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Abstract: Robot manipulation in a physically constrained environment requires compliant manip-
ulation. Compliant manipulation is a manipulation skill to adjust hand motion based on the force
imposed by the environment. Recently, reinforcement learning (RL) has been applied to solve house-
hold operations involving compliant manipulation. However, previous RL methods have primarily
focused on designing a policy for a specific operation that limits their applicability and requires
separate training for every new operation. We propose a constraint-aware policy that is applicable
to various unseen manipulations by grouping several manipulations together based on the type
of physical constraint involved. The type of physical constraint determines the characteristic of
the imposed force direction; thus, a generalized policy is trained in the environment and reward
designed on the basis of this characteristic. This paper focuses on two types of physical constraints:
prismatic and revolute joints. Experiments demonstrated that the same policy could successfully
execute various compliant manipulation operations, both in the simulation and reality. We believe
this study is the first step toward realizing a generalized household robot.

Keywords: compliant manipulation; reinforcement learning; Learning-from-Observation

1. Introduction

Many household operations require manipulating an object under a physically con-
strained environment, such as opening drawers and doors. A robotic system performing
such household operations must be guaranteed not to damage the object or environment.
Therefore, the robot needs to adjust its hand motion during the execution based on the force
imposed by the environment, i.e., constraint force. This manipulation is called compliant
manipulation [1]. There are an unpredictable amount of manipulations in the household
environment; thus, the generalized controller to such manipulations is expected to realize a
household robot.

This study investigates the generalization capability of a policy trained with a single
environment and reward using reinforcement learning (RL) to various unseen manipula-
tions. Although the RL-based approach [2–6] is more robust to the uncertainty associated
with recognition of object information, such as pose, articulation, and shape than classical
controllers [7], this requires a manual design of the training environment and reward
specific to each manipulation. Thus, it is not scalable to the number of target manipula-
tions. This issue is caused by the lack of the generalization of the policy to the unseen
manipulations because this approach handles each manipulation independently.

Manipulations can be classified based on a physical constraint. In the previous
study [8], a manipulation group is defined to have a common admissible/inadmissible
direction, along which the object can/cannot move. For example, several manipulations,
such as drawer opening, plate sliding, and pole pulling, belong to the same group because
the object’s admissible motion directions are constrained under a linear guide. If an object
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tries to move in the inadmissible direction, the constraint exerts the force on the object.
Thus, we notice that the manipulations grouped based on the constraint also have a com-
mon characteristic of the constraint force. Since compliant manipulation operations are
executed leveraging the force, we design a single policy generalized to various unseen
manipulations on the basis of the characteristic of the constraint force.

We propose the constraint-aware policy, which estimates the object’s admissible direction
using the constraint force. We train the policy to be generalized to unseen manipulations
in the constraint group with a single environment and reward (Figure 1 Right). This
environment and reward are designed assuming the single-system condition (Figure 1 Left)
that the robot hand and the object move in unison and can be regarded as the composite
body, where the internal forces, such as frictional forces, are canceled out. Thus, the policy
can obtain the constraint force exerted on the object. The environment is designed as a
simplification of the real-world manipulations by extracting the common characteristic of
the physical constraint critical to compliant manipulation operations, which is the key to the
generalization. The assumption is practically realistic because it can be easily satisfied by
an execution design, such as moving the hand slowly. Under the single-system condition,
the estimation error of the admissible direction decreases in accordance with the reduction
in the magnitude of the constraint force; thus, the reward is calculated only utilizing
the magnitude.

Environment Constraint-aware policy

Training Execution

drawer-opening

pole-pulling

plate-sliding

Policy

constraint

composite body
Policy

State

Action

Figure 1. Concept behind constraint-aware policy. Various manipulations with a common physical
constraint can be simplified as just a composite body and constraint, enabling the robot to obtain the
constraint force, which we call the single-system condition. The constraint-aware policy is trained in
the environment, which consists of the body and its constraint. The policy can be applied to various
manipulations with the same physical constraint under the single-system condition.

In this study, we design the policy for the manipulation group with either a prismatic
or revolute joint, which are representative constraints in the household environment. Under
the constraint of either a prismatic or revolute joint, the object has one-degree-of-freedom
translation and rotation, respectively. In addition to the generalization within a group, we
investigate the transferability to a different group. Specifically, we consider transferring
the policy for a prismatic joint to the manipulations with a revolute joint. To reuse the
policy, we discuss the common and uncommon aspect of a revolute joint compared to a
prismatic joint.

• The common aspect: Circular motion can be considered as a series of infinitesimal
linear motions.

• The uncommon aspect: The hand must rotate in conjunction with the object to achieve
the single-system condition.
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From the common aspect, we can apply the same constraint-aware policy so that the
policy estimates the admissible direction in both groups, whereas, owing to the uncommon
aspect, the hand should rotate at execution only in manipulations with a revolute joint. To
decide whether the hand needs to rotate or not, the type of the physical constraint, such as
a prismatic or revolute joint, should be known.

To identify the constraint type, we leverage Learning-from-Observation (LfO) [9,10].
LfO provides the robot with hints for a manipulation through a multimodal one-shot
human demonstration which includes a verbal instruction and hand movement. The
instruction contains semantic information that enables a robot to infer the constraint type of
the manipulated object. For example, the verbal instruction of “open the refrigerator door”
is associated with a revolute joint. At execution, the robot selects the policy corresponding
to the obtained constraint type from the preliminary prepared policies. In this study, we
determine whether the physical constraint is a prismatic or revolute joint using the LfO
system, and find out the necessity of the rotation of the hand.

