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Abstract: The integration of heterogeneous hardware and software components to construct human-
centered systems for Industry 5.0, particularly human digital twins, presents considerable complexity.
Our research addresses this challenge by pioneering a novel approach that harmonizes the techno-
centered focus of the Robot Operating System (ROS) with the cross-platform advantages inherent
in NEP+ (a human-centered development framework intended to assist users and developers with
diverse backgrounds and resources in constructing interactive human–machine systems). We intro-
duce the nep2ros ROS package, aiming to bridge these frameworks and foster a more interconnected
and adaptable approach. This initiative can be used to facilitate diverse development scenarios
beyond conventional robotics, underpinning a transformative shift in Industry 5.0 applications. Our
assessment of NEP+ capabilities includes an evaluation of communication performance utilizing seri-
alization formats like JavaScript Object Notation (JSON) and MessagePack. Additionally, we present
a comparative analysis between the nep2ros package and existing solutions, illustrating its efficacy in
linking the simulation environment (Unity) and ROS. Moreover, our research demonstrates NEP+’s
applicability through an immersive human-in-the-loop collaborative assembly. These findings offer
promising prospects for innovative integration possibilities across a broad spectrum of applications,
transcending specific platforms or disciplines.

Keywords: Human–Robot Collaboration; Industry 5.0; internet of robotic things; virtual reality;
digital twins

1. Introduction

In the rapidly advancing landscape of technology, the vision of Industry 5.0, as
endorsed by the European Commission, is gaining traction. This concept represents a
paradigm shift in the industry, placing humanity at the center by respecting individuals’
diversity, roles, talents, needs, and rights [1,2]. In essence, Industry 5.0 calls for the adoption
of technologies that empower and celebrate the diverse talents and needs of industrial
workers, establishing sustainable production processes that adhere to planetary boundaries,
and creating industries that are more agile, adaptable, and flexible [1,3,4].

In the context of Industry 5.0, digital twins (DTs) play a crucial role [5]. It is imperative,
however, to differentiate DTs from other digital entities. Traditional digital representations
are manually constructed models of reality that remain static when real-world conditions
change. Additionally, digital shadows automatically adapt the virtual model to reflect
environmental changes, yet they lack a real-time feedback loop [6]. In contrast, DTs, as
explained in [7], establish a bidirectional data exchange between the physical system and
its virtual counterpart. In this context, digital representations of robotics systems—denoted
in this article as robot digital twins (RDTs)—are often deployed for simulating, testing,
and refining industrial processes [8]. As a critical method for realizing human-centricity,
human digital twins (HDTs) (i.e., digital representations of humans and their interaction
environment) have emerged as pivotal components of Industry 5.0 [5]. HDTs are often
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designed to enhance human capabilities, productivity, and overall well-being [9]. The
convergence of RDT and HDT can enable the creation of holistic systems that bridge
the gap between humans and technology by complementing human and robot strengths
and enhancing human interaction and well-being. However, creating accurate digital
twins requires expertise from various domains, such as engineering for physical modeling,
computer science for software development, data science for analysis, and domain-specific
specialists [9]. Furthermore, the system architectures of human digital twins (HDT) can
involve the integration of numerous components in a scalable manner, encompassing smart
devices, collaborative robots, augmented reality (AR), mixed reality (MR), virtual reality
(VR) devices, and human–machine interfaces (HMIs) [5]. As detailed in [10], employing
immersive devices and advanced visual sensors facilitates two-way interaction between
humans and their environment. This interaction serves to mitigate potential risks while
simultaneously enhancing operational efficiency and optimizing resource utilization. In this
context, some examples have been reported in [11–13] in the area of teleoperation of robotics
platforms and [14–16] in Human–Robot Collaboration. Hence, fostering cross-disciplinary
collaboration is a pivotal factor in ensuring the precision and applicability of these digital
twins. Furthermore, the imperative for cross-platform development arises when these
digital replicas must seamlessly function across diverse hardware and software landscapes.
This approach not only amplifies accessibility but also augments their overall utility.

