controllers for dynamical systems have been investigated, especially in safety-critical
applications such as autonomous vehicle systems [11] and simple models of robotic systems
such as the inverted pendulum [12,13]. From then on, increasing amounts of cases have
been studied, accompanied by several slightly different approaches to formally synthesise
stable and safe controllers through learning techniques. While most of them refer to
wheeled robots, there are at the same time many cases reporting the application of data-
driven methods to legged robots for solving the stability and safety problem. In addition,
other methods that may be of interest in this area have not yet been applied to legged robots.

Due to the relatively recent interest in the problem of learning stability certificates,
there are few review papers in this area [14–17] and to the best of the authors’ knowledge,
none of them were specifically focused on legged robots. On the other hand, there are other
approaches to achieve and improve the robustness of legged robots that, although based on
learning strategies, do not focus on Lyapunov or Barrier function distillation. Among these,
the zero moment point (ZMP) has been considered as a stability indicator that can be learned
in legged machines. In [18], and later in [19], a bipedal robot was considered in which
an online control strategy based on Iterative Learning Control (ILC) was implemented to
improve control performance during a predominantly repetitive task such as walking by
using previously memorised control sequences. Other approaches utilise reinforcement
learning. Based on the above considerations, this paper discusses the current state of the
art in the design of stability and barrier functions as well as the corresponding certificate
functions such as Control Lyapunov Functions (CLFs) and Control Barrier Functions
(CBFs), as illustrated in Figure 1. Other approaches to data-driven techniques that exploit
the potential of reinforcement learning and hybrid solutions are also discussed. We are
focusing in particular on learning systems based on neural networks and are deepening
our special interest in applications for walking robots.

Figure 1. Description of the different stability and safety certificates taken into consideration.
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The role of data-driven techniques such as artificial neural networks (ANNs) in de-
veloping appropriate models and certificate functions for legged applications is one of the
key elements to emphasise. When controlling dynamical systems, the availability of an
accurate model is essential, but this requirement is not always satisfied. On the other hand,
nowadays, huge amounts of data are usually available and the possibility of obtaining real-
istic measurements of the process to be controlled is not prohibitive thanks to inexpensive
storage devices. The problem that needs to be solved is how to properly use these data or
measurements to extract knowledge or derive a model from the measurements through
learning. This approach becomes unavoidable when the mathematical description of the
system dynamics becomes too complex or when the gap between the approximated and
the real system grows due to the dominance of those dynamics that cannot be modelled
analytically. ANNs are among the structures best suited to create input–output mappings
from data, which recalls the mathematical problem of approximating generic functions.
In 1989, Cybenko formally demonstrated the enormous potential of these structures by
emphasising that a neural network with only one hidden layer can always approximate
a continuous function with multiple variables with an arbitrary degree of accuracy [20].
Since then, ANNs have proven to be valuable computational paradigms in a variety of
applications. Unlike other mathematical models, ANNs offer unique advantages over
more classical techniques in areas such as pattern recognition, classification, and system
modelling, as they can extract the exemplar starting from the relevant instances provided
by examples through learning. Although two main training methods have traditionally
been applied to ANNs (i.e., supervised and unsupervised learning), reinforcement learn-
ing (RL) has recently gained considerable attention in industry and academia due to its
effectiveness in solving complicated problems that require directly deploying the agent in
a dynamic environment and learning a strategy optimised by interacting with the environ-
ment. Typical applications can be found in the field of autonomous driving, task planning
and other areas [21,22]. Learning with the addition of certificates for stability and safety
provides a reliable method to control and improve learning by finding more reliable and
robust solutions.

Another important topic is the hardware implementation of complex controllers, which
often have difficulties in meeting real-time specifications. This assumes more relevance
when onboard hardware resources in robotics are usually limited, mainly for energy reasons.
The issue here is the ability to run a controller at times that are compatible with the control
frequency requirements. For example, most of the routines in use today consider model
predictive control (MPC), which, since it requires solving an optimization problem online, is
hardly compatible with frequency requirements. From this point of view, neural controllers
shift the computational load to the offline phase (training) while achieving remarkable
time performance in the running phase. The joint ability to learn a controller, including
stability and safety conditions, thus represents a valuable tool for the development of real-
time strategies that will promote the proliferation of novel and much more sophisticated
controllers than nowadays in the near future.

The rest of the paper is structured as follows: Section 2 provides background on
dynamical systems, safety theories and learning mechanisms; Section 3 proposes the
learning methodologies used for certificate synthesis; Section 4 presents the applications
related to legged robots; Section 5 illustrates the future perspectives; and finally, Section 6
draws the conclusions.

2. Background

This section provides a theoretical overview of the main elements used in the method-
ological part. We begin with the definition of the systems considered with the proper
notation and terminology and then examine basic stability theory and safety concepts.
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2.1. Classes of Dynamical Systems

In this section, we go through all the different categories of dynamical systems that
will be taken into account. For notation, the state vector is defined as x ∈ X ⊆ Rn, in which
X is the set of state variables, whereas the set of initial conditions is defined as X0 ⊂ X.

Definition 1. A generic autonomous nonlinear time-invariant system can be expressed in
the form:

ẋ = f (x) (1)

where x ∈ X ⊆ Rn is the state and f is a nonlinear function. In this case, there is no dependence
on inputs.

Definition 2. A generic non-autonomous nonlinear time-invariant system can be expressed in
the form:

ẋ = f (x, u) (2)

where x ∈ X ⊆ Rn is the state and u ∈ U ⊆ Rm is the input.

Definition 3. A control affine system is a system in which the control appears linearly. It can be
expressed in the form:

ẋ = f (x, u) ≡ f1(x) + f2(x)u (3)

where x ∈ X ⊆ Rn and u ∈ U ⊆ Rm, f1 and f2 are generic nonlinear functions.

Definition 4. A hybrid system is a dynamical system that exhibits both continuous and discrete
dynamic behaviour.

Definition 5. A controlled hybrid system is defined as:{
ẋ = fi(x, u; pi), x ∈ Ci

x+ = hi(x, u; pi, pj), x ∈ Di,j
(4)

where x ∈ Rn denotes the vector state, u ∈ Rm denotes the control input, pi ∈ P denotes the system
configuration, i = 1, . . . , I denotes the system mode, Ci is the flow set where the state follows the
continuous flow map fi, where fi is defined as fi : Rn × Rm × P → Rn, and Di,j is the jump set
states flows discrete jump map hi, where hi defined as hi : Rn × Rm × P × P → Rn. In autonomous
hybrid systems u = 0.