We conducted experiments to investigate the generalization capability of the trained
constraint-aware policy to various unseen household manipulations, such as a drawer
opening, plate sliding, pole pulling, door opening, and handle rotating, in the simulator. We
also compared the generalization with the classical controller [7], which is designed for the
group with a prismatic joint. As a result of this experiment, unlike the classical controller,
the constraint-aware policy can be executed in various manipulations. In addition, we
evaluated the performance in the real-world using the policy and the LfO system, and
demonstrated that the policy can be applied on a physical robot without additional training.

Toward a robot system capable of performing a wide range of manipulations, it
is important to design the generalized policy for each manipulation group. Given that
household manipulations can be classified based on their common constraints [8], the
key to the generalized policies is to design an environment and reward focusing on a
common characteristic within each constraint group. This study validated the concept
of the constraint-aware policy for two fundamental physical constraints, those being a
prismatic and revolute joint. We believe this study is the first step towards realizing the
generalized household robot.

The contributions of this study are as follows:

• We proposed a constraint-aware policy which is trained using a single environ-
ment and reward and generalized to various unseen manipulations with a common
physical constraint.

• We designed a simple training environment and reward function based on the con-
straint for the training of the constraint-aware policy.

• We demonstrated that unseen compliant manipulation operations can be executed on
a physical robot using the constraint-aware policy and the LfO system.

The remainder of this paper is organized as follows. Section 2 reviews related work
and states the focus of this paper. Section 3 introduces the constraint-aware policy. Section 4
describes the details of LfO to apply the constraint-aware policy in practice. Section 5
presents experiments for compliant manipulation using the constraint-aware policy in the
simulation and reality. Section 6 discusses the result of our experiment and an extension
of our method to hardware-level reusability and other constraints. Section 7 concludes
this paper.

2. Related Work

In this study, we focus on a design of a policy which is robust to uncertainty associated
with recognition, such as object pose and articulation, and object shape. In addition, we
aim to train the policy, which is generalized to various unseen manipulations with a
single environment and reward using RL. The representative approaches of compliant
manipulation are the planning-based approach, classical closed-loop controller, and RL. In
this section, we briefly review these approaches for compliant manipulation.
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Previous research has focused on designing policies for opening drawers and doors.
The pioneering work on door opening is [11], where robot motion is planned based on
a known door model. In an unstructured environment, the model is unknown, and two
methods can be used: geometry estimation and a closed-loop online controller to minimize
force and torque. Several studies have been conducted on geometry estimation [12–20],
where articulation pose is estimated from visual input, and a motion trajectory can be
planned from this estimation result. However, the estimation accuracy is insufficient
for compliant manipulation (e.g., ∼20◦ estimation error in a rotation axis orientation on
real-world data [18]), and causes the planning-based approach to fail. To deal with such
estimation errors, other studies [21,22] have devised a robot mechanism for compliance.

Closed-loop controllers have been proposed in several studies, which can deal with
uncertainty in geometry estimation [7,23–26]. In [23], an online controller was designed
on the basis of a simple strategy in which the end-effector follows the path of the least
force. Several studies have proposed online controllers based on this strategy [7,24–26].
These online controllers use the magnitude of force, which differs due to the change in
the environment, and are not robust to the environmental change. To address this issue,
we propose a constraint-aware policy using RL that can deal with uncertainty. Classical
controllers also have a problem that requires manual parameter tuning. An adaptive
controller is the solution to tune the parameters for a specific manipulation [27–29]. This
adaptive tuning requires a real-world interaction between the robot and environment. In
the case of our study, in which the object is constrained to the environment, a large force is
directly applied to the robot and the object under an estimation error. Thus, it is dangerous
to determine the parameters through the real-world interaction, and the controller is not
appropriate for this study. Using the learning-based approach for compliant manipulation
mitigates the issue on the parameter tuning.

Several studies have applied RL to train a policy for compliant manipulation [2–6,30].
These studies focused on the design of policies by preparing the environment and reward
for only a specific manipulation. For example, these studies prepare a door-opening
environment and calculate an angle of the door as the reward. For example, Urakami et
al. proposed DoorGym, which is a training environment for generalizing the door-opening
policy [5]. This trained policy can be generalized to doors with various doorknobs, lighting
conditions, and environmental settings, but has focused only on door opening. Therefore,
the trained policy is unable to be applied to other manipulations with the same constraint.
There are several studies on RL which focus on designing a generalized policy for many
varieties of manipulations [31–35]. However, this approach requires time and effort to
prepare environments for all target manipulations to collect a large amount of data. In
addition, this approach achieves an insufficient success rate on real-world application
and needs to fine-tune the policy for a specific manipulation. In this study, we propose
a policy generalized to manipulations with a common physical constraint, using a single
environment and reward based on the common characteristic among these manipulations.

3. Method

In this study, we aim to train the policy generalized to various compliant manipulation
operations, which is required in many household manipulations. Toward this policy, we
design a single environment and reward based on the common characteristic of the physical
constraint within a manipulation group. In this section, we explain an approach to the
learning of this constraint-aware policy.

