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Abstract: A recently developed differential geometric representation of redundant serial robot
kinematics is employed to create a new extended operational space dynamics and control formulation
that explicitly accounts for redundant robot degrees of freedom. This formulation corrects deficiencies
in kinematics and dynamics of redundant serial robots that have relied for over half a century on
error-prone generalized inverse velocity-based kinematics for redundancy resolution. New ordinary
differential equations of robot operational space dynamics are obtained, without the need for ad hoc
derivation, in terms of task coordinates and self-motion coordinates that represent robot redundancy.
A new extended operational space control approach is presented that exploits ordinary differential
equations of motion in terms of task and self-motion coordinates, enabling enforcement of desired
output trajectories, obstacle avoidance, and performance constraints. Four examples are presented
with a one-degree-of-redundancy robot that demonstrate the validity and superior performance of
the new formulation, relative to the traditional task space method used for redundant serial robot
control. Finally, an example with eight degrees of redundancy is presented that further illustrates
superior performance of the new operational space formulation.

Keywords: redundant serial robots; robot dynamics; operational space robot control

1. Introduction
1.1. Redundant Manipulator Kinematics, Dynamics, and Control

The excess in number of control inputs over the number of functional outputs that
characterize the performance of kinematically redundant serial robots provides an oppor-
tunity to achieve a desired output (or task) trajectory, while simultaneously optimizing
selected measures of robot performance [1]. With this opportunity, however, come chal-
lenges in creating a mathematical representation of robot kinematics and dynamics that
quantitively represents robot redundant degrees of freedom, including an infinite number
of inputs that yield a given output. The generalized inverse velocity space kinematics
model of redundant robots originally presented by Whitney [2] is shown in Section 2.2 and
references cited therein to suffer serious deficiencies that have limited its ability to exploit
benefits of redundant robot control. A method has recently been presented that analytically
and computationally characterizes nonlinear set-valued robot inverse kinematics at the
position and orientation level [3], correcting deficiencies due to the generalized inverse
velocity approach. This formulation yields an extended operational space and ordinary
differential equations (ODEs) of dynamics that explicitly represent the versatility provided
by robot redundancy and are ideally suited for robot control.

1.2. Traditional Task Space Formulation

A substantial redundant robotics literature has evolved based on a fask space formulation
introduced by Khatib [4], using robot models based on task (or output) coordinates. To date,
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models of redundant serial robots in the traditional task space formulation have been based
on mass-corrected generalized inverse velocity space kinematics that suffer kinematic and
kinetic error. A theoretical, computational, and experimental analysis of eight controllers
presented in the literature that are based on velocity, acceleration, and force redundancy
resolution is presented in [5] and compared with the traditional task space formulation [4],
showing that the latter suffers significant inaccuracies.

To compensate for errors associated with the traditional task space formulation, Park
et al. [6] proposed an extended operational velocity space that introduced self-motion velocities
to complement task space velocities that are employed in the traditional formulation. While
these additional terms yield a linear approximation of redundant robot degrees of freedom,
the associated velocity space kinematics fail to define an accurate model of redundant
robot dynamics.

1.3. Organization of the Paper

A new redundant robot inverse kinematics formulation at the position and orientation
level [3] is employed herein, using differential geometry for the definition of a redundant
serial robot extended operational space. This space is parameterized by operational coordinates
that include self-motion coordinates that accurately account for redundant robot degrees of
freedom. Extended operational space ODEs of dynamics are derived that are equivalent to
robot multibody dynamics ODEs in input coordinates and explicitly account for redundant
degrees of freedom. A new control approach is presented, using the extended operational
space ODEs for accurate tracking of a desired output trajectory, while enforcing obstacle
avoidance and optimization of selected measures of robot performance. This approach
corrects deficiencies identified in [5] that degrade performance of traditional task space
control and approximation errors induced by the extended operational velocity space
formulation [6].

The kinematic structure of redundant serial robots is defined in Section 2, and defi-
ciencies of generalized inverse velocity space kinematics are identified. Equations of robot
kinematics in task and self-motion coordinates are presented in Section 3 using differential
geometry, summarizing derivations in [3] leading to a new extended operational space
formulation that resolves deficiencies associated with generalized inverse velocity space
kinematics. A new system of redundant robot operational space ODEs of dynamics intro-
duced in [3] is presented in Section 4 that explicitly accounts for robot redundancy and
is equivalent to the equations of robot multibody dynamics in input coordinates. A new
control approach based on the extended operational space ODE is presented and illustrated
with four applications of a one-degree-of-redundancy serial robot in Section 5 and an eight-
degree-of-redundancy example in Section 6. Finally, conclusions and recommendations for
future research are presented in Section 7.

1.4. Contributions of the Paper
The primary contributions of the paper are as follows:

A. Based on concepts introduced in [3], a fundamentally new extended operational
space is defined for serial robot kinematics and dynamics:

e  An explicit set-valued inverse kinematic mapping is derived for input coordi-
nates as functions of task and self -motion coordinates.

e Extended operational coordinates are defined and shown to be equivalent to
input coordinates in parameterizing robot configuration space.

e  ODE:s of robot dynamics are derived with extended operational coordinates as
state variables

B. A fundamentally new operational space control approach is introduced, including
the following:

e Robot control laws are defined and implemented using extended operational
coordinates and operational space ODEs.
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e  The control structure explicitly allows for the tracking of self-motion coordinates,
which is the only known variant of operational space control that allows this.

e Four control examples are treated using a redundant planar robot with one
degree of redundancy, demonstrating superior performance of the extended
operational space formulation relative to the traditional task space approach.

e A control example is treated for a robot with eight degrees of redundancy, further
demonstrating the superiority of the extended operational space approach.

2. Redundant Serial Robot Kinematics

A redundant serial robot is comprised of a chain of bodies that are connected by single-
degree-of-freedom joints. Joint relative input coordinates y; between bodies in the chain define
the position and orientation of outboard bodies, relative to their inboard counterparts. The
terminal body in the chain is the end effector, whose output coordinates z € R™ characterize
its working capability, defined as twice continuously differentiable functions of input
coordinates y € R", n > m, in the forward kinematic mapping

z=G(y) 1)

where input coordinates are independent generalized coordinates that define the configura-
tion of the underlying mechanism [7]. Here, R¥ refers to k-dimensional Euclidean space

. . T .
with elements x € R¥ in the form of column vectors x = [x; -++ x| ,and superscript T
denotes matrix transpose. Bold characters denote vectors and matrices.

2.1. Velocity Space Kinematics

For over half a century, kinematics of redundant serial robots has been modeled in
velocity space, yielding fundamental deficiencies in representation of both kinematic and
dynamic performance. In 1969, Whitney [2] made a significant contribution to resolve
motion rate control of serial robots, using the Moore-Penrose generalized inverse to obtain
an approximate velocity space inverse kinematic mapping. Since G(y) of Equation (1) is
twice continuously differentiable, an apparent velocity differential equation is obtained by
differentiating Equation (1) with respect to time,

z=G'(y)y )

where the Jacobian matrix G'(y) = [0G;(y)/dy;] ., has full row rank for redundant serial
robots with no inverse kinematic singularities [3]. For such a robot, the Moore-Penrose
generalized inverse,

¢"(y) = ") (W6 () ®)

that satisfies G'(y)G'*(y) = I is applied to Equation (2) to obtain an inverse velocity

mapping,
=G Wi+ (- 6" W)E W)’ @

where with yo € R" arbitrary, the second term on the right yields velocities in the null
space of G'(y). This velocity space kinematics formulation, with minor variations, has been
used to represent redundant serial robot kinematics for half a century [1].

2.2. Deficiencies in Redundant Robot Velocity Space Kinematics

The first deficiency in velocity space kinematics is that Equation (2) is not an ODE.
Written in the differential form dz — G'(y)dy = 0, it is seen to be a Pfaffian differential
equation [8] that behaves more like a partial differential equation than an ODE and is
extremely difficult to solve. The second deficiency is that G'* (1) in Equation (3) is generally
not a total differential, i.e., Equation (4) is generally nonholonomic and yields nonperiodic
or noncyclic solutions for y(t), even if z(t) is periodic [3,9-11]. The third and most critical
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deficiency is that the velocity space inverse kinematic mapping of Equation (4) does not
lead to valid ODEs of robot dynamics. These deficiencies have been known for a quarter
century [9,10,12,13], but they remain largely unresolved.