For RL applications, systems are usually modelled with the Markovian decision
process (MDP).

Definition 6. A Markovian decision process is a tuple S, A, T, R in which S is a finite set of states,
A a finite set of actions, T a transition function defined as T : S × A × S → [0, 1] and R a reward
function defined as R : S × A × S → R. Given a time t, the transition function Tt depends only on
St and At not on the previous history.

The transition function T and the reward function R together define the model of
the MDP.

2.2. Stability Theory: Lyapunov Functions

In dynamical systems, stability refers to the quality of the system’s behaviour over
time and, in particular, to the system’s ability to respond to disturbances. We will consider
the problem of the stability of equilibrium points, even though the stability of periodic
trajectories also plays a crucial role in robot dynamics. For stability in ordinary differential
equations, Lyapunov functions generalise the concept of energy associated with a given
system. If it is intuitively possible to assign a generalised energy function to a system
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whose derivative along the system trajectory is non-positive in a particular neighbourhood
of the equilibrium point, this means that the system is either conservative or dissipative
in this neighbouring locus, implying the simple or asymptotic stability of the equilibrium
point. More formally, given an autonomous dynamical system as described in Equation (1):

Definition 7. Simple stability: The equilibrium point xe ∈ X is stable in the sense of Lyapunov at
t = t0 if for any ϵ > 0 there exists δ(ϵ) > 0 for which it holds:

||x(t0)|| < δ =⇒ ||x(t)|| < ϵ, ∀t > t0 (5)

Definition 8. Asymptotic stability: An equilibrium point xe is asymptotically stable at t = t0 if xe
is stable and locally attractive, i.e., limt→∞x(t) = xe

Definition 9. Exponential stability: An equilibrium point xe is exponentially stable if

∃m, α > 0, ν > 0 : ||x(t)|| ≤ me−α(t−t0)||x(t0)||, ∀||x(t0)|| ≤ ν, t ≥ t0 (6)

where α is called the rate of convergence.

Whether or not a system meets these definitions can be analysed using one of the most
commonly used types of certificate: the Lyapunov function.

Definition 10. Given the system in Equation (1) and considering xe as an equilibrium point for
the system, a continuously differentiable function V : X → R is a Lyapunov function (LF) if there
exists a neighbour Ω ⊆ X of xe where:

V(xe) = 0

V(x) > 0 ∀x ∈ Ω \ {xe} (7)
dV
dt

≤ 0 ∀x ∈ Ω

where dV/dt = ∇V(x) f (x) is the Lie derivative of V along the dynamics f (often denoted
L f V(x)).

If a function satisfying these conditions can be found, then the stability of the equilib-
rium point xe can be certified via the following theorems.

Theorem 1 (see [23], Theorem 4.1). If V is a Lyapunov function, f (xe) = 0, with xe ∈ D ⊂ Rn,
then the system has a stable equilibrium at xe with Ω forming the region of attraction (RoA).
Moreover, if dV

dt < 0 for all x ∈ D\xe, then the system has an asymptotically stable equilibrium
at xe.

One of the main advantages of the Lyapunov method is to assess the stability of an
equilibrium point without explicitly solving the system dynamics. The primary insights
are sublevel sets of V (see Definition 11) which exhibit forward invariance, meaning that
once the system enters a sublevel set of V, it will remain in that set for all future times,
proving stability. Furthermore, if V decreases monotonically and is bounded below, it
will eventually approach its minimum value at 0. Intuitively, V can be interpreted as a
generalized energy; if the system is strictly dissipative, then it will eventually come to
a stop.

A CLF is used to assess whether a controlled system is asymptotically stabilizable, i.e.,
whether there exists a control action u(x, t) for each state x such that the system can be
asymptotically brought to the zero state by applying this control action u. Formally:
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Definition 11. A function V(x) : Rn → R:

V(x) > 0 ∀x ∈ Rn \ {xe}
V(xe) = 0

min
u∈U

V̇(x, u) < 0 ∀x ∈ Ωc \ {xe} (8)

where Ωc := {x ∈ Rn : V(x) < c} is a bounded c-sublevel set of V(x), c ≥ 0, is a (local)
Control Lyapunov Function for the system in Equation (2) and Ωc is the region of attraction for the
equilibrium point xe. Every x ∈ Ωc is asymptotically stabilizable in xe, i.e.,

∀x0 ∈ Ωc, ∃u : [0, t] → U : lim
t→∞

x(t) = xe (9)

The V̇(x) is evaluated along the dynamic:

V̇(x, u) = ∇V(x)ẋ = ∇V(x) f (x) +∇V(x)g(x)u = L f V(x) + LgV(x)u

Considering the exponential stability definition previously given, it is possible to insert
constraints relative to the velocity of convergence. Formally, we can change Equation (8)
such that:

min
u∈U

V̇(x, u) + αV(x) < 0 ∀x ∈ Ωc \ {xe} (10)

This new formulation represents the Exponential Control Lyapunov Function, in
which α is called the decay rate. Therefore, the problem of stabilization of a nonlinear
system is reformulated by looking for suitable inputs that stabilise the 1D dynamical system
as shown in Equation (10).

2.3. Safety Theory: Barrier Functions and Nagumo’s Theorem

Barrier functions have been introduced to prove the safety of dynamical systems,
rather than their stability. In this case, attention is focused no longer on guaranteeing that
the trajectories reach the equilibrium point, but rather on ensuring that the state flow will
stay confined within a region of interest, considered as a safe region. Safety can be achieved
by proving the forward invariance of a given set. The study of safety in dynamical systems
was first introduced in the 1940s by Nagumo, who established the necessary and sufficient
conditions for the invariance of a set [24]. A way to prove the safety of a system based on
Nagumo’s theorem is the barrier function approach, which is elegantly formalised in [25].
A barrier function certifies the existence of a safe subset in which the state can be proven to
remain. Formally:

Definition 12. For the system described in Equation (1) let X0 be the set of all initial conditions
and let Xu ⊂ X be an unsafe set, to be avoided by the system. The dynamical system in Equation (1)
is said safe if:

∀x0 ∈ X0, ∀t ≥ 0 → x(t, x0) /∈ Xu (11)

Definition 13. A barrier function is a differentiable function B : X → R that splits the state space
X into Xs where B(x) ≥ 0 and Xu where B(x) < 0 such that X0 ⊆ Xs. Overall, B(x) has to be
such that:

∀x0 ∈ X0, ∀t ≥ 0 → B(x(t, x0)) ≥ 0 (12)

Given this definition, a barrier function can be used to define the safety of the system.
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Definition 14. Given the dynamical system in Equation (1) with the set X, Xs, X0 and Xu, defined
as above, if the barrier function B : X → R is such that:

∀x ∈ ∂Xs = {x : B(x) = 0} → L f B(x) > 0 (13)

Then the system in Equation (1) is safe. It is worth noting that condition (13) im-
poses that whenever x belongs to the boundary between Xs and Xu (i.e., ∂Xs), the system
dynamics is pushed back into Xs.