This section is organized as follows. Section 3.1 explains the target manipulation
group in this study. Section 3.2 states assumptions for executing the constraint-aware policy.
Section 3.3 introduces the training method of the policy for the target manipulation group
in Section 3.1. Section 3.4 describes the technical details of satisfying the single-system
condition, which is one of the assumptions explained in Section 3.2. These details are
essential for an appropriate execution of the policy trained under the environment and
reward in Section 3.3.
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3.1. Target Manipulation Group

In this study, we focus on manipulation groups with the physical constraints, which
are one-degree-of-freedom translation (prismatic joints) or rotation (revolute joints). These
physical constraints are representative of the household environment. In the manipulations
with a prismatic joint, such as drawer opening, plate sliding, and pole pulling, the object’s
admissible motion directions are constrained under a linear guide. As for the manipulations
with a revolute joint, including door opening and handle rotating, the admissible directions
are constrained under a rotational axis.

Compliant manipulations of the same group have a common characteristic of the
constraint force. A large force is exerted on an object when the object tries to move along
the inadmissible direction. Since compliant manipulation operations can be achieved using
the force, we achieve various unseen manipulations within the same group by a single
policy based on such a characteristic of the force.

3.2. Assumptions

The constraint-aware policy in this study is executed on the following assumptions.
Assumption 1: Single-system condition: The robot hand and object move in unison,

where the internal forces between them are canceled out.
Assumption 2: The inertial force on the manipulated object is negligible.
Assumption 3: Friction in the joint mechanism is sufficiently weak such that the

manipulated object can move smoothly along the desired trajectory.
Assumption 4: The workplane of the robot hand and direction of the rotation axis are

known; thus, the robot hand and manipulated object move on a known plane.
These assumptions can be fulfilled in the manipulations we are focusing on. Assump-

tions 1 and 2 can be satisfied through the design of the manipulation, with Assumption 2
being satisfied by moving the manipulated object slowly. Assumption 1 is satisfied by a
grasp mechanism and an additional policy to decrease torque exerted on the object. For
more details of Assumption 1, see Section 3.4. Assumption 3 is satisfied by many household
objects, as they are designed for easy handling by humans. Finally, this study focuses on
objects with only one prismatic or revolute joint, which are representative of household
environments; thus, regarding Assumption 4, the workplane can easily be obtained. These
can be obtained using Learning-from-Observation (LfO), where a human provides manipu-
lation instructions to a robot through a one-shot demonstration [9,10]. We can calculate the
workplane from human hand trajectories. For more details on Assumption 4, see Section 4.

3.3. Training Design under Single-System Condition

Deep RL is employed to design the control policy, as it mitigates the requirement of
manual parameter tuning and is robust to uncertainties, such as recognition error and
sensor noise, unlike classical controllers [7,23,24].

To design the control policy, we assume compliant manipulation as a Markov deci-
sion process and apply deep RL to train a constraint-aware policy. The Markov decision
process has a state space S , action space A, state transition T : S ×A → S , initial state
distribution ρ0, and reward r : S × A → R. At each timestep t, an agent interacts with
an environment with an action at determined from state st, resulting in st+1 and rt+1.
The goal of RL is finding the optimal policy π(a|s) that maximizes the cumulative re-
ward J(π) = Eπ [∑T−1

t=0 γtr(st, at)], where γ is the discount factor, γ ∈ [0, 1), and T is the
episode length.

In this study, the robot hand moves along a motion direction d ∈ R3 and observes a
force F ∈ R3. We train the policy π to estimate an optimal motion direction while the hand
moves along the estimated direction.

3.3.1. Training Environment

The training environment is designed based on the single-system condition. This
environment consists of a single composite body and a prismatic joint (Figure 2). This
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composite body represents the robot hand and manipulated object under the single-system
condition. At each timestep, a force exerted on the body F is obtained as a result of
interaction between the body and constraint. The constraint is represented as a constraint
equation, and the force is calculated by solving the equation of motion, which includes the
constraint force [36]. The single-system condition guarantees that F, measured at the robot
wrist, is identical to the constraint force on the body, as any internal forces between the
hand and the object can be ignored.

constraint

composite body

Figure 2. Training environment concept, consisting of the single composite body (purple sphere) and
prismatic joint (green line).

This environmental design offers the advantage of a low simulation cost, as it is
unnecessary to consider unstable factors, such as contact simulations between objects. This
improves simulation speed and leads to faster training. Furthermore, the policy trained in
this environment can be easily adapted to different robot hands because it is independent
of the specific characteristics of the robot hand itself.