NEP+ [17] is a framework under development, aiming to simplify the construction of
interactive human–machine systems and enhance compatibility across diverse technologies
and user groups, all while reducing development efforts. NEP+ is an IoT technology de-
signed to facilitate the development of cyber-physical systems. For example, it can integrate
the necessary elements to create hand-guiding collaborative robots, where robots work
alongside humans under their guidance [10]. Therefore, this article primarily discusses the
IoT capabilities inherent in NEP+. As a bridge between different platforms and disciplines,
NEP+ facilitates smoother interactions and collaboration through a platform-independent
middleware layer and user-friendly interfaces. NEP+ is Windows and macOS first, but
it is also designed to be fully compatible with popular Linux-based systems like Ubuntu
and Raspberry Pi OS. NEP+ tools are built on top of ZeroMQ [18]. This open-source uni-
versal and high-performance messaging library can connect code in almost all languages
on many platforms. These tools empower ZeroMQ by providing serialization options,
command lines, and user interfaces for network management and service discovery [17].
By embracing an inclusive and cross-platform approach, NEP+ tools aim to foster seamless
integration, grant users autonomy, and fuel collaborative research endeavors spanning
multiple disciplines. This includes the integration of interactive applications involving
both physical and digital agents. Contributions of NEP+ to the Industry 5.0 principles are
summarized below:

• Sustainable: NEP+ is designed to operate across various platforms, including Win-
dows, MacOS, Linux, and mobile operating systems, enabling seamless connections.
This flexibility empowers users to work with their existing systems, reducing the
need for new hardware or OS switches. Consequently, NEP+ can be used to mini-
mize electronic waste and optimize resource utilization in academic, industrial, or
service environments.

• Human-Centered: NEP+ can be used to foster a human-centered Industry 5.0 by
facilitating connectivity among digital twin components, enabling comprehensive
interactions between physical and digital entities. Its diverse array of tools accommo-
dates developers’ varying expertise levels. Examples showcasing how NEP+ addresses
integration challenges within multidisciplinary projects to construct human-centered
systems are delineated in [17]. This inclusivity empowers developers across skill spec-
trums, enhancing effective collaboration within the system. Furthermore, NEP+ prior-
itizes user-centric design principles, emphasizing the development of user-friendly
interfaces that enhance productivity, minimize errors, and drive user adoption.
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• Resilient: NEP+ could potentially bolster industry resilience by enhancing the com-
patibility of cutting-edge technologies that might lack direct support in traditional
platforms. This adaptability enables NEP+ to integrate and interact with emerging
technologies, providing a flexible framework that harmonizes diverse hardware and
software components. NEP+ ensures compatibility, fostering continued innovation in
evolving technological landscapes.

2. Related Work and Contributions

The Robot Operating System (ROS) [19] has been widely used in robotics development,
offering valuable tools and libraries. However, ROS encounters a fundamental limitation
when creating applications for a broader audience, and expanding its usage beyond the
realm of robotics presents notable challenges. This challenge primarily stems from ROS’ ex-
ceptional performance in Linux-based environments, which inherently restricts its adoption
outside this operating system. ROS2 [20], the next iteration of ROS, currently has varying
levels of support across different platforms. However, its Windows support lags behind
the comprehensive support available for Linux. Therefore, installing, resolving issues,
and configuring ROS2 on a Windows system can be more complex than a Linux-based
setup [17]. These factors collectively contribute to ROS’ limitations when attempting to
cater to a broader public, particularly those outside the traditional robotics sphere. Fur-
thermore, many VR/AR platforms, such as the Oculus Pro and Microsoft Mixed Reality,
are Windows-centric. This is because Windows is the world’s most popular PC operating
system, with over 70% market share. This gives VR/AR platform developers a larger
potential product audience. In this context, the ROS Bridge Suite [21] was created to facili-
tate communication between ROS and non-ROS systems, aiming to tackle interoperability
challenges. Solutions based on the ROS Bridge Suite, such as ROS-Sharp [22], have been
widely used to build digital twins using the Unity game engine [8]. Recent examples
using ROS-Sharp solutions include [23,24]. However, the ROS Bridge Suite encounters
communication performance issues, particularly in handling complex and data-intensive
applications (e.g., images and point-cloud data) [25]. Such limitations can impact the real-
time interactions that are essential to digital twins and immersive environments. To enhance
communication speed for the real-time transfer of camera images, an alternative approach
presented in [25] is to replace the JavaScript Object Notation (JSON) format traditionally
used in the ROS Bridge Suite with BSON (Binary JSON) format, and use TCP/IP instead
of WebSockets. BSON is a binary-encoded serialization format that closely mirrors JSON.
This strategy also incorporates a specialized server known as sigverse_rosbridge_server to
handle the data exchange between Unity and ROS. When a Unity script advertises ROS
messages, the primary thread of the sigverse_rosbridge_server generates a new thread
for each topic, creating a communication channel. A similar strategy has been adopted
in the Unity Robotics Hub, specifically in the ROS-TCP-Connector [26] and ROS-TCP-
Endpoint [27] packages. The ROS-TCP-Connector, available as a Unity package, serves as
a means to transmit ROS messages through conventional TCP-IP sockets to a specialized
server known as ROS-TCP-Endpoint. Recent works, including those by Li et al. (2022) [28]
and Pryor et al. (2023) [29], have successfully integrated the TCP-Connector and ROS-TCP-
Endpoint packages. Nonetheless, these solutions are tailored specifically for Unity and
robotics applications. This underscores the necessity for more versatile options like NEP+.

