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Abstract: Robots have been widely investigated for active and passive rehabilitation therapy of
patients with upper limb disabilities. Nevertheless, the rehabilitation assessment process is often ig-
nored or just qualitatively performed by the physiotherapist implementing chart-based ordinal scales
or observation-based measures, which tend to rely on professional experience and lack quantitative
analysis. In order to objectively quantify the upper limb rehabilitation progress, this paper presents a
noVel pAssive wRist motiOn assessmeNt dEvice (VARONE) having three degrees of freedom (DoFs)
based on the gimbal mechanical design. VARONE implements a mechanism of three revolute passive
joints with controllable passive resistance. An inertial measurement unit (IMU) sensor is used to
quantify the wrist orientation and position, and an encoder module is implemented to obtain the
arm positions. The proposed VARONE device can also be used in combination with the previously
designed two-DoFs device NURSE (cassiNo-qUeretaro uppeR limb aSsistive dEvice) to perform
multiple concurrent assessments and rehabilitation tasks. Analyses and experimental tests have
been carried out to demonstrate the engineering feasibility of the intended applications of VARONE.
The maximum value registered for the IMU sensor is 36.8 degrees, the minimum value registered
is −32.3 degrees, and the torque range registered is around −80 and 80 Nmm. The implemented
models include kinematics, statics (F.E.M.), and dynamics. Thirty healthy patients participated in
an experimental validation. The experimental tests were developed with different goal-defined
exercising paths that the participant had to follow.

Keywords: upper limb; assessment device; variable stiffness joint; passive wrist motion; kinematic
and dynamic analysis

1. Introduction

Globally, stroke affects 101 million individuals, with around 65% experiencing residual
upper limb disabilities [1]. These disabilities can vary from weakness to complete paralysis
of the hand and arm. Additionally, up to 66.2% of stroke survivors suffer wrist and
hand injuries even after undergoing physical therapy [2]. To enhance rehabilitation for
individuals with upper limb disabilities, the use of assistive devices is highly recommended,
and the rehabilitation assessment process plays an essential part in physiotherapy sessions.
The assessment task implements the base intervention directions at the beginning of the
rehabilitation and the treatment result once the treatment has ended [3].

Currently, the assessment step is manually carried out by implementing observation-
based evaluations such as the Action Research Arm Test (ARAT) [4], Brunnstrom Stages of
Recovery [5], Fugl–Meyer Assessment (FMA) [6], or Modified Ashworth scale [7], where
the therapist must establish the therapy evaluation based on his/her experience, resulting

Robotics 2024, 13, 29. https://doi.org/10.3390/robotics13020029 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics13020029
https://doi.org/10.3390/robotics13020029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0003-2129-4899
https://orcid.org/0000-0002-3307-6947
https://orcid.org/0000-0003-0797-7669
https://orcid.org/0000-0003-0831-8358
https://doi.org/10.3390/robotics13020029
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics13020029?type=check_update&version=1


Robotics 2024, 13, 29 2 of 18

in a lack of quantitative motion analysis. Most recent methods for upper limb assessment
lie in the use of cameras and markers implemented on experimental platforms [8], or simply
using a low-cost image capture using the Kinect sensor (Microsoft) [9]. Thus, the first kind
of proposal presents a multi-modal characteristic (kinematics and electrophysiological), but
it does not have a fixed mechanism for controlled movements, and the second one presents
a single-modal image capture system that does not allow for a complete diagnosis of upper
limb movements. In the current state of the art of medical devices, the use of monolithic
compliant structures [10,11] is often used; nevertheless, one of the principal challenges
is the limitation due to material’s fatigue life and loss of precision over time owing to
material creep or plastic deformation. Therefore, implementing rigid-link mechanisms is
highly recommended. The use of fixed mechanisms requires an experimental platform that
allows predefined path movements, ensuring the complete wrist motion scheme. Table-top
devices tend to place the prototype on a table, and the patient is situated in front of it to
develop the goal/path displacements that a specialist has designed for him/her. Thus, the
tracking trajectory path becomes easy to follow.