Early research on resolving deficiencies in the velocity space kinematics approach fo-
cused on physically based concepts such as introducing artificial damping, using impedance
control, and carrying out torque optimization [14-16]. More recent research has focused
on using numerical methods such as adaptive extended Jacobians and null-space pro-
jections [17,18]. These papers cite well over 100 additional papers that have sought to
resolve the deficiencies noted above. Some progress has been reported, but fundamental
deficiencies in the velocity space kinematics approach remain.

2.3. Traditional Task Space Dynamics of Redundant Serial Robots

The Moore-Penrose generalized inverse of Equation (3) represents a purely kinematic
approach to robot analysis, since it contains no inertial information. The traditional task
space approach [4] was introduced to address kinetics by including inertia effects into the
definition of the generalized inverse matrix and projecting dynamics into the task space. In
the non-redundant case n = m, when the Jacobian is nonsingular, any applied robot input
space generalized force F¥ can be produced by a task space force F* acting at the task point,
e.g., the end effector, along task coordinates. The applied generalized force is then obtained
as G'1(y)F?, using the principle of virtual work [7,19]. In the case of redundant robots, a
null-space projection term N (y)F, F* € R" is needed as a complement to the task term, in
order to represent an arbitrary applied generalized force.

The d’Alembert equation of motion of a serial robot in input coordinates is [7,19]

F' = G (y)FF + N'(y)F = M(y)j — S(y,9) — Q" (v.9) (3)

where M(y) is the symmetric positive definite mass matrix, Q¥(t,y,y) is a vector of ap-

plied generalized forces that act on and between bodies in the robot chain, and S(y, ) is a

vector of velocity coupling terms (sometimes called Coriolis forces). The term QY (t,y,y)

is restricted here to gravitational force, i.e.,, Q¥(y). The left side of Equation (5) repre-

sents the decomposition of input space generalized forces into task space and null-space

terms, FY = G'T(y)F* + NT(y)F’. Multiplying Equation (5) by G'(y)M~(y), noting that
—_—

task space null space

-/
z = G'y + G y, rearranging terms, and suppressing arguments yields
- GM'S— GM QY = GM1G""FF + GMINTF + G’y ©)

A condition can now be imposed to ensure that the term G'M~!NTF associated with the
null space does not contribute to task space acceleration. This has been defined as dynamic
consistency [13] and is expressed as

GM 'NTF = GM 1 (1- G"6¢™F =0 @)

for all F* € R", where G'™ represents an arbitrary generalized inverse of G’ " that satisfies
the identity G'TG'™G'T = G'1. The transpose of the dynamically consistent generalized inverse
of the Jacobian is shown in [13] to be

G™(y) =[G (yM ' (y)G ()] G (yM (y) ®)

Defining the symmetric positive definite task space mass matrix

-1
Aly) = [G’(y)M’l(y)G’T(y)] , the task space centrifugal and Coriolis force vector
u(y,y) = —A(y)G' (y) M (y)S(y,y) — A(y)G'(y)y, and the task space gravity force vector
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p(y) = —A(y)G' (y)Y M~ (y)Q¥(y) [13], Equation (6) can be formally expressed as the task
space equation of motion [4],

FF =A(y)z+pu(y,y) +p(y) ©)

It is important to note that Equation (9) does not constitute a system of ODEs in z,
since its terms are dependent on robot input coordinates y. It is shown in Section 3 that y
cannot be written as an explicit function of z. Therefore, the task coordinates z € R™ and
their derivatives do not constitute state variables in this system of equations. Since y € R"
are state variables for the robot and n > m, task coordinates z € R" must be augmented
by n — m additional coordinates to create a valid system of operational space generalized
coordinates that serve as state variables. The traditional task space is thus not a state space for
the redundant robot.

3. Extended Operational Space

To extend the velocity space formulation of Section 2.1 to robot configuration (position
and orientation) space, it is required that a set-valued inverse kinematic mapping be
constructed, i.e., that a solution y = f(z,v) of Equation (1) be found with an arbitrary vector
v € R""™ of coordinates that define robot redundancy. Such a mapping has been presented
in [3] for redundant serial robots, using differential geometry, and is summarized in this
section. It is used in Section 4 to obtain a new system of extended operational space ODEs
of redundant robot dynamics.

3.1. Inverse Configuration Kinematics

An input-output pair x = [yT zT]T € R™™ defines a robot configuration. The robot

configuration space is defined as X = {x € R"™ : G(y) — z = 0}. It should be noted that
configuration space in the robotics literature is often defined as the space of input (joint)
coordinates. The robot configuration space defined herein is a subset of the product of
input and output spaces [20,21] that satisfies Equation (1). It thus embodies the topology of
the robot, not just its input space. More specifically, X is the graph of Equation (1) thatis a
differentiable manifold if G(y) is smooth and G'(y) has full rank, with a single chart ¢ (x) =y
on X [21]. This is effectively a forward kinematic differentiable manifold, parameterized by
— — T Tt
x=9(y)=[y" G'(y)] .

In order to make this paper complete, the critical topic of inverse configuration kine-
matics is summarized from original derivations in [3,22]. To avoid inverse kinematic singu-
lar behavior that occurs at input coordinates for which the Jacobian matrix G’ (y) is rank de-
ficient [3], the regular robot configuration space is defined as X = {x € X : rank(G'(y)) = m}.
The entire regular robot configuration space X cannot, in general, be characterized by a
single continuously differentiable inverse kinematic mapping. The only practical global
inverse kinematic mapping is based on concepts of differential geometry [21] that employ
local kinematic representations on open sets NI C X, whose union is the regular configuration
space, i.e., U ]-Nj =X. In Nj, % is a base point about which an inverse kinematic mapping is
constructed over NJ.

For a given j and base point ¥ € NI C X, define the n x m matrix U/ and an
n x (n — m) matrix V/ such that

U=a6"G) GF V=0 VVi=l (10)

where V/ is computed as a matrix whose columns form an orthonormal basis for the null
space of G'(), e.g., in MATLAB, using singular value decomposition [23]. The matrices
U and V are defined to be constant on NI. Note from the second relationship of Equation
(10) that TV = 0 and VITWW = 0. Since G’ (/) has full rank, so do W and V/. Further,
since VT = 0, the columns of V/ and W are mutually orthogonal. The n combined
linearly independent columns of U (m columns) and VI (n — m columns) therefore span R".
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Using V/ and W of Equation (10), any solution y of Equation (1) in a neighborhood of /
can be written as ' ' . ' .
y=9y+V(o-79)-UW(u—-w) (11)

where 7 and % are values of v and u associated with ¥ on a trajectory that first enters N.
They are introduced to ensure the continuity of y as a function of v and z in Equation (11).
InN!, 7! = 0and #' = 0. Aty = %/, Equation (11) implies v = @ and u = .

To see that there is a unique solution of Equation (1) with y of Equation (11), i.e., of

G(yf+l/f(v—ﬁj)—uj(u—ﬁj))—ZZO (12)

for u as a function of z and v in a neighborhood of z = Z and v = ¥, the derivative of the
left side of Equation (12) with respect to u, evaluated at ¥, is —G’ (/)W = —WTW, which
is nonsingular. The implicit function theorem [24] implies the existence of a unique, twice
continuously differentiable solution # = I/ (z,v) of Equation (12) in a neighborhood of ¥
From Equation (11),

y(z,0) =G + V(o —3) — W (W (z,0) — W) (13)

This is the desired set-valued inverse kinematic mapping on NJ, in which coordinates v € R" "
quantitatively define robot redundancy. Note that in contrast with Equation (4) that is

linear in the free velocity yo, Equation (13) is nonlinear in v and represents nonlinear
characteristics of redundant serial robots that cannot be characterized by Equation (4).