Building upon the solutions proposed in [25] and implemented in the ROS-TCP-
Connector and ROS-TCP-Endpoint, we present an alternative solution to facilitate con-
nectivity between ROS and non-ROS environments. Nevertheless, the flexibility features
of NEP+ enable the exploration of new implementation possibilities. In this context, we
demonstrate NEP+’s capability to streamline the integration of digital twins (DTs) using
diverse programming environments, such as Python, ROS, and Unity. This multifaceted ap-
proach underscores NEP+’s suitability for various scenarios, extending beyond traditional
robotics applications. The main contributions of this article are:
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• The development of the nep2ros package and the conceptual design of HDTs using
NEP+ and ROS (Section 3): The nep2ros package serves as a bridge between ROS
and non-ROS environments through NEP+. This integration facilitator empowers
the exchange of diverse sensory data types essential for effective Human–Robot
Collaboration. This advancement plays a pivotal role in supporting the Industry 5.0
vision by enabling enhanced interoperability and communication between humans
and robots. Furthermore, the architecture presented provides a general overview and
a pathway towards Industry 5.0 applications using NEP+ and ROS.

• Experimental evaluation (Section 4): The evaluation process provides essential in-
sights into communication performance within the NEP+ framework, thereby en-
hancing the understanding of serialization options. This knowledge is fundamental
for optimizing data transmission, which is paramount for efficient and effective
Human–Robot Collaboration.

• Implementation with real robotics systems (Section 6): The practical implementation
showcased in this section offers a tangible demonstration of human-in-the-loop collab-
orative assembly using NEP+ and ROS tools. This dummy scenario using an industrial
robot exemplifies the practical application of these technological advancements in
facilitating collaborative human–robot interactions within an Industry 5.0 framework.
Despite the simplicity of the designed demonstration, it serves as an illustrative exam-
ple, effectively showcasing the potential impact of NEP+ in developing human-centric
systems tailored for Industry 5.0 settings.