Definition 15. Given that the dynamical system in Equation (2) and a function B(x) : Rn → R
is continuously differentiable and given its zero-super level set Xs = {x : B(x) ≥ 0}, satisfying
∇B(x) ̸= 0, ∀x ∈ ∂Xs, if a positive coefficient γ exists such that ∀x ∈ Xs:

sup
u∈U

[L f B(x) + LgB(x)u] + γB(x) ≥ 0 (14)

then B(x) is an Control Barrier Function (CBF). Any Lipschitz-continuous control law that satisfies
the aforementioned constraint will make the set Xs safe:

Ḃ(x, u) + γB(x) ≥ 0. (15)

for u ∈ U and γ > 0

More details about CBF can be found in [26].

2.4. Stability and Safety for Controlled Systems: Control Barrier and Control Lyapunov Functions

The integration between the data-driven approach for the synthesis of controllers,
the Lyapunov theory for stability definition and, more recently, the barrier function for
safety assessment led to a new line of research that opened the way to new methods and
applications. As mentioned above, stability and safety certificates are usually achieved
through control Lyapunov or Control Barrier Functions. In some cases, a single function
called the Control Lyapunov Barrier Function (CLBF) has been introduced as a single
certificate that provides both stability and safety. CLBF can be viewed as a CLF where
the safe and unsafe sets are contained in sub- and super-level sets, respectively, [27].
Any control law that satisfies Equation (10) makes the controlled system both stable and
safe. This reference also describes an extension to robust CLBF in the case of bounded
parametric uncertainties.

3. Learning Methodologies

The overall problem to be solved is to formalize certificate synthesis as a data-driven
strategy that exploits the universal approximation capabilities of neural interpolators to
distil imitators of linear optimal controllers designed on linear approximators of nonlinear
systems. The overall design includes the certificate conditions [28]. The positive side effect
is that there are cases where the learned certificates can extend stability or safety even
outside the linear regions where the optimal controller was designed.

In examining the current state of the art in certificate synthesis, we have identified
the following three main learning methods: supervised learning, reinforcement learning,
and linear/nonlinear programming approaches. The different solutions proposed in the
literature are summarized in Table 1, where relevant characteristics are indicated for each
reported work: the considered model type, the learning methodology applied and the
synthesized certificate.
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Table 1. Analysis of the recent literature: referred papers are check marked (✓) in terms of the
considered model, learning methodology and adopted certificate. The * indicates works that present
applications on legged robots.

Model Type Methodology Certificate
Generic Affine Hybrid Markovian Model-Free RL Supervised L&NP LF/CLF BF/CBF

[29] ✓ ✓ ✓
[30] ✓ ✓ ✓
[31] ✓ ✓ ✓ ✓
[32] ✓ ✓ ✓
[33] ✓ ✓ ✓
[34] ✓ ✓ MILP ✓
[35] ✓ ✓ ✓
[36] ✓ ✓ ✓
[27] ✓ ✓ QP ✓ ✓
[37] ✓ ✓ SDP ✓
[38] ✓ ✓ MIQP ✓
[13] ✓ ✓ MILP ✓
[39] ✓ ✓ ✓
[40] ✓ ✓ ✓ ✓
[41] ✓ ✓ ✓

[42] * ✓ S ✓
[12] * ✓ ✓ ✓
[43] * ✓ QP ✓
[44] * ✓ ✓ ✓
[45] * ✓ QP ✓
[46] * ✓ QP ✓
[47] * ✓ QP ✓ ✓
[48] * ✓ QP ✓ ✓
[49] * ✓ QP ✓ ✓
[50] * ✓ ✓ QP ✓ ✓
[51] * ✓ ✓ ✓
[52] * ✓ ✓ ✓
[53] * ✓ ✓ ✓

3.1. Supervised Learning

Some approaches to synthesizing certificates assume the availability of both the system
and the controller which are often designed using optimal techniques associated with a
quadratic energy function. In this case, it is possible to map the corresponding dataset
and then use the derived model mapping to predict the results from unobserved data.
The certificate is learned using supervised learning, which is described as a regression
problem. In this type of learning, the relationship between a dependent variable (target
variable) and one or more independent variables (predictor variables) is analyzed. The goal
is to determine the most appropriate function that characterizes the relationship between
these variables [54]. Various works such as [30,31,33,34] are based on counterexample
(CE) techniques. First, a numerical learner trains a candidate to fulfil the conditions on
a set of samples S. Then, a formal verifier confirms or falsifies whether the conditions
are satisfied over an entire dense domain D. If the verifier falsifies the candidate, one or
more counterexamples are added to the set of samples and the network is retrained. The
procedure is repeated in a loop until the verifier finally confirms the candidate over set D.
Both the learner and the verifier are usually implemented using ANNs. A flow chart of the
method is shown in Figure 2.
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Figure 2. Flow chart for supervised learning with counterexamples. Given an initial domain D and
a system f, a student network πΩ representing the Lyapunov candidate is trained using P samples
from D. At each iteration, the neural network is translated into an analytic form and sent as input
to an optimizer that checks the Lyapunov constraints. If they are not satisfied, a counterexample
that violates the constraints is returned. This is used to generate a set of counterexamples that are
included in the original data set D to obtain an augmented data set D∗. If the Lyapunov function
conditions are not satisfied, as described in [32,34], the training is terminated when the maximum
number of iterations is reached without a solution being found, while the algorithm in [30,31] offers
the possibility to reduce the search domain and repeat the learning procedure.