If z(t) and v(t) are periodic of period ¢, on N, ie., z(t + tp) = z(t) and v(t +t,) =
(t), and if Equation (13) holds throughout NJ, then

Y(t+t,) =T + Vio(t +t,) + W(h(z(t+t,),0(t +£,)) —B) = y(t)

Thus, y(t) of Equation (13) is periodic of period f, in NJ, and the extended operational
space representation of robot kinematics is cyclic on NI, or locally cyclic. For more details
regarding cyclicity, see [10,11]. There is no basis to expect that the traditional task space
approach is cyclic.

A computationally efficient iterative method for the evaluation of W (z,v) is presented
in Section 3.6. In this computation, when the number of iterations required for convergence
in the numerical solution of Equation (12) exceeds a specified tolerance, the associated
configurationx = [y z!] Tis designated ¥ *1, y, v, and u are designated 7!, ¥+, and
w1, a new neighborhood Ni*! is entered, and the parameterization of Equation (13) is
redefined. As shown in [19] for a dynamic system simulation, less than 0.1% of CPU time
and no user interaction is required for this reparameterization. For more detail on the
process of selecting configurations ¥ and reparameterization calculations, see [3,19].

For a given output z, with v € R" ™ arbitrary in a neighborhood of @/, Equation (13)
defines a set of input coordinates,

SMM(z) = {y =% 4+ Vi(o—9) — W (h(z,0) =) : vinaneighborhood of ﬁ}

called the robot self-motion manifold in input space associated with output z. Since u =
I (z,v) is the solution of Equation (12), G(/ + V/(v — @) — W (I (z,0) —W)) — z = 0, forall
v in a neighborhood of @, y(z,v) of Equation (13) maps into the same z, i.e., z = G(y(z,v)).
Elements of the vector v € R"™™ are thus called self-motion coordinates. With arbitrary self-
motion coordinates v in a neighborhood of @, Equation (13) defines n — m redundant degrees
of freedom of the robot that enable it to meet requirements that could not be met with a
nonredundant robot. Self-motion coordinates v thus explicitly represent robot redundancy
at the configuration level. This fundamental new result is in stark contrast with the velocity
space kinematic representation presented in Sections 2.1 and 2.2.
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It is important to note that the self-motion manifold is defined at the robot config-
uration level and is nonlinear in v. Since robot configuration information is not defined
in the generalized inverse velocity formulation of Section 2.1, the self-motion manifold
and self-motion coordinates are not available for obstacle avoidance and other perfor-
mance optimization functions in the velocity space formulation. In fact, the second term of
Equation (4) that defines a projection onto the null space of G’ (y) leads to a linear analysis
in the velocity setting that only approximates the nonlinear self-motion manifold.

3.2. The Robot Extended Operational Space

Defining extended operational coordinates w = [z7  oT] Te R", the robot extended opera-

tional space W is the subset of R" such thatx = [zT  yT] T € X for all v in a neighborhood of
o/, where y € SMM(z). Thus, the set-valued inverse kinematic mapping of Equation (13)
is a twice continuously differentiable mapping from subsets of W into the robot input space.
The fundamentally new space of extended operational coordinates and Equation (13) de-
fine inverse kinematic relations at the robot configuration level, i.e., between task space
position and orientation coordinates of bodies that make up the robot mechanism, self-
motion coordinates, and input coordinates between bodies in the chain that defines the
serial robot. This is in stark contrast with robot velocity relations of Section 2.1 that suffer
severe deficiencies as presented in Section 2.2. As is shown in Section 4, the extended
operational space formulation enables the derivation of ODEs of robot dynamics that
are equivalent to input space ODEs and correct deficiencies of the traditional task space
dynamics formulation discussed in Section 2.3.

3.3. The Robot Functional Configuration Space

Defining robot functional coordinates s = [y* wT]T =y Zf UT}T € R™, the

robot functional configuration space is defined as

S= U{s erRM:¥ =[§T 71 eX,y=9+V(o—9)—WH(z0) —ﬁj)}
N/
Similar to the definition of the robot configuration space as the subset of the product of
input and output spaces that satisfy Equation (1), S is defined as the subset of the product
of input and extended operational spaces that satisfy Equation (13).
From Equation (11), v = @ + V/T (y — %/). This and the kinematic mapping of Equation (1)

= —j . AT~
define a y-parameterization of S, s = ¢ (y) = [yT G'(y) 9"+ (y—7 )TW} € S for
y in a neighborhood of 3. Conversely, the kinematic mapping of Equation (13) enables

T
the w-parameterization s = ¢} (w) = {(yj +Vi(w—9) - W(h(z,v) - ﬁj)T zT UT:| of

Son Ni. This duality of input and extended operational coordinate parameterizations of S
provides the foundation for a fundamentally new analytical and numerical representation
of redundant serial robot kinematics and dynamics. The robot functional configuration
space can be parameterized by either y or w. It cannot, however, be parameterized by only
output z. It is not possible to obtain ODEs of robot dynamics in only z, as is attempted in
the traditional task space setting of Section 2.3 [4].

While S has many of the characteristics of a differentiable manifold, the foregoing has
not shown it is a differentiable manifold [21]. This leaves open questions regarding its
singularity-free domains of robot functionality for future research.

Kinematics and dynamics on S must be carried out on individual sets NJ, called charts,
which cover S, and transitioned to adjacent charts as robot configurations progress along
a trajectory in S, as shown schematically in Figure 1. A piecewise analysis on charts is
unavoidable since, in general, there is no globally valid extended operational coordinate
parameterization i (w) of S. This attribute of differential geometry that transforms local to
global properties of sets and mappings is one of its greatest contributions. The unavoidable
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reality, however, is that one must adopt local operational space parameterizations, since no
global parameterization generally exists.

Figure 1. Trajectory along charts in S.
3.4. Velocity Kinematics on the Extended Operational Space

Differentiating the identity z — G(yj +Vi(v—3) — W (W (z,0) - ﬁj)> = 0on N that
is obtained by substituting y of Equation (13) into Equation (1) with respect to f, suppressing
index j for notational convenience, and recalling that I and V/ are constant on N, yields

21— G'(y)Vo+ G (y)Uh =0 (14)

The matrix G'()U = U'U is nonsingular, and G’ (y) is a continuously differentiable matrix
function of y, so G’ (y)U is nonsingular in a neighborhood K C R of . The matrix

! (15)

Bly) = (G'y)u)
is therefore well defined and continuously differentiable in K. A computationally efficient
iterative method for the evaluation of B(y) is presented in Section 3.6. For readers who
may be concerned with the cost of evaluating the inverse matrix in Equation (15), note that

its cost is no greater than that of evaluating (G’ (y)G' T(y)) B in the generalized inverse of
Equation (3).

Substituting Equation (15) into Equation (14), h = —B(y)% + B(y) G’ (y) Vo. Differenti-
ating Equation (13) with respect to ¢, using this result and the chain rule of differentiation,

y = UB(]/(Z, ’0) )Z + (V —UB (y(z, v))G'(y(z, v))V) v (16)
= UB(y(z,v))z+D(y(z,v))v

where D(y(z,v)) = [I - UB(y(z,v))G (y(z,v))]| V. Aty = ¥, from Equation (10), G’ ()V =0,
so D(y) = V has full rank. Since D(y) is a continuous matrix function of y, D(y) has full
rank in a neighborhood of 3. Matrix multiplication and the use of Equation (15) show that
G'(y)D(y) = [G'(y) — G (y)UB(y)G'(y)|V = [G'(y) — G'(y)]V = 0, so the columns of
D(y) span the null space of G'(y) in a neighborhood of ¥.