3. System Architecture of Human Digital Twin Using NEP+ and ROS

Wang et al. [5] proposed a comprehensive four-layer system architecture model out-
lining the elements governing HDTs. These layers include an agent layer, a data layer,
an inference layer, and an implementation layer. The agent layer comprises human and
physical entities, such as robots and manipulation objects. The data layer is responsible for
extracting, transforming, transferring, storing, and managing access to data and metadata.
Conversely, the inference layer handles processing, calculation, simulation, prediction,
reasoning, and decision-making. Finally, the implementation layer categorizes inference
data into specific service modules, delivering consumptive services to end-users. The
human-centric focus of this model is particularly evident in the dependence of compo-
nents on human entities. Notable examples include wearable devices that facilitate human
factors analysis, ergonomics, usability, user experience techniques, and the integration of
multi-modal and heterogeneous data sources describing the status of the human–machine
interaction, equipment attributes, faults, or disturbances in the system. Furthermore, cer-
tain devices, including smartphones, smartwatches, AR/MR/VR headsets, and HMI, can
effectively enhance human integration into a cyber system [30]. The data generated from
these sources is utilized by both the system and humans to formulate intelligent reactions
conveyed through feedback instructions or commands. Within the manufacturing sys-
tem, components in these layers operate independently, generating substantial real-time
data. These data are transmitted into cyberspace through the communication network for
continuous analysis. IoT technologies, illustrated by NEP+, facilitate seamless intercon-
nection. Employing quasi-standard, language-agnostic, and flexible formats like JSON for
data transfer can enhance system cohesiveness, simplifying raw data consolidation and
promoting collaboration across disciplines. However, specialized messaging formats may
be favored for efficiency and real-time communication. An illustrative example is ROS2,
which has been developed to optimize communication and control within robotic systems.

This article highlights the potential benefits of NEP+ for fostering seamless integration
among diverse components outlined in the HDT model from [5]. The example proposed
in this article encompasses five fundamental elements obtained from the model proposed
in [5]: (1) data sensing, (2) data connectivity, (3) data processing, (4) simulation, and (5) in-
teraction. Figure 1 illustrates a simplified system architecture for HDTs, demonstrating the
interconnection of various elements through NEP+ and ROS. For instance, data sensing
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could involve an image acquisition module within an Android Studio-based smartphone
application transmitting data to a data processing component. Similarly, an RGB-D camera
could relay information from a computer running Ubuntu to the DT-enabled computer on
Windows that needs real-time updates of a generated point cloud. Additional examples
might encompass robot joint angle values, input and position data from VR controllers, and
smartwatches’ inertial values and heart rate information. In contrast, data processing can
be represented by any AI-enabled framework or algorithm, such as deep learning methods
using TensorFlow, face, hands, and skeleton detection using Mediapipe, OpenAI’s deep re-
inforcement learning, and natural language processing tools. Data processing components
transform raw data collected by sensors into high-level human-related representations
that can be used to produce human–robot and human–machine interaction. The simula-
tion of reality is realized through immersive virtual environments crafted within game
engines like Unity and Unreal. Furthermore, various frameworks, such as the Software
Development Kit (SDK) and third-party tools (e.g., Android Studio, Node.js, and AR Core),
can be used to design user interfaces operated on displays or smart devices, enabling
different interactive experiences. The depicted architecture represents a general model not
designed for specific applications. The evaluation performed in Section 4 aims to simulate
the typical data exchanged within components of the presented HDT system architecture
using NEP+ and ROS bridge alternatives. Conversely, Section 6 combines simple sensing,
data connectivity, processing, simulation, and interaction elements to showcase a practi-
cal, real-world demonstration, specifically an immersive, human-in-the-loop collaborative
assembly application.

Figure 1. Conceptual system architecture for human digital twins (HDTs) using NEP+ and ROS as
tools enabling connecting components. This architecture is inspired by the general architecture for
Industry 5.0 presented in [5] and we adapted it for Human–Robot Collaboration (HRC).