3.2. Reinforcement Learning Algorithms

In contrast to the above case, the target signals are often unknown. Rather, it is possible
to obtain some sporadic indications of how well the controller is behaving. This is the case
with the so-called semi-supervised learning. Reinforcement learning (RL), together with its
simplified version known as Self-organising Feature Maps [55], or Motor Maps [56], falls
into this category. It refers to a strategy in which the performance of a controlled system
can be improved by trial and error. The two main elements of RL are the agent, i.e., the
learner and the environment, i.e., everything outside the agent with which it interacts. The
essence of RL is that agents actively interact with their external environment [57]. Agents
choose appropriate actions to respond to the environment: according to the perceived state,
they move to the next state and then observe the results caused by their action and then
make a judgement. In general, the agent acquires the state from the environment and acts
according to a strategy that is gradually optimised based on the so-called reward function.
In this type of learning, the relationships between actions and rewards are stored in the
so-called value function, which is adjusted during iterations to improve future decisions in
similar states. The value and the strategy are usually embedded in a single function. In
contrast, the cases studied in this paper consider actor–critic algorithms: these are a class of
temporal difference (TD) methods in which a memory structure is used to represent the
policy independently of the value function. In the actor–critic RL, the policy structure is
called the actor due to its use in action selection, whereas the approximated value function
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is called the critic to verify the actor’s actions. The learning process always sticks to the
policy that the critic must capture and evaluate the current policy of the actor. The critique
manifests itself in the form of a TD error, which is the sole output of the critic and guides
the learning of both the actor and the critic. Two different approaches based on actor–critic
strategies are presented in the following:

• Soft actor–critic (SAC): the policy is instructed to maximize a balance between expected
returns and entropy, which indicates the degree of randomness in the policy. This
is closely related to the trade-off between exploration and exploitation: increasing
entropy leads to more exploration and thus increases the learning rate. It can also
prevent the policy from prematurely converging to a suboptimal local solution [58]. A
flow chart of the method is reported in Figure 3.

Figure 3. Flow chart related to the SAC algorithm, based on [40]. After initializing all networks,
the neural controller πθ , the Lyapunov function Lv, the action-value networks Qϕi with i = {1,2}, the
Lagrange multipliers ζ and λ, and the coefficient α, the system applies a control signal and receives
feedback, including reward and cost. The received transitions are stored in the replay buffer R and a
set of transition pairs is randomly selected to construct the CBF and CLF constraints with the system
f . These constraints are then used in RL controller training, where the extended Lagrangian method
is used to update the parameters. If the safety and stability constraints are not satisfied, an optimal
backup QP controller is designed to maintain basic safety.

• Deep deterministic policy gradient (DDPG): this is an actor–critic model-free algorithm
that is based on the deterministic policy gradient and can operate over continuous
action spaces. The goal is to learn the policy that maximizes the expected discounted
cumulative long-term reward without violating the policy [59]. A flow chart of the
method is reported in Figure 4.
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Figure 4. Flow chart related to the DDPG algorithm, based on [44]. This implementation is based
on a co-learning framework where TNLF is trained together with the controller. The learning is
based on the policy network πθπ

, the Q-function network QθQ , their target networks πθ′π
and Q

θ
′
Q

,

the Lyapunov function network VθV and the Lyapunov Q-function network LQθQ
. This acts as an

additional critic for the actions of the actor, which is guided by its target network Q
θ
′
Q

. The target

networks are slowly changing networks that should follow the main value networks. After initializing
the parameters, the transitions are sampled with the target network πθ′π

and the results are stored
in the playback buffer R. This is normally used in RL to store the trajectories of experiences when
executing a policy in an environment. Successively, the Q-net, the Lyapunov net and the respective
target nets are trained on dataset D extracted from R. At the end of each step, the target networks
are updated.

• Imitation learning (IL): this learning framework aims to acquire a policy that replicates
the actions of experts who demonstrate how to perform the desired task. The expert’s
behaviour can be encapsulated as a set of trajectories, where each element can come
from different example conditions; furthermore, it can be both offline and online.
It was used in [37] in combination with LMI formulation of stability condition, to
synthesize a stable controller for an inverted pendulum and a car trajectory following.
A flow chart of a typical IL approach is reported in Figure 5.
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Figure 5. Flow chart for training with imitation learning, based on [35,37]. At each step, pairs of state
values and control actions of the teacher controller are passed to the imitation training block as a
reference. In this implementation, the teacher controller is based on an optimal controller that meets
the safety conditions, so no further optimization block is required.

Other methods are worth mentioning that, even if they do not focus on finding sta-
bility features, have an impact on improving the motor skills of legged robots by utilising
time-consuming offline iterations that preserve real-world robot training. In particular,
Hwangbo et al. [60] presents a method for training a neural network policy in simulation
and transferring it to a quadruped, which enables high-level speed commands and fall-
recovery manoeuvres to be performed even in onboard experiments. The method was
refined in [61] by developing a robust controller for quadruped locomotion in challenging
natural environments that uses proprioceptive feedback and allows appropriate generalisa-
tion from the simulation to the real robot. The learned neural controller maintains the same
robustness under conditions not encountered in training, such as deformable terrain and
other examples of lifelike, wild outdoor areas. The method was extended in [62] with the
integration of exteroceptive perception to combine the different perceptual modalities. The
control was tested on a four-legged robot in different natural environments under various
extreme weather conditions.

3.3. Linear and Nonlinear Programming

Linear and nonlinear programming (L&NP) refers to a large class of optimization
problems where the objective functions can be linear or nonlinear (mostly quadratic) and
the decision variables can be real, integer or binary numbers. A flow chart of a typical L&NP
approach is reported in Figure 6. In view of the applications discussed in the following
sections, the most important approaches are briefly presented below. Other approaches
to certificate distillation or formalise the stability problem after a loop transformation and
distil the associated Lyapunov function by LMI constraints [37] that have been proposed in
the literature but are not detailed in this review are based on statistical learning methods
(S) [42].
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Figure 6. Flow chart for training with NLP optimization, based on [46,47]. This diagram represents a
general approach where the constraints are rewritten as specific optimization problems such as SDP,
MIP or QP, which are evaluated with the corresponding software routines.

3.3.1. Quadratic Programming

An optimization problem with a quadratic objective function and linear constraints
is called a quadratic program (QP). This can always be solved (or can be shown to be
infeasible) in a finite number of iterations, but the effort required to find a solution depends
strongly on the characteristics of the objective function and the number of inequality
constraints. A general formulation is:

minimize
1
2

xTQx + xTc (16)

s.t. aT
i x ≥ bi ∀i ∈ I

where Q ∈ Rn×n is symmetric matrix, the index set I specifies the number of inequality
constraints and c, x and ai, i ∈ I are vectors in Rn [63].