3.3.2. State and Action

At timestep t, the state st ∈ R6 consists of the normalized force obtained from a sensor
F̄t ∈ R3 (F̄t = Ft

∥Ft∥2
) and the motion direction of the robot hand dt ∈ R3. Utilizing the

normalized force vector is important because the normalization makes the policy robust to
a change in the magnitude of force, which is caused by an environmental change. Note that
if the constraint force is so small that they are negligible, various noises such as sensing
errors and joint bending are amplified. In this study, we assume that the constraint force is
constantly large enough to ignore these factors. In the case that these factors are negligible,
we should calculate a magnitude of the force smaller than a predefined threshold as zero
value. The action at ∈ R3 is defined as an operation that modifies the direction of motion.
Given st and at, the motion direction is updated using the following equation:

dt+1 =
dt + at

∥dt + at∥2
(1)

When the object tries to move in the inadmissible direction, the constraint force is
exerted on the object. The policy should modify the motion direction toward this force
direction such that the force is reduced. As shown in Figure 3, the update of the motion
direction by the optimal policy guarantees the adjustment of ∥F∥2 resulting from the
interaction between the object and the constraint. Thus, the motion direction can be
appropriately modified using the force direction. Note that the direction of the constraint
force can be obtained under Assumption 3, where a friction in the joint mechanism is
sufficiently weaker than the constraint force.
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constraint force
𝑭

motion direction
𝒅

update direction
・・・

constraint

object

Figure 3. Updating motion direction using the constraint-aware policy. The purple circle and
green line represent an object and its constraint, respectively. When the object tries to move in the
inadmissible direction, the constraint force is exerted on the object. The motion direction is modified
toward this force direction such that the force is reduced.

3.3.3. Reward

We train the constraint-aware policy to estimate the motion direction of the robot
hand. To train the optimal policy, we should set an appropriate reward function based
on the constraint. Thus, we consider the case that the motion direction is not along the
constraint (Figure 3). In compliant manipulations with both the prismatic and revolute
joints, if the robot hand does not move along the constraint, the constraint force is exerted
by the physical constraint on the object. This force is minimized when the motion direction
is along the constraint. Thus, we propose the reward rt represented by the constraint force
∥Ft∥2:

rt = −∥Ft∥2 (2)

3.4. Technical Details of Satisfying the Single-System Condition When Applying the Policy to
a Robot

The constraint-aware policy is trained and executed under the assumption of the
single-system condition. To satisfy the single-system condition, the relative position and
orientation between the robot hand and an object must be maintained. Two main challenges
to satisfy this condition are identified: fingertip slipping and lack of contact between the
robot and object.

3.4.1. Avoidance of Fingertip Slipping

A violation of the single-system condition can occur if a large impulse force causes
the robot’s fingertips to slip on the manipulated object. This large impulse force is mainly
caused in case that the robot hand tries to move in the inadmissible direction by the large
amount of translation. Thus, to prevent the large impulse force, we implement the robot
control system so that the robot hand moves slowly. Moreover, fingertip slipping is likely
to occur if the hand orientation remains constant during manipulation of a revolute joint
where the orientation of the manipulated object changes. To avoid the slipping, we change
the hand orientation based on the change in the motion direction, as follows. We define qt
as the quaternion representing the hand orientation in the world coordinate system at time
t; then, qt+1 can be calculated using the following equation:

qt+1 = ∆qt ⊗ qt (3)

where ∆qt represents the quaternion rotating the angle between dt and dt+1 around the
outer product of dt and dt+1.

This strategy does not necessarily guarantee a change in the orientation of the hand
completely in conjunction with the orientation of the object, and can be adopted only in
case the relative orientation between the hand and manipulated object is not strictly fixed.
An example case is door opening with a lazy closure, which is one of the grasps [37], as
shown in Figure 4. Using the lazy closure, the contact regions remain constant and stable
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manipulation is ensured while opening the door, even though the relative orientation
between the hand and manipulated object is not strictly fixed. However, when the relative
orientation between the hand and manipulated object is strictly fixed, such as handle
rotating, a more precise method to change the hand orientation is required. Thus, we
prepare an additional policy to maintain the single-system condition for this case. Further
details are provided in Appendix A.

Figure 4. Door opening with “Lazy-closure”. A photograph of the actual manipulation is shown on
the left. The right of the figure shows a diagrammatic representation of a robot grasping a handle with
a lazy closure, where the blue and green circles indicate the handle and contact points, respectively,
and the black arc is the gripper.

3.4.2. Guarantee of Hand–Object Contact

The manipulated object and robot hand must be in contact throughout the manipula-
tion to maintain the single-system condition. Contact is guaranteed if a non-zero constraint
force is measured by a sensor on the wrist of the robot. Thus, the contact condition is en-
sured by applying a constraint force at the beginning of the manipulation and maintaining
it throughout the manipulation. Specifically, the constraint force F fed into the policy is
defined as the raw force value Fs offset by the force Fd (i.e., F = Fs − Fd).

The displacement of the hand is classified into admissible or inadmissible directions
between the robot hand and object. If the hand moves along the inadmissible direction,
the hand collides with the object. In this case, the single-system condition is kept. If the
estimated displacement d is out of inadmissible directions between the hand and object, the
hand goes away from the object and the single-system condition is broken. In this study,
we assume that the estimated displacement is always within the inadmissible directions
between the robot hand and object.

4. Learning-from-Observation System

Compliant manipulation is executed by combining our constraint-aware policy with
the Learning-from-Observation (LfO), a system in which a human provides manipulation
instructions to a robot through a one-shot demonstration [9,10]. In this study, the physical
constraint, workplane, and initial motion direction are obtained from a human demonstra-
tion for compliant manipulation. Using this system, we can satisfy Assumption 4, i.e., the
workplane can be determined by leveraging the demonstration. This section describes the
details of the LfO system applied in this study.

As shown in Figure 5, the LfO system consists of two phases: the demonstration
phase and execution phase. The demonstration phase involves the LfO system obtain-
ing a sequence of tasks from a human demonstration and assigning skill parameters to
each task. During the execution phase, the system decodes the skill parameters into the
execution commands.
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Figure 5. Flow of the LfO system combined with constraint-aware policy.