Note that G'(y)(UB(y)) = (G'(y)U)B(y) = I, so UB(y) in Equation (16) is a general-
ized inverse of G’ (y), and Equation (16) is of the form of the ill-fated velocity space relation
of Equation (4), except that v € R"~™ is comprised of independent self-motion velocities,
and v appears in nonlinear form. The fundamental difference between Equations (4) and (16)
is that the latter is the time derivative of Equation (13), i.e., it is holonomic, and Equation (4)
is generally nonholonomic [10], i.e., it is not the time derivative of any algebraic (holo-
nomic) equation. This result is obtained without having to resort to the use of the Frobenius
theorem of differential geometry [9,10,21]. The inverse kinematic mapping of Equation (13)
thus resolves deficiencies in redundant robot velocity space kinematics summarized in
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o)

Section 2.2 that have plagued redundant serial robot kinematics, dynamics, and control for
half a century.

With extended operational coordinates w = [z7  vT] " that quantitatively represent robot

output and redundancy, Equation (16) may be written as

y(w, ) = [UB(y(w)) D(y(w))]w = H(y(w))w (17)

where H(y) = [UB(y) D(y)]. To see that the matrix H(w) is nonsingular, expand

&'(y) [CuBy)  Gwpy) 1 (1 o
{v“y][”’*(y) D)) = | "V up(y) vT(I—u%w)cy;/(y))v]‘[o 1}"

This shows that H(y) is nonsingular and that

) = [ 18)

The explicit solution of Equation (17) for w is thus

. _ . G’ .
w=H'(y)y= { V(Ty)}y (19)
3.5. Acceleration Kinematics on the Extended Operational Space
G 2\ -
Differentiating Equation (19) with respect to t, w = H™ ! (y)y + ( (y)y) yy] , where
0

over hat denotes a variable that is held constant for the indicated partial differentiation.

Thus,
y =H(y)w— [ UB(y) D(y) ] gG (y>y)yy]

= H(y)w + E(y,y) = UB(y)z + D(y)v + E(y,y)

(20)

where with y(w) = y(z,v) of Equation (13) and y(w,w) of Equation (17), E(y,y) =

~

E(y(w), j(w, @) = ~UB(y(w))(G'(y)y) i(w,@)

3.6. Computation of h(z,v) and B(y)

While vector and matrix functions h(z,v) and B(y) for serial redundant robots are
shown to exist and be differentiable functions of z, v, and y, their derivations do not show
how to evaluate them. Since they are central to implementing kinematic position, velocity,
and acceleration analyses, numerical methods for their evaluation presented in [3] are
summarized here.

Atx € X, B(y) = (G'(y)U) 1= (u'u) s numerically evaluated. For y' at time t!
on a time grid, B(y') must satisfy Equation (15), in the form R = (G'(y')U)B(y') — I = 0.
With an approximation B M ~B (y'~1) of the solution and suppressing arguments y', since
they do not change in the iterative process for B(y'), a matrix version of Newton—Raphson

iteration is (G'U) ABU) = “RY = _G'uBY) + I, where (j) denotes the iteration number.
Since G'U need not be inverted with great precision in the Newton-Raphson process [23]
and BU) ~ (G'U) ™", ABU) = —B0)G'UBU) + B) and BU™) = BU) + AB(). This yields the
computationally efficient iterative algorithm that requires only matrix multiplication,

B+ = 2B0) — BUG'UBY), j =1, 2,-- -, until ||G'UBIY) — || < Btol 1)

where Btol is th_e error tolerance.
While h(z‘, vl) cannot be analytically determined, it can be evaluated as accurately
as desired using Newton—Raphson iteration to solve Equation (12) for u = h(z',v'), with
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GuAul) = —G'UAulY) = —B~ 1Au(') = —G(§+ V(v —7) — U(ul) — ). The solution is
Aul) = BG(H+ V(v —75) — U(u') —71)) and w0+ = u0) 4 Aul), i.e., the iterative algorithm

ult) = ul) + BG(y + V(v —9) — Ul — 7)), j=1, 2,.

until [ G(F + V(o — ) — U+ — 7)) < utol @2)

where utol is the error tolerance. Since the Newton—-Raphson method does not require an
exact Jacobian [23], the matrix B is held constant throughout the process. This is an efficient
computation, requiring only matrix multiplication.

4. ODEs of Input and Extended Operational Space Dynamics
4.1. Input Space ODE of Dynamics

Since input y is a vector of mechanism generalized coordinates, the d’Alembert varia-
tional equation of motion of a serial robot is [7,19]

sy"[M(y)y — S(y, ) — Q(ty, ) — F'(y)] — 8z"F(2) 23)
=8y [M(y)y — R(t,y,y) — F'(y)] —8z"F(z) =0

which holds for all virtual displacements dy and 5z that satisfy the differential form of
Equation (1), i.e., 8z = G/(y)8y. In Equation (23), M(y) is a symmetric positive definite
mass matrix, QY(t,y,y) is a vector of applied generalized forces that act on and between
bodies in the robot chain, S(y, y) is a vector of velocity coupling terms (sometimes called
Coriolis forces), FY(y) is a vector of input generalized forces, F(z) is a vector of generalized
forces that act on the output frame due to its interaction with the environment and in
shorthand notation, R(t,y,y) = S(y,y) + QY(t,y,y). Constraint reaction forces do not ap-
pear in this equation [7,19]. Substituting Equation (1) and 8z = G’ (y)dy into Equation (23),
Syt [M(y)y —R(t,y,y) — F(y) — G’T(y)FZ(G(y))} = 0, which holds for arbitrary dy. This
yields the input space ODE of dynamics,

M(y)j — R(t,y,5) — F'(y) - G (y)F*(G(y)) = 0 (24)

4.2. Extended Operational Space ODE of Dynamics

Substituting y of Equation (20), y(w, w) of Equation (16), and y(w) of Equation (13)
into Equation (24),

M(y(W))H(y(W))ib+M(y(W))E(¥(W),y(w, w))
—R(ty(w),y(w,)) - F(y) - G" (y(w))F*(G(y(w))) = 0

This is the extended operational space ODE of dynamics, which holds on each Ni. Since
M(y(w)) and H(y(w)) are nonsingular, with initial conditions on w and w, the extended
operational space initial-value problem for the second-order ODE of Equation (25) is well
posed, i.e., it has a unique solution that depends continuously on problem data [19].

For use in control system design, it is helpful to write Equation (25) as an explicit

(25)

system of differential equations in z and v, where w = [zT UT] T, and v represents robot
redundancy. Substituting dy of Equation (16) and y of Equation (20) into Equation (23),

5ZT[ B' (y)U'M(y)UB(y)z + BT(y)UTM(y) (y)v ]

+B' (y)U' (M(y)E(y, ) — R(t, yr ) — F(G(

N (5,0T|: D' (y)M(y)UB(y)z + D" (y)M( } _ 0
+D'(y) (M(y)E(y,9) — R(t, y,
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Since 0z and év are arbitrary, this yields a coupled system of second-order nonlinear ex-
tended operational space ODEs in z and v that is ideally suited for control system design,

BT (y)UM(y)UB(y)% + BT(y)UTM(y)D(y)v

+BT (y)UT (M(y)E(y,9) — R(t,) ~ F'(y)) ~ FF(G(y) =0 26
D' (y)M(y)UB(y)z + D" (y )M(y)D(y)if

+D™(y) (M(y)E(y,9) - R(t,y,9) — F/(y)) =0

The nonlinear dependence of terms in Equation (26) on z and v follows from the fact that
y(z,0) =Y + Vi(v —3) — W (W (z,v) — W) of Equation (13) and yy = UB(y)z + D(y)o of
Equation (16) are nonlinear functions of z and v.

As motion of the system progresses over S, reparameterizations in the extended op-
erational space may be required in making the transition between charts, as depicted in
Figure 1 and outlined in Section 3.3. The requirement for reparameterization is an incon-
venience that cannot be avoided, since global parameterizations of S with operational
coordinates do not generally exist. The computational cost of reparameterization is, how-
ever, minimal [19]. In the process of reparameterization, the continuity of y, y, z, and z is
enforced, leading to restart values

V=T z}:VTy (27)

of v and v, the latter obtained by multiplying Equation (16) on the left by V. As a result,
v(t) is continuous, but v(f) may be discontinuous at reparameterization times.