NEP+ Tools and the nep2ros Package

This section outlines a prototype system architecture for constructing human digital
twins (HDTs) using both ROS and NEP+ for connecting components. However, these two
frameworks espouse distinct visions and cater to different user types and applications.
Additionally, their socket libraries are incompatible. To bridge this gap, this article intro-
duces an initial version of the nep2ros package. This contribution stands out as one of the
main novelties of this article, as no previous work has presented a solution that seamlessly
connects ROS and NEP+ before.
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The NEP+ application and middleware layers, outlined in [17], consist primarily of
the NEP+ App, NEP-CLI command-line interface, and the NEP libraries. NEP+ utilizes Ze-
roMQ, an open-source messaging library, to establish high-performance and cross-platform
socket-based communication. ZeroMQ, using the ZeroMQ Message Transport Protocol
(ZMTP), ensures adaptability across various programming languages and operating sys-
tems, making it ideal for building IoT and robotics modules. NEP+ tools simplify ZeroMQ’s
usage, enabling the smooth development of interactive applications. The NEP+ App serves
as the central hub, enabling distributed system connections through ZeroMQ sockets and
supporting functionalities like service discovery and message monitoring. On the other
hand, NEP-CLI, developed with Node.js, offers a command-line interface. It provides
an alternative to the NEP+ App for developers familiar with conventional command-line
tools. Users have the option to utilize either the NEP+ App or NEP-CLI as a central hub to
facilitate communication between components within a local network, such as computers
interconnected via Wi-Fi or Ethernet. These tools utilize NEP libraries to establish con-
nections and route messages to their designated destinations. In both the NEP+ App and
NEP-CLI, each communication channel, identified by unique topics, is managed separately.
This individual handling ensures that the performance remains optimized, particularly
when numerous communication channels are established simultaneously. This approach
prevents potential performance degradation when managing multiple communication
channels concurrently. Furthermore, the NEP libraries offer a high-level abstraction of
the underlying ZeroMQ socket implementations. This abstraction allows for smooth and
efficient inter-process communication among diverse modern programming languages.
This article introduces and evaluates the initial version of the nep2ros ROS package, a
novel component within the NEP+ middleware layer. Similar to the ROS Bridge server,
the nep2ros package facilitates the conversion of ROS messages to JSON and vice versa,
effectively bridging the gap between ROS and non-ROS environments. However, rather
than Websockets or traditional TCP/IP socket libraries, NEP+ implements ZeroMQ sockets.
As NEP+ can function independently, a service discovery mechanism akin to ROS becomes
necessary. This capability, illustrated in Figure 2, is facilitated through interfaces like the
NEP-CLI or the NEP+ App. While this approach needs an extra component, it streamlines
the connectivity among various agents (e.g., robots, smart devices) developed using diverse
environments, encompassing but not limited to ROS, as illustrated in Figure 3. The nep2ros
package will be licensed under the Mozilla Public License 2.0. Detailed information and
support on using and installing NEP+ tools can be accessed from the official documentation
page [31].

Figure 2. Differences in system architectures: NEP+, ROS-TCP-Connector, and ROS# facilitating
connectivity between ROS nodes in Ubuntu and a Unity-based simulation on a Windows platform.
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Figure 3. Example of an HDT system architecture potentially enabled using NEP+ tools for connecting
components from different environments. Either the NEP-CLI or NEP+ App interfaces represent
NEP+ tools.

4. Assessing Communication Performance in NEP+ for Common Human Digital
Twin Scenarios

Our study consists of two stages. During stage 1, we evaluate communication perfor-
mance by analyzing various formats and implementations within NEP+. Moving to stage
2, we conduct a comparative analysis involving the initial implementation of the nep2ros
bridge solution. This evaluation contrasts the effectiveness of bridge solutions connecting
ROS and Unity. Our evaluation revolves around latency, a cornerstone metric in robotics
and control systems, that signifies the time taken for a data packet’s journey from sender
to receiver. We specifically focus on round-trip time (RTT) within a publisher–subscriber
system. RTT assumes paramount importance when synchronized clocks are absent between
the publisher and subscriber or when a comprehensive understanding of message transit
time is necessary. This metric encapsulates the duration for a message to traverse from
the publisher to the subscriber and the acknowledgment (i.e., the subscriber’s receipt of
the message) to travel back to the publisher. Figure 4 illustrates the traditional method
for calculating RTT. This method determines RTT by subtracting the sending time (T1)
from the receipt time (T2) at the publisher node. Subsequently, the one-way latency can be
estimated as half of the RTT.

Figure 4. Publish–subscribe latency measurement using round-trip time.