A definition of a QP problem in terms of CLF/CBF function can be as follows:

argmin
(u,θ)∈Rm+1

(u − ure f )
TQ(u − ure f ) + pθ2 (17)

s.t L f V(x) + LgV(x)u + λV(x) ≤ θ

L f B(x) + LgB(x)u + γB(x) ≥ 0

u ∈ U

where u is the control input, θ is a relaxation variable that ensures the solvability of QP
as penalized by p > 0, and Q is any positive definite matrix. The certificate functions are
expressed as inequality constraints in the overall QP problem, based on [26].
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3.3.2. Mixed Integer Programming

A mixed integer programming (MIP) problem occurs when certain decision variables
are restricted to integer values in the optimal solution. In this context, this formulation
is used to check the Lyapunov stability conditions. In [13,34], a verifier is developed to
test the positive and derivative Lyapunov stability conditions. To this purpose, the two
conditions are rewritten as a mixed integer linear programming (MILP) problem, a special
case of MIP, where the objective function, the bounds and the constraints are linear. To
enable this evaluation, the plant, the controller and the relative cost function are expressed
as an ANN with leaky ReLu activation functions. In [38], a verifier is obtained, but the
evaluation is carried out through a mixed integer quadratic problem (MIQP), in which a
quadratic term is used to synthesize the verifier.

3.3.3. Semi Definite Programming

Semidefinite programming (SDP) is a subfield of convex programming, where, in
addition, the constraint matrix has to be positive semidefinite. A general form of SDP is
given by:

minimize cTx (18)

s.t. F(x) ≥ 0

where F(x) is a linear matrix inequality (LMI) and cT is a weight vector [64]. In [37], it is
used to describe the LMI that combines Lyapunov theory with local quadratic constraints
that limit the nonlinear activation functions in the ANN.

4. Applications

Lyapunov’s theory allows the formulation of methods based on CLF and CBF and is
able to ensure stability and safety in the synthesis of control systems, even in the presence
of disturbances and uncertainties. The different methods proposed in the literature have
been evaluated in different case studies, which we can classify according to increasing
levels of difficulty. The simplest applications concern the control of the inverse pendulum
and trajectory tracking; where we have systems with small dimensions (few state variables),
a limited number of constraints and easily linearizable models. A second category of
applications concerns the control of drones, where a potentially larger number of variables
are involved. Finally, applications investigating legged robots were considered, which have
a high degree of complexity, both in terms of the number of state variables/constraints
involved, and the models used, which often have to take into account the hybrid nature
of such systems (due to the alternation of stance and swing phases in each leg). The most
frequently considered robotic systems are bipeds and quadrupeds. As already mentioned,
applications for legged robots are of primary interest in this review. The scenarios investi-
gated concern locomotion control, posture and speed control, and navigation problems in
which the robot must reach a target position in an environment with obstacles. Scenarios
related to walking in environments with stepping stones are also considered, where precise
positioning of the robot’s feet is required. All these applications were carried out both
in simulated environments and with real robots in scenarios limited to 2D or extended
to 3D. In Table 2, several case studies from the recent literature are listed, indicating the
methodology used, the type of robot involved and the task involved. It is also indicated
whether the applications were limited to simulations or extended to experimental tests with
the robot. Examples of applications on quadruped and biped robots are shown in Figure 7.
The different case studies are described below categorised according to the methodology
used (i.e., CLF, CBF, CLBF).
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Table 2. Analysis of the CLF and CBF applications to walking robots: referred papers are check
marked (✓) in terms of certificate type. Task, robot configuration and implementation type (simula-
tion or real experiment) are also outlined.

LF/CLF BF/CBF TASK ROBOT Sim Real
[42] ✓ Stable standing Minitaur quadruped ✓

✓ Velocity tracking A1 quadruped ✓
✓ Walking with unknown load A1 quadruped ✓[12]
✓ Locomotion control Rabbit biped ✓
✓ Locomotion control Rabbit biped ✓

[43]
✓ Locomotion control Marvel biped ✓

[44] ✓ Navigation control 8-DoF quadruped ✓
[45] ✓ Walking on 2D stepping stones AMBER-3M biped ✓ ✓
[46] ✓ Walking on 3D stepping stones ANYmal quadruped ✓ ✓
[47] ✓ Navigation control Digit biped ✓
[48] ✓ ✓ Locomotion control AMBER2 7-DoF biped ✓
[49] ✓ ✓ Navigation control 21-DoF biped ✓
[50] ✓ ✓ Locomotion control DURUS 23-DoF biped ✓
[51] ✓ ✓ Walking on 2D stepping stones Rabbit biped ✓
[52] ✓ Locomotion control Compass-gait walked biped ✓
[53] ✓ Locomotion control AMBER-3M ✓ ✓
[65] ✓ Navigation Control Laikago ✓
[36] ✓ Locomotion control Compass-gait walked biped ✓
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Figure 7. Application examples for four-legged and two-legged architectures. (a) LF on an 8-DoF
quadruped robot controlled with a DDPG algorithm [44] to navigate towards a target location, in an
environment filled with obstacles. (b) CBF with episodic learning on AMBER-3M biped controlled
to walk on stepping stones, the time evolution of the barrier function at episode 0 [45] is reported
in the panel where the distance between the robot feet and the stone centres is depicted. (c) LF on
A1 quadruped with SAC algorithm for velocity tracking. The comparison between desired forward
velocity and measured robot speed is reported in the panel [12]. (d) CBLF on DURUS 23-DoF biped
with QP optimization for walking control on steps [50].