Since the functional operational space S can be parameterized by either y or w and
steps in the transformations from Equation (24) to Equations (26) are reversible, the ODEs
of Equations (24) through (26) are equivalent, i.e., they have the same solutions. Without
coordinates v, Equation (26) in only output coordinates z could not be equivalent to robot
ODEs of multibody dynamics of Equation (24). This shows that the Equation (9) in the
traditional task space formulation [4] cannot be equivalent to robot ODE of multibody
dynamics.

4.3. A Single-Degree-of-Redundancy Serial Robot Example

The redundant robot of Figure 2 has three input coordinates y € R® and two output
coordinates z € R?. Its kinematic equation is

- — |:y1 + C05y3:| G(y) (28)

V) + Sl'i’ly?)

1 0 —siny,
0 1 cosys
attractive example for analysis, since the Jacobian matrix is of full rank throughout the
robot configuration space. Therefore, any pathological behavior of the robot cannot be
attributed to a rank-deficient Jacobian.

To obtain the input space ODE of motion for the robot of Figure 2, vectors that locate
its three bodies, modeled as point masses in the plane, are ry = y,uy, 2 = y,ux + y,uy, and

with Jacobian G'(y) = { ] . In addition to its analytical simplicity, this is an

13 = (y; + cosys)ux + (y, + sinys)uy, where u, = [1 O]Tand uy, = [0 1]T. Variations, or
virtual displacements, of the mass locations are obtained by taking the differentials of the
rj, 0r1 = Oy uy, Oty = Oy ux + dy,uy, and or3 = (dy, — dyzsinys)uy + (dy, + 5y3cosy3)uy
Acceleratlons of the masses are obtained by taking two derivatives of the r;, 11 = y uy,

2
=y lx + Y1y, and 13 = (Y1 — Yasinys — y3c08y3)ux + (Y, + y3c08y5 — yssmy3)uy. With
these results, the d’Alembert variational equation of motion is [7,19]

3
Y morl i — 6y'F — 62" F* + Sy,mag + (8y, + Sy,cosys)msg = 0 (29)
i
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where FY are input forces and torques, and F* is the vector of external forces and torques
that act on the end effector. Expanding products in Equation (29), using ulu, = ulu, =1,

ulu, =0, and 6z = G'(y)dy, yields the input ODE of motion of Equation (24) with ?\/I(y) =
my + my + ms 0 —mgsiny, mz 'y 3cosy,
0 my +m3  macosy; | and R(y,y) = m3y§siny3 — (my +m3)g|. For
—m3siny, M3c08y ms —M3gC0sy,
the extended operational space ODE of Equation (25), B(y) = (G'(y)U) - D(y) =
2
[I; —UB(y)G'(y)]V,and E(y,y) = —UB(y) _535;33 . Since M(y) is nonsingular and
3 3

H~!(y) is given by Equation (18), suppressing arguments of functions for notational conve-
nience, Equation (25) may be written in the explicit ODE form

W= -H'E+M'H (R 2 G’TFZ) (30)

With initial conditions y(0) = [0 0 O}T =79, 2(0) = [1 O]T = %z, and y(0) =
T

1 00

011

, suppressing arguments, the input space ODE of Equation (24) is

-1 1 O]T; associated U = G'T(0) = [
]T

} andV = (1/v2)[0 -1 1]T; and
output force ¥ = [0 9
=M '(R+F +G"F) (31)

In the extended operational space ODE of Equation (30), initial conditions on w and w are,
using initial conditions on y and ¥ of Equation (27), w(0) = [z1(0) U(O)]T =[1 0 O]T

vertical ~guide

horizontal  guide

Figure 2. (Left) Redundant serial robot schematic. (Right) Robot mechanism structural rendering
annotated with link axes, centers of mass, and joint displacements. All link masses are 1 kg.

In [3], an input force FY = [0 9 sinmt] Tis imposed, and Equations (30) and (31) are
numerically integrated. The input coordinate trajectory y,,(t) that is obtained from the
computed value of w(t), using the inverse kinematic mapping of Equation (13), deviates in
norm from the value of y(¢) computed by integrating the input space ODE of Equation (31)
by less than 10~!! over the entire time interval. This confirms the result reported in
Section 4.2 that the input and extended operational space ODE of dynamics are equivalent.
In this example, a single parameterization was adequate for the simulation. In more realistic
applications, the reparameterization process outlined in Section 3.3 may be required.

Readers interested in larger scale applications are referred to [22,25]. Kinematics of a
general seven-DOF spatial serial robot with specified task trajectory and obstacle avoidance
constraint is treated in [25]. In [22], kinematics of a 23-DOF planar robot with 20 degrees of
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redundancy is treated. A task trajectory is specified with constraints enforced on collision
avoidance of each of 23 bodies with three obstacles, one moving. This large-scale kinematic
control example is successfully treated using the formulation of Section 3. These examples
are based on kinematic control, rather than dynamic system control presented in Section 5.

5. Extended Operational Space Control

Four examples are presented in this section to illustrate the use of the extended
operational space ODE and traditional task space dynamics for the control of the one-degree-
of-redundancy robot of Figure 2. The block diagram of the controlled plant dynamics is
shown in Figure 3. The feedforward input to the plant is the vector FY of generalized
forces provided by the actuators, as prescribed by the controller. The feedback output of

T
the plant is the input space state vector {yT yT] , 1.e., state measurements provided to
the controller.

v !

FY . ¥ Y Y
o—> M~ (o) > — >

PR ;

R(e, @) | ] '

Figure 3. Block diagram for plant dynamics based on the input space ODE of Equation (24). Solid
lines into a block indicate linear arguments and dashed lines represent nonlinear arguments.

The first example employs the traditional task space approach to track a figure 8
shaped output trajectory for the robot of Figure 2 with unit values of masses, providing
a baseline with which to compare results obtained with the extended operational space
formulation. The second example uses the extended operational space formulation with
the same output trajectory and zero self-motion, to verify the functionality and cyclicity of
that formulation. The third example uses both formulations to track the figure 8 shaped
output trajectory, while minimizing the kinetic energy of the robot mechanism. The fourth
example uses the extended operational space formulation to track the figure 8 shaped
output trajectory, while avoiding collision with an obstacle.

5.1. Traditional Task Space Example

A closed-loop task space controller is investigated for controlling the redundant robot
of Figure 2. The control is applied through generalized force FY,

F = GF? (32)

where F* is the applied task space force in the task space dynamic equation of Equation (9) [13].
The input F* of the decoupled system replaces the task acceleration z in Equation (9) and
is used to specify a simple proportional-derivative feedback control law,

F* =k (24 — 2) + ko (24 — 2) + 24 (33)

where z;(t) is the desired output, and k; are proportional and derivative controller gains.
In this and subsequent control examples, it is assumed that the controller has access
to perfect estimates of task space dynamic parameters. The task-level feedback controller
described by Equations (32) and (33) is represented in block diagram form in Figure 4.
Inputs to the controller are the input space state vectors that are used to compute task space
coordinates. From these task space coordinates and desired reference signals, an input to
the decoupled system is determined and used to estimate the required task space force
vector. The output of the controller is the corresponding vector of generalized forces.
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72 (m)

0.5

-0.5

Zq F*

24 ;
® . :
Zd Servo | z'(.’ .) y !
—> Qe e mmemecme e aeeaas '
; 7
z(®) |Qmmmmmmmmeaaaad

(°) 5

Figure 4. Block diagram for the task space controller based on Equations (5) and (31).

This controller can be readily applied to a task space trajectory tracking problem for
the robot of Figure 2 by specifying a desired periodic figure 8 shaped output trajectory,

2a(t) = [ 34)

sin t
sin t cos t

The resulting figure 8 shaped task space trajectory that is achieved through the controller
of Figure 4 is shown in Figure 5 (left). Controller gains of k,, = 100 (proportional) and
k;, = 20 (derivative) were used. With perfect estimates of the task space parameters,
perfect dynamic compensation is achieved, and corresponding feedback linearization
demonstrates critically damped behavior. The task space feedback controller is able to
follow the trajectory of Equation (34) to arbitrarily high precision. The predicted input
trajectory is shown in Figure 5 (Right). Despite periodicity of the task space trajectory
shown in Figure 5 (Left), the task space controller fails to produce a cyclic behavior in
input space.