In the demonstration phase, a human demonstration is encoded into a sequence
of tasks using skill parameters [10]. The demonstration consists of an RGBD image se-
quence of a one-shot human demonstration and verbal instructions. In this study, the
human demonstration is decomposed into several tasks, including the grasping and com-
pliant manipulation within physical constraints (prismatic or revolute joint). The skill
parameters of grasp and manipulation are also determined from the image sequence and
verbal instructions.

For grasping, the skill parameters include the force exertion type and approach direc-
tion appropriate for the task situation [37]. A convolutional neural network (CNN)-based
classifier (grasp recognizer in Figure 5) recognizes one of the four force exertion types
based on the human hand image at the moment of grasp and the name of the object [38].
Similar hand shapes can be recognized as different force exertion types using the name of
the object. The approach direction is calculated from the trajectory of the human hand in
the demonstration (hand trajectory calculator in Figure 5).

The physical constraint is determined from the verbal instruction (constraint recognizer
in Figure 5). For example, the verbal instruction of “open a fridge door” is associated with a
revolute joint. For compliant manipulation of a prismatic joint, the skill parameters include
the workplane normal and initial motion direction. Meanwhile, the skill parameters of
compliant manipulation for a revolute joint include the rotation radius, in addition to the
workplane normal and initial motion direction. These parameters are calculated by the
hand trajectory calculator. The workplane normal and rotation radii are calculated using
plane fitting and circular fitting, respectively.

In the execution phase, the robot executes the target task sequence by first grasping an
object and then manipulating it. In the grasping, a contact point recognizer and grasping
policy are selected based on the force exertion type obtained in the demonstration phase [37].
The recognizer and policy are previously trained for each force exertion type. The contact
point recognizer has a simple CNN structure, where the input is the depth image of the
target object and the output is the contact points to be grasped. The detected contact points
are passed on to the grasping policy, and the grasp is executed.

In the manipulation, a manipulation policy is executed. The manipulation policy
is selected based on the constraints obtained in the demonstration phase. In the task
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involving the prismatic or revolute joints, the constraint-aware policy is applied. Note that,
as described in Section 3.4, in a task with a revolute joint, the hand orientation is changed
to maintain the single-system condition because the orientation of the manipulated object
changes during the manipulation. Therefore, the constraint type (prismatic or revolute)
must be determined prior to manipulation.

5. Experiment

We evaluated the performance of the proposed constraint-aware policy in the presence
of errors in motion direction. We also confirmed the generalization capability of our policy
for manipulations with a common constraint. In addition, we evaluated the feasibility of
executing our policy and the LfO system on a physical robot. These evaluation processes
are described in more detail below.

5.1. Setup

The training environment was implemented using PyBullet simulator [36] and the
policy was trained using Microsoft Bonsai, a framework for RL (https://www.microsoft.
com/en-us/ai/autonomous-systems-project-bonsai, accessed on 26 December 2023). The
episode length of the training environment was set to five timesteps (T = 5). To simulate
the uncertainty in the sensors, Gaussian noise was added to the observed force and motion
direction at the first timestep. The proximal policy optimization (PPO) algorithm [39]
was used to train the policy. Batch size and learning rate were set to 6000 and 5 × 10−5,
respectively. The policy πθ is parameterized by a multilayer perceptron with two 256-
dimensional hidden layers. A hyperbolic tangent (tanh) was used as the activation function
as in [39].

The learned policy was tested using PyBullet simulator. The motion direction was
updated every 100 ms in the control loop, and the robot hand was moved by 1 cm along
the motion direction in each timestep. Each test started with the robot hand grasping the
object, which was achieved using another RL policy [37].

For the physical robot experiments, we utilized a Nextage (https://nextage.kawadarobot.
co.jp/, accessed on 26 December 2023) robot with six degrees of freedom in its arms. A
four-fingered robot hand, the Shadow Dexterous Hand Lite (https://www.shadowrobot.
com/dexterous-hand-series/, accessed on 26 December 2023), was attached to the robot.
The Leptrino FFS series (https://www.leptrino.co.jp/product/6axis-force-sensor, accessed
on 26 December 2023) was utilized as the force–torque sensor and attached between the
manipulator and robot hand, as shown in Figure 6.

Robot hand
(Shadow Dexterous Hand Lite)

Force-torque sensor
(Leptrino FFS)

Manipulator 
(Nextage)

Figure 6. Robot setup, with force–torque sensor attached between the manipulator and robot hand.

https://www.microsoft.com/en-us/ai/autonomous-systems-project-bonsai
https://www.microsoft.com/en-us/ai/autonomous-systems-project-bonsai
https://nextage.kawadarobot.co.jp/
https://nextage.kawadarobot.co.jp/
https://www.shadowrobot.com/dexterous-hand-series/
https://www.shadowrobot.com/dexterous-hand-series/
https://www.leptrino.co.jp/product/6axis-force-sensor
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5.2. Training in Simulation

The policy was trained in the simulation environment consisting of the object and
prismatic joint. The episode reward obtained by the RL agent increased as the training
progressed, and the training was completed when the rewards converged (Figure 7).