4.1. LF/CLF Applications

The impulsive nature of walking is at the basis of the strategy that models legged
robots as hybrid systems. The problem of exponentially stabilizing periodic orbits in a
special class of hybrid models was addressed in [43] using CLF. The proposed solution
based on a variant of CLF that enforces rapid exponential convergence to the zero dynamics

Figure 7. Application examples for four-legged and two-legged architectures. (a) LF on an 8-DoF
quadruped robot controlled with a DDPG algorithm [44] to navigate towards a target location, in an
environment filled with obstacles. (b) CBF with episodic learning on AMBER-3M biped controlled
to walk on stepping stones, the time evolution of the barrier function at episode 0 [45] is reported
in the panel where the distance between the robot feet and the stone centres is depicted. (c) LF on
A1 quadruped with SAC algorithm for velocity tracking. The comparison between desired forward
velocity and measured robot speed is reported in the panel [12]. (d) CBLF on DURUS 23-DoF biped
with QP optimization for walking control on steps [50].
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4.1. LF/CLF Applications

The impulsive nature of walking is at the basis of the strategy that models legged
robots as hybrid systems. The problem of exponentially stabilizing periodic orbits in a
special class of hybrid models was addressed in [43] using CLF. The proposed solution
based on a variant of CLF that enforces rapid exponential convergence to the zero dynamics
surface was illustrated on a hybrid model of a bipedal walking robot named RABBIT [66]
through simulations and subsequently on the robotic testbed MABEL [67]. The CLF-based
controller achieved a stable walking gait reducing undesirable oscillations in the presence
of torque limits in the motors.

Algorithms designed to synthesize certificate functions often necessitate a closed-form
analytical expression of the underlying dynamics. To overcome this constraint, algorithms
capable of learning certificate functions solely from trajectory data have been proposed
in [42]. The authors established the consistency of the learning process, illustrating its
increasing accuracy with the expansion of the dataset size. The research involves the
computation of upper bounds on the volume of violating regions, demonstrating their
convergence to zero while the dataset increases in size. The generalization error of the
learned certificate has been numerically estimated. An upper confidence bound (UCB) of
the estimate has been performed using the Chernoff inequality. Empirical experiments
have been performed using a damped pendulum as a simple example and a stable standing
task with a quadruped robot named Minitaur subject to external forces [68]. The data
acquisition was performed using PyBullet as a dynamic simulation environment [69]. A
discrete-time Lyapunov function for handling the discontinuities in the trajectories due
to contact forces has been trained and then tested using 10,000 trajectories. The median
generalization UCB obtained was in the range of around 1–2%.

A novel cost-shaping method aimed at reducing the number of samples required to
learn a stabilizing controller has been proposed in [12]. The method incorporates a CLF term
into typical cost formulations to be used in Infinite Horizon RL strategies. The new cost
functions result in stabilizing controllers when smaller discount factors are employed. The
discount factor γ balances the importance of immediate versus future rewards. In principle,
the smaller the γ value, the higher the weight of actual reward versus future ones and the
simpler the problem to solve. Additionally, the inclusion of the CLF term ensures that even
highly sub-optimal policies can stabilize the system. The authors illustrate their approach
with two hardware examples: a cart pole and a quadruped robot using fine-tuning data
acquired in only a few seconds and a few minutes of experiments, respectively. In particular,
the Unitree A1 quadruped robot [70] was selected as a test bed to learn a neural network
controller for velocity tracking. A nominal model-based controller proposed in [71] was
used as the base system. Using a linearised reduced-order model, a CLF was designed
around the desired robot gait. Using the data acquired from the robot, an RL algorithm
was performed to learn a policy able to improve the velocity tracking performance of the
base controller using only 5 min of robot data.

The quadruped robot was then loaded with an unknown load and a CLF was used
to significantly decrease the tracking error of more than 60% using only one minute of
robot data. Another hardware platform was used to validate the methodology: a linear
servo base unit with an inverted pendulum (i.e., a Quanser cartpole system). Starting from
the simulation-based policy, a CLF was synthesized for the underactuated system. The
CLF-based fine-tuning approach was able to solve the swing-up task using data coming
from a single rollout whereas multiple rollout data succeeded in learning a controller robust
enough to recover from external pushes.

The controller developed in [43] for a bipedal walking robot was also fine-tuned.
Model uncertainty was introduced on the mass of each robot link that was doubled. The
nominal controller fails to stabilize the gait whereas only 40 s of data were enough to learn
a CLF reducing the average tracking error. Moreover, a simulated inverted pendulum was
also analyzed in the presence of input constraints. The addition of the candidate CLF in the
reward allowed us to rapidly learn a stabilizing controller for different input bounds.
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In the field of model-free deep RL used to solve high-dimensional problems in the
presence of unknown dynamics, there is a strong need for safety assurance. In contrast
with other approaches encoding safety constraints with rewards [12], the possibility to
learn a twin neural Lyapunov function (TNLF) with the control policy in an RL framework
was exploited in [44]. The TNLF works as a monitor to select the waypoints that guide the
learned controller in combination with the path provided by a planner. The applications
proposed refer to high-dimensional safety-sensitive navigation tasks where collision-free
control trajectories are needed. Experiments were performed in a simulation environment
optimized for reinforcement learning strategies (i.e., Safety Gym environment provided
by OpenAI [72]). Robots with increasing levels of complexity were considered, including
quadruped robots. This was torque-controlled at the hip and knee joints, providing state
information from the joints, accelerometer, gyroscope, magnetometer, velocimeter, and a 2D
vector toward the goal. The obstacle avoidance and target retrieving task was performed
in terrains with different complexities, showing an improved success rate when the co-
learning (i.e., TNFL and RL) strategy was adopted.

In [52], the authors propose an approach involving RoA-based planning methods to
stabilize hybrid systems by using the RoA concept. The proposed method is to control the
state of the system so that it always transitions to the RoA of the next hybrid mode after
a change. The stability in each mode is ensured by using Lyapunov functions, and the
RoA is represented by the invariant set provided by the Lyapunov function. Consequently,
the system does not need to be optimized. This approach proves to be more effective in
performing stability analysis and synthesizing controllers. A simulated bipedal robot with
a compass gait was used as a test considering a QP controller for the low-level motion and
a RoA classifier to find the optimal configuration imposed by the reference gait.

4.2. BF/CBF Applications

The generation of smooth paths that satisfy the dynamic constraints of walking robots
is the topic discussed in [47]. The introduction of CBFs with path planning algorithms like
rapidly exploring random trees (RRT/RRT*) was adopted to synthesize feasible collision-
free paths dynamically. Logistic regression was used to represent arbitrarily shaped ob-
stacles. A polynomial barrier function was derived from a grid map of the environment.
The proposed CBF-RRT* algorithm was first validated in simulation with a dual-drive
model and then experimentally with a 3D humanoid robot named Digit [73]. The algorithm
found relatively optimal paths within 15 s and 40 interactions and was able to generate a
collision-free path through complex spaces with polynomial-shaped obstacles.