Robotics 2024, 13, 28 8 of 16

Our evaluation encompassed message sizes of 100 KB, 1 MB, and 10 MB to analyze
the impact of different data volumes on performance. For instance, a 100 KB message
could contain serialized sensor readings from various sensors, such as ultrasonic and IMU,
which are crucial in robotics. In artificial intelligence, such a message might encapsulate
MediaPipe skeleton data depicting human poses. Likewise, a 100 KB message could
compile a package of environmental sensor data in IoT applications, such as temperature,
humidity, and air quality metrics. Expanding to larger message sizes of 1 MB and 10 MB:
In these contexts, a 1 MB message might hold low-resolution camera images and point
cloud data. A 10 MB message, on the other hand, could represent dense point cloud data or
high-resolution camera images. These varying data sizes are pertinent to robotics, artificial
intelligence, and IoT applications. The connection between computers in the experimental
scenarios was established using Ethernet, ensuring a direct and stable link between them.
It is important to note that during the tests, no additional network nodes or concurrent
processes were active, simulating an optimal testing environment. We acknowledge that
real-world conditions, such as varying network conditions or hardware loads, can impact
latency measurements. However, for the purposes of this article, our evaluation focused on
examining the baseline performance of NEP+ in a controlled and nearly ideal scenario. We
aimed to isolate the communication performance between ROS and Unity through NEP+
in a stable setting to provide a fundamental understanding of its capabilities.

In this experiment, we conducted continuous message transfers at 30 frames per
second (FPS) for 100 KB and 1 MB data sizes. However, transmitting a 10 MB (Megabyte)
message at a consistent rate of 30 FPS significantly strains a Gigabit Ethernet connection. To
illustrate this, such continuous transmission at this rate demands a bandwidth calculated
as 10 MB ∗ 30 FPS = 300 MB/s (Megabytes per second). Comparatively, Gigabit Ethernet
offers a theoretical maximum bandwidth of 1 Gbps (Gigabit per second), equivalent to
approximately 125 MB/s. Consequently, the sustained data transfer rate required by the
10 MB message considerably surpasses the capacity of Gigabit Ethernet. Attempting such
transmission rates could lead to network saturation, causing potential congestion and
performance degradation. To mitigate this issue, adjustments were made by reducing
the publisher frame rate to 5 FPS for the 10 MB messages. This adjustment reduced the
required bandwidth to 10 MB ∗ 5 FPS = 50 MB/s (Megabytes per second), effectively
averting network congestion and ensuring smoother transmission.

Experiments were conducted over Ubuntu 20 and ROS Noetic on a Galleria Worksta-
tion with an Intel i9-13900KF processor. Unity was executed on an Asus ROG Zephyrus G15
with an AMD Ryzen 9 5900HS processor using Windows 11 Pro as the operating system.

4.1. Communication Performance of NEP+ Using Different Serialization Formats

In this study stage, we evaluate NEP+’s communication performance across various
serialization formats through a comprehensive series of tests detailed below. We consider
the JSON and MessagePack [32] for this evaluation. JSON is a widely used lightweight
data-interchange format known for its human-readable nature and ease of parsing across
multiple platforms and programming languages. Its simplicity and broad support make
it a preferred choice. However, JSON can lack efficiency, especially with complex data
structures, resulting in larger payloads and slower transmission speeds due to its verbosity.
In contrast, MessagePack is a binary-based serialization format offering a more compact rep-
resentation than JSON. Designed for rapid serialization and deserialization, MessagePack’s
key advantage lies in its compactness, resulting in smaller message sizes and reduced
network bandwidth usage. However, this efficiency comes at the cost of human-readability,
making direct inspection and debugging less straightforward than JSON.

Figures 5–7 show the latency and throughput results when using JSON and Mes-
sagePack as serialization formats. As anticipated, employing MessagePack results in lower
latencies compared to JSON. Nonetheless, MessagePack is solely integrated into the Python
version of NEP+ libraries. This observation hints at the potential enhancement of commu-
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nication performance by incorporating MessagePack into other NEP+ implementations,
like Java and C#.

Figure 5. Average latency results for sets of 10 messages utilizing string data of 100 KB size.

4.2. Performance Comparison with State-of-the-Art Solutions

In this comparative study, we evaluate the communication performance of the NEP+
architecture and the nep2ros bridge solution proposed in this article against two popular
ROS-Unity communication solutions (ROS-Sharp and ROS-TCPConnector). Our frame-
work selection was informed by an extensive literature review [8], emphasizing their
prevalent usage and acceptance within the ROS community.