Robotic prototypes can be classified as passive or active devices. In addition, passive
devices can be classified into passive energy storage mechanisms and fully passive no-
assistance devices [12]. Passive energy storage mechanisms utilize elements like springs or
moving masses to provide resistance during exercises, as shown in [13]. Examples of passive
devices include tone-compensating orthoses and serious game controllers [14,15]. Passive
devices offer several advantages for home-based rehabilitation [16]. They are affordable,
compact, and easy to operate without professional supervision. The adaptability of passive
devices enables stroke survivors to continue rehabilitation independently in their homes,
promoting long-term engagement and improving functional recovery and quality of life,
such as reported in [17] for posture rehabilitation.

This paper presents the design process and validation of VARONE, a novel passive
portable device for wrist assessment and treatment with three rotational degrees of freedom
(DoFs) based on a gimbal mechanic system. This device introduces a novel assessment
approach to quantify the upper limb rehabilitation process. Kinematic data (position
and orientation) are subtracted from the predefined goal/task, and then the data are pre-
processed to obtain statistical properties of each subject and compare against the modeled
equations system to validate it. Furthermore, VARONE includes innovative variable mag-
netic stiffness joints that enable concurrent measuring and treatment of a patient. VARONE
can also be integrated with serious gaming strategies, promoting patient engagement and
facilitating upper limb rehabilitation assessment at home, as also mentioned in [18].

The main contributions of this work can be summarized as the following:

• Introduction of a portable assessment device for tracking the motions of diverse
goal/task human wrist movements, offering enhanced subject motion tracking com-
pared to conventional methods using cameras or arm markers [19,20];

• Utilization of variable stiffness joints enabling the recording of kinetic (force) capabili-
ties, facilitating the quantification of more precise and qualitative physical information;

• Utilizing the above-mentioned variable stiffness joints to provide adjustable resistance
in each degree of freedom of the wrist motion. This allows for providing treatment
exercises adjustable to patients with varying levels of injury;

• Provide a wrist device that can be combined with the wrist of other devices (such as,
for example, NURSE) to enable a wider range of motion assessments and treatments.

• See the end of the document for further details on references.

The remaining parts are structured as follows: Section 2 discusses the underlying
rehabilitation problem, provides a brief overview of the NURSE device, and highlights its
limitations. Subsequently, we outline the design requirements for VARONE, an innova-
tive passive wrist motion assessment device that can be complemented with NURSE for
achieving a wide range of concurrent assessment and rehabilitation tasks of the upper limb.
Sections 3 and 4 delve into the device’s characteristics, covering its kinematic properties,
static Finite Element Method (FEM) modeling, and dynamic modeling, respectively. Fi-
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nally, Section 5 presents preliminary experimental validation results with thirty users to
demonstrate the feasibility and effectiveness of the proposed design, and Section 6 presents
the conclusions of the work, highlighting the experimental testing results.

2. The Attached Problem

The human wrist has theoretically 3 DoFs [21]. Feasible motions include flexion/
extension, ulnar/radial deviation, and pronosupination, as shown in the scheme of Figure 1.
Experimental tests have been carried out to identify the most relevant motions that are
performed for the activity of daily living (ADL). Figure 2 reports the experimental setup
used and the measured path that was tracked using an experimental stereo camera setup.
Figure 3 identifies the specific wrist and arm exercises that represent the main focus of this
work by restraining the distal part to planar motions only. Such motions require specific
rotations that are summarized in Table 1 [22].
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Figure 3. Wrist and arm exercises: (a) radial/ulnar deviation (max = 40◦, min = −20◦) with elbow
flexion/extension (max = 90◦, min = 0◦), (b) wrist flexion/extension (max = 10◦, min = −40◦) with
elbow flexion/extension (max = 90◦, min = 0◦), and (c) pronosupination (max = 90◦, min = −60◦)
with elbow flexion/extension (max = 10, min = −10).