R
ew
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d

Iterations

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000

0

−0.5

−1

−1.5

−2

−2.5

−3

−3.5

Figure 7. Learning curve of the constraint-aware policy. The blue line and dots are the mean reward
of multiple episodes and reward of each episode, respectively. The purple dots represent the reward
when the policy is saved.

5.3. Policy Performance in Presence of Motion Direction Errors

A simulated drawer-opening environment was used to evaluate the performance of
the proposed policy when the policy faced an error in the motion direction. The drawer was
constrained by a prismatic joint, and the episode was considered completed when the drawer
had been moved by 25 cm. The handle of the drawer was grasped using a lazy closure.

The results are presented in Figure 8, where the initial motion direction was set with a
30◦ (Figure 8A) or −30◦ (Figure 8B) offset from the admissible constraint direction. In both
cases, the drawer opening was successfully executed. The curves represent the change in the
relative angle between the admissible constraint direction and the current motion direction.
The angles converged to near 0◦. This result indicates that the proposed constraint-aware
policy could estimate the motion direction from the direction of the constraint force.

time time

(A) (B)

Figure 8. Policy performance in the presence of motion direction error. (A) The initial motion direction
was set with a 30◦ offset from the constraint direction. (B) Initial motion direction was set with a
−30◦ offset from the constraint direction. The upper panel shows the resulting simulated drawer
opening. The lower panel shows the change in the relative angle between the admissible constraint
direction (green arrow) and the current motion direction (blue arrow).
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5.4. Comparison of Proposed and Classical Controller for Various Manipulations

To evaluate the generalization capability of the proposed constraint-aware policy for
various manipulations, we compared it with a state-of-the-art classical controller [7]. Our
constraint-aware policy and classical controller were executed on three manipulations
with a prismatic joint: (A) drawer opening, (B) plate sliding, and (C) pole pulling. These
manipulations were selected because they require different force exertion types for grasp,
such as active force, passive force, and lazy closure. These force exertion types cover
the types that need no regrasping [37]. In this experiment, the initial motion direction
was set with an offset ranging from −30◦ to 30◦ in increments of 5◦ from the constraint
direction. We manually tuned the control parameters for drawer opening and used the
same parameters for plate sliding and pole pulling.

The results are shown in Table 1. Ours could be successfully executed in all trials for
three manipulations. The classical controller could be successfully executed in all trials for
drawer opening, while the controller failed the execution for plate sliding and pole pulling,
which are not used for the parameter tuning. This result shows that the constraint-aware
policy is more generalized for the three manipulations than the classical controller.

Table 1. The comparison of the number of successful trials using our constraint-aware policy (Ours)
and the classical controller [7] (Classical) for the three manipulations: drawer opening, plate sliding,
pole pulling.

Drawer Opening Plate Sliding Pole Pulling

Classical 13/13 0/13 0/13
Ours 13/13 13/13 13/13

The example results of the classical controller are shown in Figure 9 (Classical-A,
Classical-B, and Classical-C). The initial motion direction was set with a −30◦ offset from
the constraint direction, similar to the conditions reported in Section 5.3. The controller
succeeded in drawer opening but not in plate sliding or pole pulling. Since the estimated
motion direction overshot in plate sliding and pole pulling, the large force was exerted
on the robot finger. As a result, the robot hand could not maintain its grasp and failed to
manipulate the objects. This is because the parameters were tuned for the magnitude of the
sensed force, which differs according to the grasp. For example, the magnitude changes
depending on the degree of joint flexion caused by the object collision with the finger. One
of the factors that affects the degree is the values of joint commands, which differ according
to the grasp. In practice, the magnitude varies depending not only on the grasp but also
on the friction coefficient between the hand and object, object weight, damping coefficient
of the finger joints, and sensor noise. Although we could tune the parameters for three
manipulations, expert knowledge is necessary for the tuning. In addition, we should obtain
multiple environments in advance, whereas the network parameters of our policy could be
learned and the single environment is prepared for the training.

The example results of our constraint-aware policy are shown in Figure 10 (Ours-A,
Ours-B, and Ours-C). Unlike the classical controller, our constraint-aware policy succeeded
in all three manipulations. This is because the utilized state includes the normalized force
instead of the raw force, which is not robust to the change in the environment and force
exertion type. Using the normalized force makes the policy robust to changes in grasp.
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time
(Classical-A)

time
(Classical-B)

time
(Classical-C)

Figure 9. Execution of three manipulations using the classical controller [7]. (A): Drawer opening,
(B): plate sliding, (C): pole pulling.

time
(Ours-A)

time
(Ours-B)

time
(Ours-C)

Figure 10. Execution of three manipulations using our constraint-aware policy. (A): Drawer opening,
(B): plate sliding, (C): pole pulling.

5.5. Policy Performance for Manipulations with a Revolute Joint

The proposed constraint-aware policy was executed in two different manipulations
involving a revolute joint: door opening and handle rotating. The initial motion direction
was set with a 15◦ offset from the constraint direction. Door opening and handle rotating
were executed with a lazy and passive force closure, respectively.

The results are shown in Figure 11, demonstrating that the proposed policy could
appropriately change the motion direction. Thus, our policy can be executed for manip-
ulations with both prismatic and revolute joints under the single-system condition. In
addition, the constraint force is directed from the handle to the rotation center, even when
the rotation radius differs; thus, our policy can be adopted for manipulations with varying
rotation radii.
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time
(A)

time
(B)

Figure 11. Execution of two manipulations with our constraint-aware policy. (A): Door opening,
(B): handle rotating.

