
Citation: Parsons, T.; Baghyari, F.; Seo,

J.; Kim, W.; Lee, M. Advanced Path

Planning for Autonomous

Street-Sweeper Fleets under Complex

Operational Conditions. Robotics 2024,

13, 37. https://doi.org/10.3390/

robotics13030037

Academic Editor: Giuseppe Carbone

Received: 17 December 2023

Revised: 9 February 2024

Accepted: 23 February 2024

Published: 25 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Advanced Path Planning for Autonomous Street-Sweeper Fleets
under Complex Operational Conditions
Tyler Parsons 1 , Farhad Baghyari 1, Jaho Seo 1,* , Wongun Kim 2 and Myeonggyu Lee 2

1 Department of Automotive and Mechatronics Engineering, Ontario Tech University,
Oshawa, ON L1G 0C5, Canada

2 Convergence Agricultural Machinery Group, Korea Institute of Industrial Technology,
Gimje-si 54325, Republic of Korea

* Correspondence: jaho.seo@ontariotechu.ca; Tel.: +1-905-721-8668 (ext. 7341)

Abstract: In recent years, autonomous mobile platforms have seen an increase in usage in several
applications. One of which is street-sweeping. Although street-sweeping is a necessary process
due to health and cleanliness, fleet operations are difficult to plan optimally. Since each vehicle
has several constraints (battery, debris, and water), path planning becomes increasingly difficult to
perform manually. Additionally, in real-world applications vehicles may become inactive due to a
breakdown, which requires real-time scheduling technology to update the paths for the remaining
vehicles. In this paper, the fleet street-sweeping problem can be solved using the proposed lower-level
and higher-level path generation methods. For the lower level, a Smart Selective Navigator algorithm
is proposed, and a modified genetic algorithm is used for the higher-level path planning. A case
study was presented for Uchi Park, South Korea, where the proposed methodology was validated.
Specifically, results generated from the ideal scenario (all vehicles operating) were compared to the
breakdown scenario, where little to no difference in the overall statistics was observed. Additionally,
the lower-level path generation could yield solutions with over 94% area coverage.

Keywords: autonomous street-sweeping; coverage path planning; fleet management strategies;
heuristic approaches

1. Introduction

Unmanned ground vehicles (UGVs) have seen an increase in popularity amongst oper-
ations researchers in recent years. Spanning over several applications such as autonomous
cleaning [1,2], lawn mowing [3], surveillance [4], tillage [5], and street-sweeping [6], UGVs
can be applied seamlessly to many coverage path planning (CPP) problems. Additionally,
UGVs can be used individually or in fleets. When using UGVs in fleets, the efficiency
can increase, and overall operation time can decrease at the expense of complicated fleet
management strategies [7,8]. In this paper, fleet management technology and global path
planning for UGV street-sweeping will be the focus.

Compared to other UGV applications, street-sweeping operations are more complex
because of the increased number of constraints. Specifically, street-sweepers disperse water
(to make sweeping small particles easier), accumulate debris, and drain the battery via
normal operation. Typically, a depot serves as the facility where the battery can be charged,
the water can be refilled, and the debris can be disposed of. During operation, the status
of all the respective constraints should be carefully monitored, and depot trips can be
conducted as necessary. The problem becomes increasingly more complex when fleets of
UGV street-sweepers are to be managed. Complications arise when street sweepers become
inactive during operation due to an unexpected breakdown. In these cases, the remainder
of the path allocated to the out-of-service vehicle is left untouched. Ideally, the remainder
of the unvisited path for the out-of-service vehicle should be covered by the remaining
vehicles in an efficient manner.

Robotics 2024, 13, 37. https://doi.org/10.3390/robotics13030037 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics13030037
https://doi.org/10.3390/robotics13030037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0003-4475-8748
https://orcid.org/0000-0002-1045-719X
https://doi.org/10.3390/robotics13030037
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics13030037?type=check_update&version=1

Robotics 2024, 13, 37 2 of 22

The CPP problem relates to the problem where an entity (robot, vehicle, etc.) is
assigned the task of traveling over an area. The area may be large, small, complicated,
simple, and have obstacles, but the task remains the same. The CPP can be formulated as
a variant of the traveling salesman problem (TSP) called the covering salesman problem
(CSP) [9]. In the TSP, the optimal traversal sequence for all nodes should be found, whereas
the optimal traversal sequence of a subset of nodes should be found in the CSP [10]. In
the CSP, the vehicle width must be considered, so an edge with a predetermined offset
(modeling the vehicle width) may cover some of the required nodes without directly
visiting them; hence, only a subset of nodes can be visited.