Table 1. Upper-limb displacement ranges for ADL.

Joint Movement Rotation Ranges (Degrees)

Glenohumeral Flexion/extension 330◦–0◦–90◦

Radiohumeral Flexion/extension 320◦–0◦–90◦

Proximal/distal Pronosupination 270◦–0◦–60◦

Radiocarpal Flexion/extension 320◦–0◦–75◦

Radial/ulnar 310◦–0◦–20◦

2.1. The NURSE Device

NURSE (cassiNo-qUeretaro uppeR limb aSsistive dEvice) is an upper limb planar
movement passive assistance device. It can guide the motion of the human arm along
predefined paths on a horizontal plane [23]. Its main features are summarized in Figure 4.
The NURSE has two passive planar DoFs consisting of translations along the X and Y
axes. The low number of DoFs significantly limits the exercises that can be performed. In
particular, NURSE is not able to provide the required rotations that have been identified in
the previous section. Hence, a specific novel device should be designed to cover this need.
Accordingly, the VARONE device is proposed to work as a standalone or to complement
the NURSE device and achieve a wide range of exercises with different wrist postures.
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2.2. The Proposed Design Procedure for VARONE

In general, the design process starts with a high review of the state of the art, and then
the requirement list is created. VARONE considers the adaptability to the NURSE device,
sensing implementation, and wrist full-motion ADL. Moreover, the condition of design
requirement verification is applied. Once the design requirements are met, the VARONE
design is completed. The joint design configuration was identified by means of a topology
search. It is inspired by the gimbal mechanical design [24] to obtain an ergonomic shape
while enabling a full-range average human wrist motion. Note that VARONE is designed to
incorporate energy storage devices. This strategic design allows for the potential realization
of not only passive but also active operations in the future.

2.3. The Proposed Design Solution

The VARONE CAD model is shown in Figure 5. It is composed of the wrist support,
pronosupination ring, ulnar/radial ring, and flexion/extension handgrip. The IMU sensor
that measures and reports the angular rate is installed inside the handgrip. Each component
is fixed to provide the 3-DoFs passive motion of the wrist joint. Each joint can provide
variable resistance.

The VARONE device is composed of four bear points that connect the pronosupination
ring link to the wrist support, allowing rotation around C1; this movement is denoted as θ2.
The ulnar/radial ring is positioned through a roller bearing, fixing it to the pronosupination
ring, permitting the turn of the ulnar/radial ring throughout C2; this rotation is called θ3.
The flexion/extension handgrip is attached to the ulnar/radial ring using a roller bearing,
creating motion all over C3; this motion is named θ4. The friction effect of VARONE
with the floor is through a spherical contact ball, as shown in Figure 5. It is worth noting
that commonly variable stiffness joints are achieved using motors in combination with
springs implementing Hooke’s law. We are proposing a novel approach based on using
electromagnets as the attraction force and rubber as a contact material, as shown in Figures 6
and 7. VARONE uses the friction principle to vary the resistance of radial/ulnar deviation
and flexion/extension. The pronosupination movements implement the magnetic principle
to create a resistance force, as depicted in Figure 8.
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components.
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activation and without electromagnet activation.

Models and simulations will be carried out in the following sections to prove the
feasibility of the proposed design of VARONE. Note that VARONE can be used alone for
human wrist assessments and exercising, or it can be used as the wrist of the NURSE device
to create a 5-DoFs mechanism. The combined device is shown in the 3D model of Figure 9.
The combination of VARONE with NURSE provides a wide range of feasible concurrent
assessment and rehabilitation exercises.
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3. Kinematic and F.E.M. (Finite Element Method) Analysis
3.1. The Proposed Design Procedure for VARONE

The kinematic analysis of VARONE was created using the D–H parameters [25].
Figure 10 shows the kinematic study diagram. The coordinate system C0 represents the
initial reference moved through d1 and a1 to become C1 with θ2 value. This reference
is shifted through a2 to suit the position reference C2 with the θ3 variable. Finally, the
location point is displaced through a2 and a3 to develop C3 with θ4 motion range and the a4
maneuverability distance. For analysis purposes, θ1 is the attached point between NURSE
and VARONE. Therefore, θ1 is a constant in the kinematic and dynamic analysis.