3

v3 (rad) 2

0 0.5 1

71 (m)

yi (m)

Figure 5. (Left) Plot of trajectory produced by the task space controller compared to the reference
trajectory. (Right) Input space trajectory showing acyclic behavior despite periodic task trajectory.

Figure 6 (left) shows a plot of computed input space coordinates versus time. One
can examine the degree to which the signals are or are not periodic. Figure 6 (right) is the
image generated in a composite of time frames at regular intervals, relative to the period
of the task trajectory. The animation presented in Supplementary Materials gives a visual
sense of regularity of the self-motion.
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10

time (sec)

Figure 6. (Left) Plot of the input space coordinates versus time. The gray vertical lines and dots
indicate key frames at regular intervals relative to the period of the task trajectory. (Right) Key frames
composited into a single image, with earlier key frames fading away. Times are shown.

5.2. Extended Operational Space Example with Objective vy(t) = 0

A closed-loop extended operational space controller is specified, in which control is
applied through an input space force,

FY = M(y)H(y)F* + M(y)E(y,y) — R(y,¥) (35)

Denoting the estimates of the dynamic parameters using an over hat, the input space
acceleration generated from this force is f = M~ (FY + R) = M~ (MHF* + ME — R + R)
and the operational space acceleration is @w = H™!(yy — E) = H'(M~'(MHF* + ME —
R+ R) — E). With perfect estimates, w = FX

As in the previous example, the input F* of the decoupled system is used to specify a
simple proportional-derivative feedback control law. In the extended operational space
controller, this term is augmented to include self-motion coordinates, with the objective of
achieving the self-motion trajectory v, (t) =0,

Ky Ky
| kyIm O kI 0 . . .
o= [ 0 kvll(nfm) :| (wa =) + l: 0 kvzl(nfm) (ba = 1) +ba (36)

_ [ kzy (2a = 2) + Kz (20 — 2) + 24 ]
kvl ('Ud — U) + kvz (Z)d — U) + 04

With perfect estimates, F¥ — w = K;(w; — w) + Kp(wy — w) + (wy — w) = 0, where
ky; are control gains associated with self-motion coordinates. This yields the linearized
error dynamics

Kie+Kye+e=0 (37)

where ¢ = w; — w is the extended operational space error.

The extended operational space feedback controller of Equations (35) and (36) can be
applied to a task space trajectory tracking problem. It can also be applied to simultaneously
track a task space trajectory and a self-motion trajectory. This is demonstrated by specifying
a desired self-motion coordinate trajectory v;(t) = 0 in this application, so self-motion
coordinates that define robot redundancy appear explicitly in the control implementation
of Equation (36). This contrasts with the traditional task space control implementation in
Section 5.1 that does not depend explicitly on robot redundancy. The extended operational
space feedback controller defined by Equations (35) and (36) is represented in block diagram
form in Figure 7,



Robotics 2024, 13, 170 16 of 27

i M(E@s, o[ T y T i
H <t - e '
5 yoi
i R [T
v - <
.. . ; y
i T el M(e)H(s) -(2) i 2 r
Wa i
[ e el :
wq |servo e W(e, o) y :
—> (mmm e s 57
’ w(e) |Q-==nmmmnmn 37---:

Figure 7. Block diagram for extended operational space feedback controller.

The operational space trajectory achieved through the application of the extended
operational space controller is shown in Figure 8 (left). Controller gains of k;, = k,, = 100
(proportional) and k;, = ky, = 20 (derivative) were used. The tracked task trajectory
matches the output trajectory generated in the previous example and the v coordinate of
w is close to zero. The resulting periodic input coordinate trajectory obtained is shown in
Figure 8 (Right). As predicted with periodic output and self-motion, the input space time
histories of Figure 9 (left) are also periodic. Note that y, = y3, since v = (y3 — y2)/v/2 = 0.
Figure 9 (right) is the image generated as a composite of time frames at regular intervals
relative to the period of the task trajectory. See Supplementary Materials for the animation.

w3 (m, rad) ( \ 0.25
-1
. y3 (rad) 0

-0.25

wo (m)

Figure 8. (Left) Plot of the operational space trajectory produced by the extended operational space
controller compared to the reference trajectory. (Right) Input space trajectory showing cyclic behavior.
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=
")
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Figure 9. (Left) Plot of the input space coordinates versus time. The gray vertical lines and dots
indicate key frames at regular intervals relative to the period of the task trajectory. (Right) Key frames
composited into a single image, with earlier key frames fading away.
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5.3. Example with Minimum Kinetic Energy Objective

The intention of this example is to show the effectiveness of minimizing a scalar
function, while executing the tracking task, by projecting the gradient of a scalar function
along the self-motion coordinates. Minimizing a scalar function by moving along its
gradient, within the motion null space, is a common objective in traditional task space
control [4].

Both traditional task space and extended operational space control are applied to
minimize the kinetic energy (scalar function) of the mechanism during execution of the
figure 8 shaped tracking task. In the case of traditional task space control, the gradient
of kinetic energy VT(y,y) is projected onto the null space (local tangent space of the
self-motion manifold at an instant), NT (y),

F = GT(y)[A(y)F* + u(y,y) + p(y)] — N (y)VT(y,y) (38)

In the case of extended operational space control, the gradient of kinetic energy is
multiplied by VT and concatenated into the term

x _ |kz(zg—2)+ksy(2zg—2)+2
z1\<d 2o \<d d
= ~VIVT(y,y) %)

When implementing this controller, y = y(z,v) is evaluated using Equation (13), which
depends explicitly on self-motion coordinates v that represent the redundancy of the robot.
This is in contrast with the projection in traditional task space control that fails to fully
exploit robot redundancy.

Results for the two cases are shown in Figure 10. Controller gains of k,;; = 100
(proportional) and k,, = 20 (derivative) were used. The function T, represents the baseline
kinetic energy under the figure 8 shaped tracking task, with no null/self-motion space
control. The function Tpg represents the case of traditional task space control, with the
gradient of the kinetic energy projected onto the null space NT(y). The function Tgos
represents extended operational space control, with the gradient of the kinetic energy
projected onto the null space V'. The kinetic energy level with extended operational space
control, Tgps, is much lower than in the baseline case. More significantly, Trog is reduced
with respect to Tpg. For an animation of the results, see Supplementary Materials.

25 —
/ T,dt — 97.65)
JO

47T
20 / T, dt — 2425]
0

47T
= / Tosdt = 13.45J
= 15 ‘
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2
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Figure 10. Plots of kinetic energy versus time. Tog represents the case of traditional task space control,
with the gradient of kinetic energy projected onto the null space NT(y). Tgog represents the case of
extended operational space control, with the gradient of kinetic energy projected onto the null space V.
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It is important to note that a dynamically consistent generalized inverse of the task
Jacobian is defined [13] to minimize the kinetic energy of the solution of the velocity
kinematic equation, z = G'(y)y. In fact, the dynamically consistent inverse is a mass-
weighted version of the Moore-Penrose inverse that has the property of yielding the least
velocity norm solution. The mass-weighted inverse solution of the velocity equation is
precisely the least kinetic energy (analogous to least norm). Despite this property of the
dynamically consistent inverse, it can be seen in Figure 10 that it does not produce minimal
kinetic energy over a time series. In retrospect, it should not be expected to do so, since the
kinetic energy property that it satisfies is an instantaneous one that is dependent upon the
specific configuration. There is no guarantee that self-motion configurations that the path
follows are consistent with low kinetic energy relative to other paths.