It is common to see the CPP problem be applied to large and complicated areas. In
these cases, the problem can be divided into several smaller feasible areas by using cellular
decomposition methods. Then, a local path planner can be used to find the coverage
path in each cell (typically an exhaustive sweep of the cell), and a global path planner
can be used to find the optimal traversal sequence of the cells. Several methods have
been explored in the literature to perform such decomposition, such as boustrophedon cell
decomposition [11], morse cell decomposition [12], and trapezoidal decomposition [13].
Each method has its own application, which is dependent on the problem requirements
and environmental complexity.

Within the targeted area (or sub-area in the case of cell decomposition), the optimal
path to the CPP problem should be found. In the literature, the CPP algorithms can be
divided into two classes: classical and heuristic-based algorithms [14]. Several algorithms
exist within the classical type algorithms, such as random walk (RW) and chaotic cover-
age. The chaotic coverage algorithms can be characterized by topological transitivity and
sensitive dependence on initial conditions for a mobile robot [15]. Typically, to perform
such chaotic movements, the controller for the mobile robot is built with a combination
of chaotic dynamic variables and kinematic equations that predict the trajectory of the
robot [15]. Some examples of chaotic systems include the Arnold system [15,16] and the
Lorenz system [17]. For the RW, a robot moves within the target environment until a
collision with an obstacle is detected. In the linear case, the robot will continuously travel
linearly until a collision with an obstacle is detected. When this occurs, the next trajectory
will be randomly selected within the bounds of the target area [18,19]. Additionally, a spiral
motion can also be used [20]. The classical methods are typically continuous and do not
guarantee total area coverage [21], so additional methods were developed to overcome
these limitations.

Contrary to the classical methods, additional methods operate using a discrete model
of the environment. This can be thought of as a grid-like structure where each cell has
a connection to all adjacent cells, also known as a graph. In these cases, greedy search
or graph search algorithms can be applied to solve the coverage path. The well-studied
Dijkstra’s algorithm has been used to solve the CPP [22]. However, due to its greedy nature,
the global optimal cannot be guaranteed [23]. Additional methods can be used instead,
such as the depth-first search (DFS) and breadth-first search (BFS). DFS has been used
for CPP in [24] for cleaning applications, and BFS has been used in [25] for aerial remote
sensing. Some issues regarding DFS and BFS have been noted in the literature. Specifically,
DFS fails to yield optimal paths in infinite-depth spaces, and BFS consumes large amounts
of memory due to the branching technique applied [26].

Additionally, heuristic-based approaches can be used to solve the CPP. The heuristic-
based approaches include two categories of algorithms: evolutionary algorithms and
human-inspired algorithms. In evolutionary algorithms, a population of search agents is
used to model the CPP, and over several iterations (the exploration stage), the search agents
can exploit the global optimal solution. In the human-inspired techniques, models mimic
the way the human brain works by learning what ideal solutions look like (reinforced
learning). Upon completion of the training stage, the model can predict the optimal path
for a CPP problem.

Robotics 2024, 13, 37 3 of 22

As previously stated, the CPP can be modeled as the TSP or CSP. This problem model
makes implementing the genetic algorithm (GA) very easy. In the genetic algorithm, the
sequence of nodes to be visited is optimized via selection, crossover, and mutation over
several iterations [27]. The objective for this case is simply to find the minimum cost path
that visits all the required nodes in the TSP or the minimum cost path that covers all the
required nodes in the CSP. The fitness function in the GA is easy to change, thus making it
very flexible for different categories of the CPP problem. The GA has been used in several
studies in the CPP domain with success [3,11,28], thus making it a great starting point for
the CPP problem.

With regard to dividing the workload amongst several homogeneous vehicles, some
researchers have referred to this problem as the vehicle path planning and scheduling
problem (VPPSP) [29]. By using an effective scheduling strategy, the overall operation time
can be greatly reduced with a fleet of vehicles in comparison to one [30]. In the VPPSP, a
set of autonomous vehicles should visit a set of targets, and each vehicle’s path should
begin and end at the depot. In [29], a modified version of the GA was proposed to solve
the VPPSP. In a separate study, the CPP for a fleet of unmanned aerial vehicles (UAV)
was solved using the integer programming (IP) formulation [31]. Their work provided
solutions that operate within the constraints of the UAVs. Another study uses a cellular
decomposition method to divide a large area into several smaller ones; then, the areas
are continuously assigned to UAVs until the constraints are violated [32]. In each of the
sub-areas, a zig-zag pattern is used to cover the area.