Robotics 2024, 13, 29 8 of 18

Robotics 2024, 13, x FOR PEER REVIEW 8 of 18 
 

 

The relation between the variables and parameters shown in Figure 10 contrasted 
with the Denavit–Hartenberg parameters permits the creation of Table 2. The four joint 
displacement matrices are implemented into (1) to complete the motion matrix (2). 

p =  𝐓  (q ) p  (1)

𝐓 =  U V W qU V W qU V W q0 0 0 1  (2)

Equations (1) and (2) allow for the calculation of the end-effector position given the 
angular values of each DoF (θ , θ , θ , θ ). However, in real applications, it is also nec-
essary to solve the inverse kinematics problem. 

 
Figure 10. VARONE kinematic diagram. 

Table 2. D–H parameters of VARONE. 

Joint 𝐢  𝛂𝐢 𝐚𝐢 𝐝𝐢 𝛉𝐢 
1 − π 2⁄  a  d  θ  
2 π 2⁄  a  0 θ  
3 − π 2⁄  a  −a  θ  
4 0 a  0 θ  

3.2. Inverse Kinematic Analysis 
The FE handgrip provides a space track motion (Figure 10) where the motion varia-

bles (θ  , θ  , θ  ) must be computed using inverse kinematic analysis. Equation (2) is 
solved algebraically to determine the joint angles from a desired trajectory. 

Computing 𝐓  (3) is solved as 𝐓 =  ( 𝐓 ) 𝐓  (3)

Calculating θ , it is required to use q  from (2), resulting in θ = sin qa  (4)

Calculating θ , it is necessary to use W  and W  from (2), resulting in 

Figure 10. VARONE kinematic diagram.

The relation between the variables and parameters shown in Figure 10 contrasted
with the Denavit–Hartenberg parameters permits the creation of Table 2. The four joint
displacement matrices are implemented into (1) to complete the motion matrix (2).

0p8 =
8

∏
i=1

[
i−1Ti(qi)

]
p8 (1)

0T4 =


Ux Vx Wx qx
Uy Vy Wy qy
Uz Vz Wz qz
0 0 0 1

 (2)

Table 2. D–H parameters of VARONE.

Joint i αi ai di θi

1 −π/2 a1 d1 θ1
2 π/2 a2 0 θ2
3 −π/2 a3 −a3 θ3
4 0 a4 0 θ4

Equations (1) and (2) allow for the calculation of the end-effector position given the
angular values of each DoF (θ1, θ2, θ3, θ4). However, in real applications, it is also necessary
to solve the inverse kinematics problem.

3.2. Inverse Kinematic Analysis

The FE handgrip provides a space track motion (Figure 10) where the motion variables
(θ2, θ3, θ4) must be computed using inverse kinematic analysis. Equation (2) is solved
algebraically to determine the joint angles from a desired trajectory.

Computing 1T4 (3) is solved as

1T4 =
(

0T1

)−10T5 (3)
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Calculating θ3, it is required to use qz from (2), resulting in

θ3 = sin−1
(qy

a3

)
(4)

Calculating θ2, it is necessary to use Wy and Wz from (2), resulting in

Wz
2 + Wy

2 = sin θ2
2 sin θ3

2 + cos θ3
2

sin θ2
2 =

Wz
2 + Wy

2 − cos θ3
2

sin θ3
2

θ2 = sin−1

(
Wz

2 + Wy
2 − cos θ3

2

sin θ3
2

)
(5)

with θ3 ̸= 0.
Calculating θ4, it is essential to use Ux and Uz from (2), which is obtained from (6).