5.6. Compliant Manipulation on a Physical Robot

As mentioned prior, we combined our constraint-aware policy with the LfO system
and executed it on a physical robot. In this method, the constraint was recognized from
verbal instructions. It is important to identify the constraint because this is utilized to
determine whether the hand rotates in conjunction with the manipulated object. In addition,
the workplane and initial motion direction were determined. The grasp–manipulation–
release sequence could be executed by incorporating the constraint-aware policy into such
an LfO system in the real world.

Figure 12 shows the successful execution of the three manipulations, (A) drawer
opening, (B) door opening, and (C) handle rotating, in the real world using our constraint-
aware policy and the LfO system. Our policy uses a normalized force rather than a raw
force, thereby reducing the gap between simulation and reality. Consequently, our policy
can be applied to the real world without additional training.

The left side of Figure 13 shows the coordinate system used during the manipulation,
while the upper-right side illustrates the change in the relative angle between the admissible
motion direction (−1, 0, 0) and the estimated motion direction. The lower-right chart in
Figure 13 illustrates the change in the magnitude of the force obtained by the wrist force–
torque sensor. These results indicate that the angle and the magnitude of the force were
being reduced during execution of the drawer opening.

In Figure 14, the upper-right chart illustrates the transition of the index fingertip
position, motion direction, and force direction during the door opening, while the upper-
left panel shows the coordinate system used during execution, where the origin was the
fingertip position of the robot’s index finger at the beginning of the manipulation. The
lower part of Figure 14 shows the relative angle between the motion direction and initial
motion direction (−1, 0, 0). It is evident that the motion direction changed based on the
observed force direction, resulting in the successful execution of the door opening, as
shown in the upper-right panel of Figure 14. It was observed that the angle between the
initial and actual motion directions gradually increased from the lower part of Figure 14,
as expected.
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time

time
(B)

time
(A)

(C)

Figure 12. Applying the proposed constraint-aware policy for three manipulations using a physical
robot: (A) drawer opening, (B) door opening, (C) handle rotating.

x
y

z

Figure 13. Execution of drawer opening using proposed constraint-aware policy. Upper left: coor-
dinate system. Upper right: change in relative angle between the estimated motion direction and
admissible motion direction (−1, 0, 0). Lower right: the change in the magnitude of force recorded
by the wrist force–torque sensor.
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x
y

z

x

y

Figure 14. Execution of door opening using proposed constraint-aware policy. Upper-left: coordinate
system with origin on the index fingertip. Upper right: transition of the index fingertip position
(black circle), motion direction (blue arrow), and force direction (red arrow) in meters. Lower: relative
angle between initial motion direction (−1, 0, 0) and the motion direction.

6. Discussion
6.1. Summary of the Experiments

We propose the constraint-aware policy, which is trained using the direction of the
constraint force exerted on the object and generalized to various unseen manipulations. In
this experiment, we investigated the effectiveness of our policy for manipulations with a
prismatic or revolute joint. The results revealed that our policy succeeded in the execution
of various manipulations: drawer opening, plate sliding, and pole pulling, whereas the
classical controller [7] failed. Although the environment and reward are simple, the policy
is generalized. In addition, our policy succeeded in door opening and handle rotating.
Finally, our policy could be executed on a physical robot without additional training. These
results suggest that our policy is generalized to manipulations with either a prismatic or
revolute joint. There is a possibility that our policy can be applied to more manipulations
with these joints.

In terms of parameter-tuning cost, our method has an advantage compared to the
classical controllers [7,24]. The classical controllers require manual tuning of control
parameters, whereas the parameters of our policy can be tuned through the training. In
terms of training cost, our method needs a single environment compared to other policies
trained by reinforcement learning [5,32,33]. These methods prepare environments of target
manipulation for the training (in this study, the number of environments is five), whereas
our policy can be trained under the one simple single environment, which includes only a
constraint and composite body. This is a benefit of the policy design based on the common
characteristic of the constraint force within a manipulation group.

6.2. Limitations
6.2.1. Violation of Single-System Condition

The proposed constraint-aware policy could be implemented under the single-system
condition. One violation example of the single-system condition is slipping between the
fingertip and manipulated object. This slipping can occur owing to the large estimation
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noise of the motion direction, rotation axis, and rotation radius. These issues cannot be
addressed by our policy alone. A possible solution is to design an additional policy for
maintaining contact positions by utilizing dexterous finger motions that depend on the
force exerted on the fingertip. To implement this additional policy, tactile sensors are
required. This will be a subject of future research.

6.2.2. Normalized Force

We assume that the inertial force and friction in the joint mechanism are weaker than
the constraint force and negligible. In our experiment, this assumption was satisfied and
our method could be adopted. However, there is a case that this assumption is not met. For
example, the case is that the estimation error of the motion direction is near 0◦. In this case,
the weak inertial force and friction are amplified when normalizing them. This causes a
system instability. To avoid the instability, we should calculate a magnitude of the force
smaller than a predefined threshold as zero values. The way to define the threshold will be
a subject of future research.