Episodic learning and CBFs are combined for bipedal locomotion in [45] to achieve
safety, defined in terms of set invariance. Here, a learning strategy has been implemented
to mitigate the effects of model uncertainties that are relevant when considering hardware
platforms, especially bipedal robots. The effects of system perturbations are directly re-
flected in a variation in the temporal derivative of the CBF, which is defined as a projected
perturbation. Safety therefore implies a larger invariant set, which grows with the distur-
bance norm. Projection-to-state safety integrated with a machine learning framework was
used to learn the model uncertainty as it affects the barrier functions. Projected disturbance
is learned and hosted into an optimization-based controller. The strategy was evaluated
both in simulation and on hardware using the bipedal AMBER-3M robot [74] modelled
as an underactuated planar five-link robot with point feet dealing with a stepping stone
problem. Stepping stones were modelled as squares of 8 cm in width. The CBF-QP pro-
vided a maximum barrier violation of 9.2 cm due to model uncertainties, which sometimes
could cause the robot to fall. The use of a projected disturbance learning algorithm for two
episodes, reduced the maximum barrier violation to 1.9 cm.

Episodic learning is also used in [53], where a method called Neural Gait is used to
learn walking movements that are constrained within an invariant set and use experimental
data episodically. Set invariance is achieved by CBF, which is defined on the zero dynamics
and refers to the underactuated components of the robot. Although the input action
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does not directly influence the zero dynamics, it is indirectly influenced by the training
parameters that are included in the CBF definition. The approach uses two learning
structures. The first is dedicated to learning the walking gaits that minimise the violation of
set invariance: it is designed using control-theoretic conditions for the barrier function. The
latter learns episodically to minimise the discrepancies between the nominal model-based
dynamics and the running hardware experiment. The AMBER-3M prototype is used as a
demonstrator to show the efficiency of the approach in the presence of significant model
discrepancies. The walking behaviour is described as a forward invariance set defined as
a barrier satisfiability problem. In particular, a set of barrier functions is defined for the
zero-dynamics subset. The overall strategy is trained to minimise the barrier conditions
in the state space. To minimise model discrepancies, the residual error is trained on the
zero dynamics and the corresponding correction is used to episodically refine the actual
strategy and maximise the walking performance.

Dynamic locomotion over uneven terrains is a complex task. To simultaneously
achieve safe foot placement and dynamic stability, a multi-layered locomotion architecture
unifying CBFs with model predictive control (MPC) was proposed in [46] to assure both
safety and longer horizon optimality. A control law designed without considering the safety
issue could result in too aggressive actions next to the boundary of the safe region. The
authors adopted CBF-based safety constraints both in a kinematic/dynamic formulation of
the MPC low-frequency and in an inverse dynamics tracking controller working at high-
frequency. The method was validated in a 3D stepping stone scenario both in simulation
and experimentally on the ANYmal quadruped platform [75]. Walking in a stepping
stone scenario, requiring precise foot placement, was considered. Simulation and robot
experiments demonstrated that adopting CBF constraints on both the MPC and QP tracking
layer outperforms other solutions that enforce CBF constraints at only one layer. In [65],
a trajectory tracking control was developed to ensure safety in the presence of complex
geometric elements in the environment modelled as polyhedra. The corresponding CBF,
called the polygonal cone control barrier function (PolyC2BF), updates the concept of cone
control barrier function proposed in [76]. The basic formulation of the CBF was carried
out as a QP problem, where the function B(x) takes into account the vector between the
centre of mass of the specific robot navigating through the environment and the centre of
the obstacle it has to avoid, as well as the relative velocity and angle between these two
vectors. It was tested on quadrupeds and a drone on Pybullet. In both cases, constant target
velocities were chosen to validate the PolyC2BF.

In [36], a hybrid CBF (HCBF) was synthesized for a compass passive bipedal robot
walking down an inclined plane at a constant velocity. In the walker, the initial state of the
stance leg is fixed to the passive limit cycle and the initial state of the swing leg is varied by
adding uniform noise to the corresponding passive limit cycle state. In this case, an energy-
based controller was used as a teacher. The HCBF is described as an ANN with a fully
connected neural network with two hidden layers with tanh activations and with 32 and
16 neurons in the first and second hidden layers, respectively, where the hyperparameters
are determined by grid search. The obtained results demonstrated the presence of regions
in the state space where the HCBF-based controller provides safe system trajectories while
the energy-based controller results in unsafe behaviours.

4.3. CBLF Applications

Model uncertainty in safety-critical control is a relevant problem that can be treated
using data-driven approaches. To handle this issue, an input-output linearization controller
based on a nominal model was integrated with CLF and CBF in a QP problem using
reinforcement learning techniques to deal with the model and constraints uncertainty [51].
The performance was validated on a planar five-link underactuated bipedal robot (i.e.,
RABBIT [66]) walking on a discrete terrain of randomly spaced stepping stones with a
one-step preview. Stable and safe walking behaviours were obtained also under model
uncertainty, changing the torso weight in the range [43 kg, 72 kg].
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The design of CBFs can be facilitated following consolidated strategies as performed
in [48] where a backstepping-inspired approach was considered. The method allows the
generation of CBFs that guarantee forward invariance in a given set. The integration of
safety constraints and control objectives through CLF-CBF-based QPs was also discussed.
The method was validated on a walking task using the simulated seven-link bipedal robot,
AMBER2 [77] where joint constraints are considered as CBFs, allowing the generation of
stable walking. It should be noted that the authors in this paper use an earlier formulation
of CBF, now referred to as reciprocal barrier function [26], which has the disadvantage that it
grows infinitely towards the edge of the considered safe set, whereas the actual definition
is preferable, as it can also be handled outside of this set.

Safety-critical control for nonlinear discrete-time systems was investigated in [49]
using CBF in the discrete-time domain. Continuous-time formulations of CBF are applied
to discrete-time systems through a nonlinear program that can be revised as a quadratically
constrained quadratic program under certain hypotheses. The combination of discrete-time
CLF and CBF was investigated. The method was applied to navigation control tasks using a
21-degree-of-freedom bipedal robot walking on a given path in environments with moving
obstacles determining time-varying safety-critical constraints.

A single optimization-based controller was proposed in [50] to combine CLF to achieve
periodic walking and CBF to impose constraints on step length and step width. The
strategy was validated on the 3D humanoid robot DARUS [78] characterized by 23 degrees
of freedom. The accomplished task was to demonstrate dynamic walking over stepping
stones. Results demonstrated that the synthesized controller was able to handle random
step length variations of about 30% of the nominal step length and random step width
variations between 13% and 43% of the nominal step width.