Ux = cos θ2 cos θ3 cos θ4 − sin θ2 sin θ4−Uz = cos θ3 cos θ4 sin θ2 + cos θ2 sin θ4 (6)

(6) is implemented using linear algebra, yielding

A x = b

A =

[
cos θ2 cos θ3 − sin θ2
cos θ3 sin θ2 cos θ2

]
, x =

[
cos θ4
sin θ4

]
, b =

[
Ux
−Uz

]
a = sin θ4 = (Uz cos(θ2) + Ux sin(θ2)

b = cos θ4 = (Ux cos(θ2)−Uz sin(θ2)
cos(θ3)

θ4 = tan−1
( a

b

)
(7)

It is possible to compute the velocity and acceleration values using the relationship
between the configuration described in Figure 10 and (4), (5), and (7) after calculating the
position values θ2, θ3, and θ4 of the joint angles as follows:

.
.

0Tn =

[
Rn

.
Vn

0 1

]
=

n

∑
i=1

[ .
θiZi−1 −

.
θiZi−1Pi−1 + diZi−1

0 1

]
.
x = J

.
q (8)

.
x =


n
∑

i=1

[ .
θi
(
Zi−1xi−1Pn

)
+ Zi−1

.
di

]
n
∑

i=1

[ .
θiZi−1

]


Zi−1 = 0Ri−1
[

0 0 1
]T

i−1ri =
[

ai cos θi ai sin θi di
]T

i−1Pn = 0Ri−1
i−1ri

J(:, i) =
[

Zi−1 x i−1Pn
Zi−1

]
(9)

where n = 1,. . ., 4 and x stands for cross product. The Jacobian formulation of the kinematic
analysis is depicted in (9). Assuming that all the links are homogeneous and have a small
cross-section, the position of the center of mass is given by Pi−1.
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The model in (1)–(9) was implemented in Matlab, allowing for the calculation of the
desired motions for performing rehabilitation exercises. Simulation results will be reported
in the validation results section.

3.3. F.E.M. Analysis

To demonstrate the feasibility of the VARONE, a linear static analysis was created
using F.E.M. The static load used for the F.E.M. analysis is the hand and wrist weight in
a constant force due to gravity; in this paper, we consider a 3.98 N vector downwards
(0.406 kg hand weight) [26]. The base structure and the mechanical parts of the VARONE
device are fabricated using PLA material. The general properties of PLA are listed in Table 3.
The mechanical components in a general state of the 3D structure have been evaluated for
the stress analysis criterion using the Von Mises stress function. Table 4 presents the mesh
information for F.E.M.

Table 3. PLA general properties.

Properties Value Units

Heat Deflection Temperature (HDT) 126 ◦F
Density 1.24 g/cm3

Tensible strength 50 MPa
Flexural strength 80 MPa
Impact strength 96.1 J/m
Shrink rate 0.37–0.41% in/in
Heat deflection temperature (HDT) 126 ◦F
Density 1.24 g/cm3

Figure 11 shows the result of the FEM analysis of the FE handgrip; it presents the
displacement analysis as well as the maximum value.
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Table 4. PLA mesh properties.

Mesh Type Solid Mesh

Mesher used Curvature-based mesh
Jacobian points 3
Maximum element size 68.34 mm
Minimum element size 4.54 mm
Total nodes 254,567
Total elements 257,980

4. Dynamic Analysis

The VARONE prototype, shown in Figure 12, is fabricated with PLA (prototype weight,
0.858 kg) using the Creality K1 3D printer. Once the hand grips the FE handgrip while
exerting force to produce a specific trajectory, the maneuver is constructed using combinate
motion (x, y, θ1, θ2, θ3, θ4). Thus, it is possible to develop the main wrist paths used in
physiotherapy exercises (Figure 13).