Figures 8–10 exhibit the latency and throughput results obtained from nep2ros, ROS#,
and ROS-TCPConnector across different message sizes (100 KB, 1 MB, and 10 MB). Notably,
for 100 KB messages, NEP+ demonstrates slightly lower latency values compared to ROS-
TCPConnector and significantly lower values than ROS-Sharp. However, for 1 MB and
10 MB messages, ROS-TCPConnector exhibits marginally reduced latency results compared
to NEP+. These findings potentially arise from the current implementation of nep2ros
utilizing the JSON format for serialization, while ROS-TCPConnector employs a binary
format. As highlighted in Section 4.1, the adoption of an efficient binary serialization format
like MessagePack could potentially enhance NEP+’s latency in future implementations.
Both NEP+ and ROS-TCPConnector exhibit a superior performance in comparison with
ROS# for 1 MB and 10 MB, rendering ROS# less suitable for transmitting large sized
messages, such as images and point cloud data.
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Figure 6. Average latency results for sets of 10 messages utilizing string data of 1 MB size.

Figure 7. Average latency results for sets of 10 messages utilizing string data of 10 MB size.

Figure 8. Comparison of bridge solutions between Unity and ROS: average latency results for sets of
10 messages using string data with a size of 100 KB.
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Figure 9. Comparison of bridge solutions between Unity and ROS: average latency results for sets of
10 messages using string data with a size of 1 MB.

Figure 10. Comparison of bridge solutions between Unity and ROS: average latency results for sets
of 10 messages using string data with a size of 10 MB.

5. Validating NEP+ through a Dummy Example of Immersive Human-Robot
Collaboration for Peg-in-Hole Assembly

This section presents an initial implementation of an HDT system utilizing NEP+
to facilitate integration between Unity and ROS. This demonstration aims to validate
the compatibility of the communication tools detailed in this article with real robotics
systems and immersive devices, facilitating hand-guided Human–Robot Collaboration
(HRC). The implementation of complex real-world assembly applications requires analyz-
ing diverse human factors, real-time specifications, performance metrics, and uncertain
variables. However, these aspects are beyond the scope of this article. Examples of articles
discussing many of these aspects can be found in [2,33]. Challenges related to the use
of immersive devices for HRC are described in [8,34,35]. The demonstration’s primary
goal is to enable remote collaboration with a UR5e robot in a product assembly scenario.
Leveraging the teleportation capabilities inherent in industrial robots, this system allows
humans to remotely assist robot operations in environments where human presence might
be restricted, unsafe, or impractical [36]. The integration aims to foster a collaborative envi-
ronment by merging human and robotic capabilities to enhance the safety and efficiency of
manufacturing operations.
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Figure 11 depicts the proposed HDT architecture, building upon the general architec-
ture outlined in Section 4. Within this architecture, NEP+ connects the simulation environ-
ment and the robot sensing and processing data modules operated in ROS. Additionally, it
links to an image acquisition system managed through a Node.js interface. The headset
employed in this demonstration is the Oculus Quest 2, renowned for its primary compati-
bility with Windows. Unity is running on an Asus ROG Zephyrus G15 equipped with an
AMD Ryzen 9 5900HS processor featuring Radeon Graphics at 3.30 GHz, an Nvidia RTX
3080 GPU, and Windows 11 Pro. The robot control algorithms are executed on a desktop
computer with Ubuntu 20 and ROS Noetic. The camera used is 4K Ultra HD Webcam
Logicool BRIO C1000eR.