5. Future Perspectives

In the field of learning control systems for walking robots, this review has identified
promising methods that still need to be explored in the future for the control of walking
robots. In addition to the already presented methods for synthesizing stability and safety
certificates already used in legged robot scenarios, other promising approaches can be
considered. In [13], a generic method for synthesizing a Lyapunov-stable neural network
controller together with a neural-network-based Lyapunov function to simultaneously
certify its stability was proposed. The problem was addressed in the context of MILP. Two
algorithms were proposed: training the controller/Lyapunov function on training sets
created by a verifier or using min-max optimization. Applications were performed with
simulated robots, including a 2D and a 3D quadrotor. The controller for the 2D quadrotor,
based on the model presented in [79], was trained with 10,000 initial states generated
uniformly in the state space region under consideration. The results showed that the LQR
controller was outperformed by the neural networks trained with CLF-based strategies.
The convergence time ranged from 20 min to one day. The 3D quadrotor model with
12 state variables [80] was trained to perform a steering and hovering task obtaining a
suitable controller in a few days. This methodology could be extended to legged robot
control applications. In [29], approximate Lyapunov functions of dynamical systems in
high dimensions were synthesized using an ANN. In this case, a δ−accurate Lyapunov (or
control Lyapunov) function could be derived: the model guarantees positive definiteness
and is trained to fulfil the negative orbital derivative condition, leading to only one term
in an empirical risk function. Minimizing this simple risk function allows for less manual
tuning of hyperparameters and more efficient optimization. Experimental results have
been performed with 2D systems for curve tracking, but also with 10D and 30D synthetic
systems and for the evaluation of the attraction region of an inverted pendulum. Based on
this perspective, it should be quite straightforward to adapt the method for applications
involving legged systems. While the empirical performance of existing techniques is
remarkable under certain conditions, the critical drawback of ensuring safety and stability
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in more general cases requires innovative approaches. The following future perspectives
indicate possible directions to advance the field:

• Data-efficient Lyapunov functional distillation: Addressing the challenges related
to the availability and efficiency of datasets for Lyapunov function distillation is
crucial [42]. Future research should focus on methods that improve the extraction
of Lyapunov functions from limited datasets to ensure robustness and efficiency in
learning-based control systems.

• Integration of Lyapunov design techniques with offline learning: The current review
highlights the potential of Lyapunov design techniques in reinforcement learning,
especially in offline environments [12]. Future efforts could explore and extend the
integration of Lyapunov-based approaches with reinforcement learning to achieve
robust and efficient control policies in legged robotic systems.

• Flexible approaches based on system requirements: Depending on the specific require-
ments of a given system, future research could look at flexible approaches that combine
CLFs and CBFs based on the priorities of stability or constraint satisfaction [81]. This
adaptability ensures that control strategies can be tailored to the specific needs of
different robotic systems, including a grading in the level of certification that can be
relaxed when the robot generalizes the trained task, trying to extend the safety region
beyond that one related to the training dataset.

• Terrain adaptation and obstacle avoidance: A major challenge for legged robots is
to navigate uneven and discrete (rocky) terrains while avoiding obstacles [3]. Fu-
ture work should aim to implement and further integrate discrete-time CBFs with
continuous-time controllers to improve the adaptability and obstacle-avoidance capa-
bility of legged robots [45,49].

• Development of standard benchmarks: The development of standard benchmarks for
the application of legged robots plays a critical role in the advancement of robotics by
providing a common framework for evaluating control strategies. Standard bench-
marks serve as important tools for evaluating the performance, robustness and adapt-
ability of different control algorithms for different legged-robot platforms. These
benchmarks will facilitate fair and objective comparisons between different control
strategies, promote healthy competition and accelerate the identification of best prac-
tices. The introduction of benchmarks also encourages knowledge sharing and collab-
oration within the scientific community, as researchers can collectively contribute to
the refinement and expansion of these standardized tests.

In summary, the future of adaptive control systems for legged robots offers exciting
opportunities driven by the integration of innovative methods and the pursuit of multi-
level performance guarantees. These future prospects aim to overcome current limitations
and push the field towards safer, more adaptive and more efficient legged robotic systems.

6. Conclusions

This review addresses the critical challenge of providing stability and safety guarantees
for learning control systems, with a focus on walking robots such as bipeds and quadrupeds.
While learning-based control systems have shown impressive performance in practice, the
lack of safety and stability guarantees is a significant drawback. This review highlights the
growing importance of stability certification techniques that combine learning certificates
with control strategies to ensure safety during training and verification after training.

The focus is on legged robots, which are becoming increasingly popular due to their
dexterity and ability to navigate unstructured terrains. The need for stability guarantees
is critical as these robots are used in applications where traditional wheeled robots reach
their limits. Legged robots that move with articulated limbs pose particular challenges to
dynamic stability due to the complexity of their bodies and the constraints imposed by
contact forces and actuation limits.

The article reviews the current state of the art in the development of stability and
barrier functions, focusing on Control Lyapunov Functions and Control Barrier Func-
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tions. Data-driven techniques are also discussed, with a focus on neural networks, and
applications to walking robots are explored. The importance of reinforcement learning in
providing stability and safety guarantees is emphasized, especially in real-time applications
where hardware implementation challenges arise. The authors emphasize the relevance
of learning with the addition of stability and safety certificates, which provide a reliable
method to control and improve learning processes. The integration of these certificates into
the learning paradigm ensures more reliable and robust solutions. Different learning strate-
gies were considered such as supervised approaches, reinforcement learning algorithms
and several linear and nonlinear programming techniques (i.e., QP, MIP, SDP, and others).
Furthermore, the potential impact on real-time control strategies is discussed, where neural
controllers shift the computational load to the offline training phase, enabling efficient
performance during operation. The analyzed applications in the field of legged robots
address different relevant tasks that include: stable standing, velocity tracking, locomotion
control, walking on stepping stones and navigation control. These tasks are evaluated on
several different legged robots both in simulation and real scenarios.

Future perspectives are finally presented, underlying the importance of several aspects
that contribute to achieving the common objective of developing control systems with safety
and stability guarantees to be applied to robotic systems working in real-world scenarios.
The underlined future research directions range from data-efficient solutions, online and
offline learning integration, flexibility in the imposed constraints, generalization capabilities
and the development of standard benchmarks to facilitate the performance evaluation.
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