6.3. Future Directions
6.3.1. Hardware-Level Reusability

In this study, we designed a constraint-aware policy that can be applied to robot
hands without considering hardware specifications assuming the single-system condition.
In contrast to conventional strategies, our policy was designed to be both manipulation-
agnostic and hardware-independent. When using new hardware, robot programmers
typically must modify software, which can be time-consuming. To address this issue, some
software programs enabling reusability have already been developed [40]. The work in
this study represents another contribution to this field; using our constraint-aware policy,
hardware-level reusability can be achieved. To demonstrate reusability, future studies will
validate the hardware-level reusability of the proposed policy.

6.3.2. Constraint-Aware Policy for other Constraints

Many manipulations in a household environment can be grouped based on con-
straints [8]. This taxonomy includes manipulation groups with prismatic and revolute
joints as well as those with other constraints. One solution for achieving various manipula-
tions in a household environment is to design a policy for each manipulation group. For
achieving various household manipulations, our concept of the constraint-aware policy
can be applied to other constraints. It should be effective to consider various manipulations
with the same constraint as one manipulation group and design a policy with an awareness
of the constraint.

7. Conclusions

In this study, we proposed a constraint-aware policy that can be applied to various
manipulations with either a prismatic or revolute joint. We designed a training environment
and a reward function to train the policy based on these constraints. The experimental
results showed that the single policy could be executed on three manipulations with a
prismatic joint (drawer opening, plate sliding, and pole pulling), even when an estimation
error in the motion direction was applied in the simulation. Unlike the classical controller,
our policy achieved robust execution against environmental changes. In addition, we could
execute our policy on two manipulations with a revolute joint (door opening and handle
rotating). Furthermore, three manipulations, drawer opening, door opening, and handle
rotating, were successfully executed on an actual robot without additional training.

Although our policy was trained in the simple environment, our policy could be
executed successfully on different manipulations. Previous reinforcement learning (RL)
methods specially designed the environment and reward for each target manipulation,
whereas our policy was widely applicable to various assumed situations. Thus, we suc-
cessfully designed a policy generalized to manipulations constrained by either a prismatic
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or revolute joint based on the constraint force, which is a common characteristic between
such manipulations.

Toward a robot system capable of executing a wide range of manipulations, it is crucial
to design a generalized policy for each manipulation group. Household manipulations
can be categorized according to their physical constraints [8]. The key to the generalized
policies is to design an environment and reward focusing on a common characteristic
within each group. This study validated the concept of a constraint-aware policy for either
a prismatic or revolute joint, which are fundamental in considering physical constraints.
We believe this study is the first step towards realizing the generalized household robot.
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Appendix A. Additional Policy

We observed that the constraint-aware policy alone was unable to conduct handle
rotating with passive force closure (Figure A1). This failure occurred because it was
impossible to maintain the single-system condition. As described in the main text, when
there is a change in the relative orientation between the robot hand and the manipulated
object, torque is generated, causing slippage. The relative orientation between the hand
and the manipulated object is strictly fixed, so the torque was generated due to a change
in the relative orientation. Thus, an additional policy was required that would enable the
hand to rotate in conjunction with the manipulated object.

time

Figure A1. The failure result using the constraint-aware policy.

An additional policy was developed to appropriately rotate the hand around the
center of the contact points to the handle. The rotation axis corresponds to the normal of
the workplane. This additional policy estimated the suitable amount of rotation w at each
time step by the following process using the torque around the rotation axis τ.

1. Rotate the hand by the current estimation of w.
2. Decide the adjustment ∆w as follows (β > 0):

∆w = 0 (∥τ∥ ≤ α)
∆w = β (τ > α)
∆w = −β (τ < α)

3. Update w to w + ∆w.

The initial value of w is calculated using w = v
r , where r is the rotation radius obtained

from human demonstration and v is the amount of translation in each time step. The policy
can calculate the excess or deficiency between w and the suitable amount of rotation for
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one-step translation. The constraint-aware and additional policies are combined to execute
the handle rotating (Figure A2). If τ is greater than α after the robot hand is translated and
rotated simultaneously, the additional policy is implemented until τ is smaller than α to
minimize forces other than the constraint force. Otherwise, the constraint-aware policy is
implemented solely.

if  𝜏 < 𝛼

Move the hand along 𝒅
Rotate the hand by 𝜔

if  𝜏 > 0

∆𝜔 = 𝑤	(𝛽 > 0) ∆𝜔 = −𝛽

Rotate the hand 
by ∆𝜔

𝜔 = 𝜔 + ∆𝜔

iteration < 𝑇

Yes

No

Yes

No

Update 𝒅 with the 
constraint-aware policy

Constraint-aware policy Additional Policy

Figure A2. Combined policy for the case in which the hand cannot rotate freely around the rotation
axis. The generalized policy is executed if the torque around the rotation axis ∥τ∥ is smaller than the
threshold β. Otherwise, an additional policy is executed. T is the episode length.

Figure 11B shows the successful result of handle rotating using the combined policy.
In the experiment, we set α = 10, β = 1◦. The single-system condition was maintained by
rotating the hand appropriately based on the torque. This result demonstrates that our
constraint-aware policy, combined with the additional policy, can successfully execute han-
dle rotating while maintaining the single-system condition. Although the additional policy
requires manual tuning of the parameters to minimize the torque, these parameters have a
higher interpretability for tuning than the control parameters of the classical controller.
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