5.4. Extended Operational Space Example with Obstacle Avoidance

Obstacle avoidance (particularly using artificial potential fields) is another common
application for redundant robots. It is relevant to present an example with this approach
in order to characterize the utility of implementing the artificial potential field approach
within the extended operational space formalism. An obstacle is introduced into the robot
workspace that is to be avoided by the top of the vertical guiderail of the robot, as shown in
Figure 11. The task space controller is used to track the figure 8 shaped output. Controller
gains of k,, = 100 (proportional) and k, = 20 (derivative) were used. Rather than tracking
a specific trajectory in the self-motion space, a reactive artificial potential field control was
applied to avoid the obstacle, with input to the self-motion space. A repulsive artificial
potential field was used, of the form

cf 1 \?
=5 (77) 0

where ¢ = 1 is a constant coefficient, and d(y) = | + y»(t) is the distance function. The
constant [ is the offset to the top of the vertical guide rail, i.e., the point on the robot for
which obstacle avoidance is specified. From left to right in Figure 11, the obstacle descends
downward and then levels off. The point of influence for the robot is the top of the vertical
guide rail. The field gradient is applied as control input into the self-motion space. Figure 11
(right) depicts the obstacle within the potential field.

potential field

overhead obstacle

verticle guide rail ' : §F ==
manipulator S
point of
/ application

— | —

Figure 11. (Left) Overhead obstacle present in robot workspace. (Right) Robot depicted under the
influence of a repulsive potential field.
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In the input F¥ of the decoupled system, the self-motion space tracking term is
replaced by the (negative) gradient of the potential field —V,U,, pre-multiplied by VL.
This defines ( ) ( )

ky(zg —z) +ko(zq —2) +2
* _ |fxled v\Zd d
P = “VIV, U, (41)
that depends on self-motion coordinate v through its influence on the y(z,v) of Equation (13).
The controller block diagram for this application is shown in Figure 12.
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: iy ST
-viv,u, i v
iy It == - -~ - i
E R('?') y ' !
; e
. y
Za F* ' y FY
*—> »{ M(eo)H (o) > — >
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Figure 12. Block diagram of a controller, specifying task space trajectory tracking and artificial
potential field obstacle avoidance in the self-motion manifold.

Results of the output trajectory tracking problem with simultaneous obstacle avoid-
ance are shown in Figures 13 and 14. The orange line in Figure 14 is the trace of the upper
tip of the vertical guide rail, which is the point of application of the repulsive potential field.
The obstacle avoidance control dynamically decouples from the task trajectory control, due
to its point of application within the self-motion space. Since the self-motion trajectory
generated is not periodic, there is no reason to believe that the input trajectory obtained will
be periodic, i.e., the robot will not be cyclic in this control generated motion. Nevertheless,
v in the left plot of Figure 13 is nearly constant and z is periodic, so the joint displacements
of Figure 13 (right) are nearly cyclic, as Presented in Supplementary Materials.
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Figure 13. (Left) Plot of the operational trajectory produced by the extended operational space
controller compared to the reference trajectory. (Right) Input space trajectory showing slightly
acyclic behavior.
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Figure 14. (Left) Plot of the input space coordinates versus t. (Right) Composite frame image (see
animation in Supplementary Materials).

6. Eight-Degree-of-Redundancy Test Problem

The planar manipulator of Figure 15 (Left) with eight unit-length members has ten
input coordinates y € R'? and two output coordinates z € R?. Tts kinematic equation is

10 i
Vi+ Y ocos{ } y;

_ i=3 j=3 _
2= 0 [ =Gl
Y2+ Lsin| 3 y;
i—3 j=3
. . ' 1 0
with Jacobian G (y) = [0 1 coly --- colyp|, where

colp =

T
10 10 i .
-y {sm ( Y y]> } y {cos < Yy yj> -Uﬁ(}] is the kth column of the Jaco-
i=3 j=3 i=3 =3

bian, 3 < k < 10, with o} defined as o3 = 0if k > i and o0}, = 1 otherwise. In addition to
its analytical simplicity, this is an attractive example for analysis, since the Jacobian matrix
of G'(y) is of full rank throughout the manipulator configuration space. Therefore, any
pathological behavior of the manipulator cannot be attributed to a rank-deficient Jacobian.

To obtain the input space ODE of motion for this manipulator, unit point masses

m; were defined at the end of each link, with the global positions = Vitx, P =
k i k i
yqtx + Yoy, and ¥ = <Y1 + ¥ cos(Z y]->>ux+ <y2+ Y sin([‘, y]->>uy,3 <k <10,
i=3 =3 i=3 =3

T

where u, = [1 O]T and u, = [0 1] . The ODE:s of motion of Equation (24) in input

space are given by the matrices M(y) = Z m;r y Yy L S(y) = (Z mity Z( ))y, and

10 ,
Q'(y) = —g L mrf [0 0 1]T, where 7y is the Jacobian of ¥ with respect to y, and
i=1

g =9.80665 m /s’ is the acceleration of gravity, pointing downward in Figure 15. In the
following, two operational space controllers are compared to track the following figure 8
shaped task trajectory:

_ sin(t)

2a(t) = Lin(t) cos(t)} *2)
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For both traditional and extended operational space control, initial conditions of the manip-

ulatorwerey(0)=—-Z0 0 1 1 1 1 1 1 1 1]Tand y(0) = 010x1. This initial
configuration of the manipulator is shown in Figure 15 (right).

Figure 15. (Left) Manipulator mechanism structural rendering annotated with link axes, centers of
mass, and joint displacements. (Right) Initial configuration y,,.

6.1. Traditional Task Space Control

The first test is with the traditional task space controller, causing the end-effector of
the manipulator to follow the desired figure 8 shaped trajectory of Equation (42) with no
gravitational effects, i.e., neglecting the term QY(y) of Equation (24). This assumes that
the manipulator moves in a horizontal plane, perpendicular to the gravity vector. The
traditional task space controller projects the dynamics of the manipulator to its task space z
by means of

F = Ay)z+p(yy) +pr(y) (43)

where A(y) = [6' (M (1)G"(y)] . p(y) = ~AY)C (1M (4)Q¥(y), and (y,5) =

—Aly)G ()M Y(y)S(y,y) — A(y)Gl (y)y. A Computed-Torque Control (CTC) law for
F* [26] that achieves asymptotic tracking of desired trajectories for the output variables
can be constructed by substituting for z in (43) an FX defined as FX = k,(zg —z) +
k;(z4 — z) + Z4. This can be transformed to generalized input control forces F¥ through
GT,F=¢GT {A(y)l—"* +u(yy) + p(y)} . Gains k; and k; can be selected to achieve the
desired tracking with the desired dynamic performance. Values k, = 100 and k; = 20
were selected to cause the tracking error zg — z to converge to zero asymptotically, with
a critically damped behavior and a settling time of ~0.5 s. This meant that 95% of the
error would be removed in 0.5 s. The application of the controller given by Equation (43)
generated the results shown in Figure 16, in which one can observe that the input time
history is not cyclic. Animations in Supplementary Materials emphasize this behavior.
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Figure 16. Control results using the traditional operational space controller. Non-cyclic evolution of
input coordinates (Left). Some snapshots of the manipulator executing the desired task trajectory
(Right).

6.2. Extended Operational Space Control

For the extended operational space controller, the parameterization was initialized
aty = y(0) with U' and V! evaluated using Equation (10) and initial & = 0. With these
values and matrices of Section 3.2, the following control law was defined:

FY = MHF* + ME — R (44)

where . . .
* — k(zg—2z)+ kZ(Zd — Z) +z4

T ke (vg—v)+ kiz (i)d - v) + 04 (45)

and the desired trajectory for v was v4(t) = 0. Gains were chosen as k; = 100, k; = 20,
ky =100 and k,, = 20.

The application of this controller generated the results shown in Figure 17, where
gravity has been suppressed. Comparing this result with Figure 16, it is seen that the
extended operational space controller not only achieves a cyclic behavior in the inputs,
but also generates a much smoother and lower magnitude input, compared to the wilder
variation in inputs in Figure 16. An even greater contrast in behavior of the two control
approaches is provided by the kinetic energy plots in Figure 18. Clearly the motion
generated by the traditional task space approach is the more extreme. To better appreciate
the distinct dynamic nature of the motions, see the attached animations. Despite the large
motion experienced by the manipulator in Figure 17, the initial basis (U' , V!) was valid
during the entire trajectory, without having to reparametrize due to the rank deficiency
of G'U.