The Lagrangian model and energy principles were used to generate dynamic analysis
based on [23]. As shown in (10), the Lagrangian equation uses partial derivatives as a
function of time, the velocity vector (8), and the position vector (4), (5), and (7).
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One can write the Lagrange equation as

d
dt

(
∂L
∂

.
qi

)
− ∂L

∂qi
= Qi, i = 1, 2, . . . , n (10)



Robotics 2024, 13, 29 12 of 18

The inertial matrices are given by

Ii =
dpc
dt

∫
v
ρdV = mvc (11)

where Ii denotes the inertial matrix and the dpc/dt represents the change in the position of
the center of mass, ρ stands for the change in density, dV refers to the change in volume, m
stands for mass, and vc depicts the linear velocity.

Examining Figure 10, the kinetic energy can be written as

Ki =
1
2

Vci
TmiVci +

1
2

wi
TIiwi (12)

The velocity analysis used in (8) is written in matrix form using the theory of the
instantaneous motion of the screw as

.
xci = Ji

.
q (13)

where
.
xci =

[
vci
wi

]
, Ji =

[
Jvi
Jwi

]
.

Variable Ji represents the Jacobian matrix of the linear and angular velocity, and
.
xci

denotes the linear and angular velocity. Substituting (13) into (12) yields

K =
1
2

.
qT
[

n

∑
i=1

(
Jvi

TmiJvi + Jwi
TIiJwi

)]
(14)

Defining the inertial matrix with the (n × n) dimension, the result can be reduced to

M =
n

∑
i=1

(
Jvi

TmiJvi + Jwi
TIiJwi

)
(15)

The simplification allows for a smaller number of equations required to calculate the
velocity coupling vector presented to complete the energy analysis. n = 1, 2,3)

Vn =
3

∑
j=1

3

∑
k=1

(
∂Mn,j

∂qvi
− 1

2
∂Mj,k

∂qn

)
.
qj

.
qk (16)

The potential energy is represented by the gravitational vector; this energy is accu-
mulated in the end-effector and is expressed by the amount of work required to raise the
center of mass at each displacement in the therapy sessions. The gravitational vector (n = 1,
2, 3) is

Gn = −
3

∑
j=1

mjgTnPvi (17)

The contribution of each gravitational vector is shown by the mass (mj) of the end-
effector, the gravity vector (gT), and the position of the mechanism (3Pvi).

To define the dynamic equation, we first replace (14) and (17) in (18) to obtain a
condensed version of the Lagrangian shown in (19).

L = K − U (18)

L =
1
2

.
qTM

.
q +

n

∑
j=1

mjgTPvi (19)

The Lagrange function is used to calculate the contribution of kinetic and potential
energy. Equation (20) provides the partial derivate relative to the position vector, while (21)
provides the partial derivate of Lagrange with respect to the velocity vector.
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∂L
∂qi

=
1
2

n

∑
j=1

n

∑
k=1

∂Mj,k

∂qi

.
qj

.
qk +

n

∑
j=1

mjgTiJvj (20)

d
dt

(
∂L
∂

.
qi

)
=

n

∑
j=1

Mi,j
..
qj +

n

∑
j=1

n

∑
k=1

∂Mi,j

∂qk

.
qj

.
qk (21)

Using the compact version of the Lagrange function, (20) and (21) yield

M
..
q + V + G = Q (22)

Vi =
n

∑
j=1

n

∑
k=1

(
∂Mi,j

∂qk
− 1

2
∂Mj,k

∂qi

)
.
qj

.
qk, Gi = −

n

∑
j=1

mjgTiJvj

The model in (10)–(22) was implemented in Matlab, allowing for the calculation of the
required torques for performing rehabilitation exercises. Simulation results will be reported
in the validation section (Section 5) to be compared with the experimental results.

5. A Setup for Experimental Validation

The main advantage of this prototype is that it can be installed on a standard table
and a chair for the user, as illustrated in Figure 14. It can be easily used at home, clinic,
or laboratory.
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Figure 14. Set up of experimental validation.

The user then proceeds to generate the three-degree displacement for the wrist that a
specialist has developed for him. Each shift and orientation created in the layout designed
by the specialist is recorded by the hand grip sensors. Once the configuration is installed,
each user must remain seated and grasp the handgrip while resting the forearm on the
wrist support of the VARONE.