The robot sensing and processing system employs a reinforcement learning-based
force-controlled mechanism to enable peg-in-hole insertions with low clearance as pre-
sented in [37]. The RL-based system uses the soft actor critic (SAC) algorithm and, given
the pose of the hole as input, it is capable of autonomously inserting pegs without using
excessive forces to prevent undesired emergency stops by using a reward function based on
a desired insertion force and collision penalties. The policy learns the insertion path from
the starting pose and the position-force control parameters to control the robot. The details
of the implementation can be found in [37]. In this setup, the simulation incorporates joint
state data from the UR5e robot to update the virtual model, force-torque data from the
sensor placed at the robot’s end-effector, and video images for providing feedback on the
insertion’s status to the user (Figure 12). These visual cues, complemented by image values
displayed in the VR system, enable humans to ascertain the successful completion of the
robot’s insertion task. The user will push the “Success” or “Failure” buttons located at the
center of the VR screen (see Figure 12); this information is sent to the robot as a bool value
(true for a successful insertion and false otherwise), for the robot to try the insertion again or
to move to the next task. If the robot needs to try again, it will ask the user for feedback on
which direction to modify the hole pose in to be able to succeed with the insertion. The user
will provide information on how much pose error it had on each of the axes through the
slide bars located at the top right corner of the VR screen (see Figure 12), then by pushing
the “Try again” button, this information will be sent to robot for it to try again. The robot
will use this information as a new input for the RL policy to try to insert the peg again; it
should be noted that the RL policy is not being updated, the user just changed the input to
the policy. This loop will be repeated until the insertion is successful. Like this, the human
will help the robot to find the hole and will check whether the insertion was successful or
not (Figure 13).

Figure 11. Simple HDTs architecture enabling remote and immersive human-in-the-loop collaborative
assembly used in the proposed demonstration.
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Figure 12. Digital twin executed in Unity and connected to ROS using NEP+.

Figure 13. Real user testing the proposed demonstration.

6. Conclusions and Future Work

This article presents a developmental solution for integrating the diverse elements
within HDTs. The results showcase that utilizing NEP+ libraries and tools leads to lower
latencies compared to the widely used ROS Bridge suite, while demonstrating similar
performance to ROS-TCP-Connector when connecting Unity and ROS. Moreover, the real-
world demonstration of a human-in-the-loop DT validated the technological suitability of
NEP+ in integrating heterogeneous software architectures.

Although this article primarily highlights Unity and ROS, NEP+’s defining character-
istic lies in its adaptability, allowing for expansion to various development frameworks. As
part of our forthcoming efforts, we intend to implement and evaluate NEP+ tools aimed
at establishing connections with alternative simulation platforms, including the Unreal
Engine and Nvidia Omniverse. Moreover, integrating ROS with platforms like Unity
involves resolving disparities in their coordinate systems and addressing other complexi-
ties. However, enabling communication between components is the initial step towards
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facilitating such integration. Additionally, the adaptable nature of NEP+ can accommodate
solutions based on binary encodings, such as MessagePack. As evidenced in this article,
this approach can be used to enhance the performance of the nep2ros package, which is
currently limited to JSON. Our plans also include the development and testing of a version
of nep2ros tailored specifically for ROS2.

In HDT applications, the communication latency between a digital twin and the robot
control system can play a relevant role in shaping the user experience of human–robot
interaction (HRI). Increased latency can negatively impact the realism and immersion,
diminishing the intuitiveness and responsiveness of the system. Moreover, in scenarios
demanding precise control, like teleoperation, communication delays may result in un-
expected movements or actions. While variations in network conditions or hardware
loads can affect latency, assessing these factors comprehensively is beyond the objectives
of this article. Therefore, we prioritized evaluating the intrinsic communication perfor-
mance facilitated by NEP+ between the specified systems. Future research endeavors could
explore the impact of diverse environmental conditions on NEP+’s latency in complex
settings. Examples can involve the testing of NEP+ in scenarios comprising many pub-
lishers and subscribers from diverse devices, operating systems, and agents like robots.
This exploration can be used to assess NEP+’s scalability, performance, and interoperability
in handling many data streams from various sources. For this, we plan to expand the
real-world demonstration introduced in this article by adding different data processing
sources for human understanding and multi-agent interaction.

Also, HDTs could be used for the continual learning of the robotic system. In the
demonstration shown in Section 6, the human will help the robot to find the precise location
of the hole; this information could be used to continue to train the RL-based system on the
robot side, so the robot can reduce its failed attempts.
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