Interestingly, setting the second row of F¥ to zero in Equation (45), which corresponds
to the CTC controller [26] for v, yields exactly the same results as those in Figure 17. This
means exerting no control at all on the dynamics of v, i.e., leaving them unactuated. This
works only because the desired evolution for v coincides with its initial value (0), its initial
velocity is zero, and there are no external forces like gravity perturbing the dynamics, so v
can be left unactuated while controlling only z. If gravity is considered, then it is necessary
to keep the second row of F¥ to achieve the desired control.



Robotics 2024, 13, 170 23 of 27

|

yi (m, rad)

|
[

7 27T

time (sec)

Figure 17. Control results using the extended operational space controller. Cyclic evolution of
input coordinates after one cycle of the output variables (Left). Some snapshots of the manipulator

executing the desired trajectory (Right).
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Figure 18. Kinetic energy of traditional task space- and extended operational space-controlled robots

vs. time.

7. Conclusions and Recommendations for Future Research
7.1. Conclusions

The extended operational space kinematics, dynamics, and control formulation pre-
sented is applicable to a broad spectrum of redundant serial robots. The analytical form
of robot inverse kinematics presented depends explicitly on self-motion coordinates that
represent robot redundancy. This was shown to correct fundamental errors in generalized
inverse velocity kinematics formulations that have been used in the redundant robot lit-
erature for over half a century. The extended operational space ODE obtained, in terms
of output and self-motion coordinates, quantitively represent robot redundancy and were
shown to be ideally suited for robot control.

Based on the extended operational configuration space ODEs presented, a robot
control architecture was defined that exploited the potential offered by redundant serial
robots, using self-motion coordinates that characterized robot redundancy. Four one-
degree-of-redundancy applications were presented in Section 5, demonstrating the accuracy
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and functionality of the control architecture, including output trajectory tracking, while
minimizing system kinetic energy and avoiding obstacles. Using traditional task space
tracking control as a baseline, comparisons were made between task space and extended
operational space control. For the figure 8 shaped tracking task, both the task space
controller and the extended operational space controller performed the tracking task
without any visible error. Both controllers exploited knowledge of system dynamics in
the feed-forward path and the same modest proportional-derivative gains in the feedback
path. The combination leads to feedback linearization and a critically damped behavior.
Robustness to plant estimates and disturbances is to be assessed in the future.

The self-motion control in examples presented in Section 5 demonstrated classic
dynamic decoupling between task and self-motion spaces. This is not surprising, since it
was included by design in both the traditional task space formulation and the extended
operational space formulation. However, the extended operational space formulation
provided a means for exploiting self-motion coordinates that represent robot redundancy,
an option that was not available in previous redundant serial robot kinematics formulations.
As noted, in the traditional task space approach, there are no explicit coordinates that span
the self-motion space, only an instantaneous tangent space. Consequently, task space
self-motion control is limited to projecting a vector quantity of interest onto a linear space
that is decoupled from the task control. The extended operational space approach was
shown to be especially effective in the gradient-based minimization of desired quantities,
performing these minimizations better than the task space approach. Tracking of self-
motion coordinates was carried out easily and with great fidelity, which could not be
achieved with traditional task space control.

A further comparison between traditional and extended operational formulations
applied to an eight-degree-of-redundancy robot in Section 6 showed that controllers based
on the traditional task space formulation produced much larger variations in internal self-
motion than the extended operational space formulation. The new formulation moderated
self-motion under control, while preserving the cyclicity of the configuration under speci-
fied cyclic task space trajectories. This was illustrated in both animations of the manipulator
and in the comparison of mechanism kinetic energy in Figure 18.

7.2. Future Research

Research is needed in defining singularity-free subdomains of the extended opera-
tional configuration space. Following the approach presented herein, recent results on
redundant robot kinematics and dynamics of non-serial robots [27,28] may be extended to
control of non-serial robots.

While an extended operational space adaptation of feedback linearization was suc-
cessfully employed, future work should consider more sophisticated control approaches.
Among these are the use of Model Predictive Control (MPC) [29] to find globally optimal
control inputs, as well as approaches such as sliding-mode control to improve robustness
to internal modeling errors and external disturbances.

The examples treated in this paper have enabled a comparison between the extended
operational space control method presented herein and the traditional task space control
method [4]. However, the latter is not the only operational space robot control method
that has appeared in the literature. There exist several variations, most derived using the
generalized inverse velocity relation of Equation (4), which implies that they inherit the
deficiencies discussed in Section 2.2. Some relevant benchmarks with which to compare in
the future are the eight controllers evaluated in [5] that can be classified into three families,
depending on the type of command that is specified to control the robot: velocity command,
acceleration command, and torque command. These controllers incorporate null-space
projections at velocity, acceleration, and torque levels, respectively, which exploit redundant
degrees of freedom to minimize scalar functions that represent proximity to a preferred
configuration, obstacle avoidance, or singularity avoidance. The authors are in the process
of comparing the performance of extended operational space controllers with these families
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of controllers. It is expected that these comparisons will confirm at least two advantages of
the extended operational space formulation.

First, regarding kinetic energy minimization, controllers derived based on the accel-
eration formulation of [30] incorporate a null-space acceleration that includes the time
derivative of the gradient of a cost function. If the cost function is kinetic energy, this
implies that the null-space acceleration will depend on joint accelerations that must be
measured and fed back to the controller to generate control torques. However, typical
feedback control laws in robots only feed states back, i.e., configuration coordinates and
their velocities, and not accelerations. Acceleration feedback would produce an algebraic
loop, as it would be necessary to use joint accelerations to compute control torques that
are applied to the manipulator, in turn generating joint accelerations and leading to a
circular relationship. Regarding torque-level controllers derived from [4], the comparison
of Figure 10 has shown that the extended operational space controller can achieve a major
reduction in kinetic energy.

Second, controllers based on generalized inverse velocity equations lack stability of
null-space motion. These controllers typically focus on ensuring the stability of task space
coordinates. However, as pointed out in [5], the stability of null-space motion is not easily
guaranteed for these controllers, as their closed-loop equations are rather complicated. In
fact, it is often necessary to include artificial damping terms in the null-space projection
to drive null-space motions to zero and prevent the internal motion of the robot from
becoming unstable. This can be observed in the eight-degree-of-redundancy example of
Figure 16, where task space control led to motion that was rather chaotic and potentially
unstable in the long term. On the contrary, as demonstrated in Equation (37), the extended
operational space formulation guarantees that the tracking error of all extended operational
coordinates (both task and redundant coordinates corresponding to null-space motion)
obey the homogeneous second-order linear differential equation of Equation (37). This
implies that the tracking error of redundant coordinates that generate null-space motion,
not only task coordinates, can be made to converge exponentially to zero with the desired
transient behavior. This can be observed by comparing the smooth and ordered motion of
the robots in Figures 9 and 17.

Another family of controllers that will be compared with the extended operational
space formulation in the future are those that minimize control torques. An overview of
these controllers is given in [31], which highlights the need to include artificial damping
to stabilize null-space motion and proposes a new torque-minimizing controller under
large external forces applied along the dimensions of the task coordinates. All controllers
reviewed in [31] are based on generalized inverse velocity equations, with the exception
of [32], which formulates a quadratic program and includes the velocity equation without
inverting it. In light of the discussion above regarding smoothness and stability of motions
generated by extended operational space controllers, it is expected that they will exhibit
superior performance regarding torque minimization.

Supplementary Materials: The following supporting video information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/robotics13120170/s1, Video S1: task tracking using traditional
operational space control, Video S2: task and self-motion tracking using extended operational space
control, Video S3: task tracking and kinetic energy minimization using traditional and extended
operational space control, Video S4: task tracking and obstacle avoidance using extended operational
space control, Video S5: tasktracking of a hyper redundant manipulator using traditional operational
space control, Video S6: task tracking of a hyper redundant manipulator using extended operational
space control.
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