Validation Tests and Results

To determine the standard level of the kinematic device, the evaluation of θ4 was
carried out. Since the VARONE is portable and can be set up in any location, it was first
attached to a clean table and connected to the NURSE device. Afterward, 30 healthy
participants were invited as subjects (18 males and 12 females; age range: 22–42 years)
to use the mechanism, and each participant must perform the same movement trajectory
(23), considering the time employed. Once the position information was collected, the root
mean square and a lower pass filter were applied. Finally, the collected data were sorted to
provide an overview of the kinematical analysis.

p = 30 cos(2f) (23)
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The handle, the component of the mechanism that interacts most with the upper limb,
contains the sensing device, as shown in Figure 15. However, for research purposes, the
electronic components are listed below:

• Module MPU-9250;
• Module CC2640R2F;
• Lithium battery;
• Microprocessor ARM ABX00032;
• Imada ZTA-LM-110.

Note that informed consent has been required for each experimental test. The experi-
mental method does not require ethical approval since VARONE is fully passive and there
is no risk for a user. Once the user has completed the test, a satisfaction interview was
employed to quantify the contentment level of each participant. For further details on the
satisfaction interview, see [27].
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Figure 15. FE handgrip position and orientation sensors (arrows identify the motion, forces and
the sensor).

The mechanism was prepared to transmit the position coordinates from the suggested
trajectory calculated by (23), as shown in Figure 16. Once the electronics were installed into
the FE handgrip, the subject was asked to perform the suggested trajectory. The results
were compared with the solution of the kinematic equations once the data were collected
using the microprocessor and transferred to the computer system through the CC2640R3F
module, as shown in Figure 17.

The dynamic analysis results are presented, and the CAD model shown in Figure 5
highlights the joints’ coordinates. This analysis implies the use of an IMU and the IMADA
sensor to quantify the necessary force to rotate the θ4 joint. The results were recorded,
processed, and represented as follows (23).
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Figure 17. Results of the position analysis with comparison of numerical and experimental results.

The desired motion (23) and the model constraints were trained using Solidworks
movement analysis. Once the desired trajectory was analyzed, the physical and analytic
results are depicted in Figure 18. This considers the external forces and the mass of the
upper limb. The interaction torque was measured via Imada ZTA-LM-110 and IMU, which
measure the perpendicular force required to rotate the joint θ4.

Contrasting the torque performance of the VARONE with the predicted trajectory
demonstrates that the task maintains a sinusoidal function operation. However, the torque
measurement gives different amplitudes and different frequency points due to external
forces including hand, gravity variants, and the calibration of the force sensor.
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6. Conclusions

In conclusion, this study addresses the existing gap in suitable devices for the quan-
titative assessment of various upper limb conditions requiring physical rehabilitation.
The proposed solution, VARONE, emerges as a novel and portable device designed to
simultaneously assess and rehabilitate the human wrist. When combined with the NURSE
device, it forms a 5-DoFs mechanism, expanding the potential for concurrent assessment
and rehabilitation of planar exercises across the entire upper limb. The paper provides a
thorough analysis of the proposed design, covering its kinematic properties, static (FEM)
modeling, and dynamic modeling. Special emphasis is given to our innovative design
solution, utilizing electromagnets to achieve variable joint stiffness, allowing for the regula-
tion of resistance in wrist motion and adjustment of stiffness in each degree of freedom,
catering to patients with varying levels of injury. Following a comprehensive analysis of
VARONE, we report the results of a preliminary experimental validation involving thirty
users. This positions VARONE as a versatile, portable, and adaptable solution for the
evaluation and treatment of upper limb movement disorders, as affirmed by the reported
numerical models as well as by the experimental outcomes. In future work, VARONE
will be able to record physiological signals from the patient; in this way, the combination
of kinematical and physiological signals using artificial intelligence will bring a potential
device to objectively measure the rehabilitation process in upper limb rehab sessions.
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