Additional studies have focused on the path planning of robotic fleets as a single
unit. A large portion of these studies focus on formation control schemes where robots
are instructed to maintain a desired formation while following a global path. In one study,
a leader-follower control scheme was developed to solve the translational maneuvering
problem for robotic fleets [33]. Their control law consists of individual tracking errors
and coordination tracking errors for leader-follower pairs. Another study uses a similar
approach but in more complex environments with obstacles [34]. In this study, two separate
control algorithms based on the model predictive control (MCP) scheme were proposed,
namely the linear and non-linear MPC. Their methods show improvements over other
methods for maintaining formation while simultaneously avoiding static obstacles. An-
other study focuses on the control scheme for dynamic formations [35]. In this study, the
formation-control problem was modeled as a synchronization control problem specific to
the formation requirements. Then, a synchronous controller was used by each robot to
ensure that the position and errors were minimized. Simulations and experimental studies
validate the effectiveness of the proposed approach. In the mentioned studies, a common
goal for the robot fleet is to achieve the desired formation such that the fleet moves as a
single unit. However, these studies do not focus on separating the fleet to achieve a goal.
Additionally, there is a large focus on the path tracking, and the path planning has not
been discussed.

Some studies have considered the failure of mobile robots in fleets. Due to the dif-
ference in the expected workload in the event of a vehicle failure, the planned routes will
need to be modified to ensure a proper workload balance [36]. When a vehicle failure
occurs, several different approaches may be used to redistribute the remaining paths of the
out-of-service robot to the remaining ones. In one paper, a simple approach is proposed
called the First-Responder (FR). In the FR, any robot that finishes its route can cover the
remaining routes from broken vehicles [37]. Since this approach does not use any opti-
mization techniques, it was improved by the authors in a later study. In this study, the
authors propose an optimization technique to redistribute the paths amongst the remaining
robots called Cooperative Autonomy for Resilience and Efficiency (CARE) [38]. In CARE,
the authors were able to improve their FR approach by using a distributed discrete event
supervisor to trigger games amongst the remaining robots in the fleet. The games consist of
the no-idling game and the resilience game, which are triggered when a robot completes its

Robotics 2024, 13, 37 4 of 22

route and when a robot fails, respectively. The CARE approach shows complete coverage
under failures and reduced coverage time.

In the mentioned literature, existing studies discuss area partitioning using decom-
position methods, local path planning methods within the sub-areas, and techniques to
manage fleet operations for the CPP. From the mentioned literature, not all these techniques
have been applied to the autonomous street-sweeping fleet CPP problem. Additionally, a
portion of fleet robotic research aims to maintain the formation of a fleet of mobile robots
while following a planned path. This research fails to separate the fleet to achieve a goal
and instead focuses on moving the fleet as a whole while following a path. This may
be beneficial for applications such as highway street-sweeping, where a fleet can cover
several lanes simultaneously with a relatively consistent path defined by the road. These
approaches work under the assumption that an optimal path has already been planned,
and the fleet is now being instructed to follow it using tracking control strategies. However,
there is a lack of research involved in the optimization of the planned path for robotic fleets,
which is the focus of this study. It means that the research presented in this study aims to
separate the fleet and generate the optimal path for each individual vehicle. Additionally,
robotic formations cause problems in complex areas such as walking paths since the forma-
tion cannot fit within the bounds of the targeted areas, thus requiring individual paths for
each vehicle.

Few studies have examined the breakdown scenario in which a vehicle becomes
unavailable during operation for a fleet of autonomous street-sweepers. In the above
literature, breakdown scenarios have been considered, but the complex constraints of street
sweeping require additional consideration. For example, it may be better for a vehicle
with more room in the debris hopper to service the remaining route of one vehicle. Or
it may be better for a vehicle nearing the debris capacity to cover the remaining paths
near the depot so a short distance can be traveled to dispose of the debris. Such complex
constraints have not been considered in the existing literature and require additional
methods for proper implementation and consideration. So, the following research aims to
fill this gap by applying a lower-level path generation method to calculate the coverage
path in each sub-area and a higher-level path generation method to divide the sub-areas
amongst the autonomous street-sweepers while selecting the optimal start location for
each sub-area. The proposed route optimization techniques can consider several real-
world constraints that are specific to street-sweeping (debris, water, battery, and vehicle
breakdown conditions) while also providing near-optimal results for the NP-hard problem.
Additionally, the proposed methods can be applied in breakdown scenarios to redistribute
the un-serviced path (from the broken vehicle) to the remaining vehicles. A case study for
Uchi Park Zoo will be presented to show the effectiveness of the developed algorithm.

The remainder of the article is organized as follows: Section 2 discusses the methods
used to solve the lower and higher-level path planning problems, Section 3 discusses the
problem-specific parameters for the case study in Uchi Park Zoo and the graph generation
methods for the lower and higher-level optimization, Section 4 presents results for two
operational conditions (two normal vehicles, and one normal vehicle with a vehicle that
breaks down) in Uchi Park Zoo, and Section 5 concludes the following research.

2. Route Generation Methodology

Previous research has discussed several approaches for solving the CPP. However, ex-
isting methods have not considered complex operational constraints related to autonomous
street-sweeping when generating routes, which makes them difficult to apply to this spe-
cific set of CPPs. Additionally, previous methods have explored the occurrence of failures
in fleet robotic operations but similarly lack the ability to handle the complex constraints of
autonomous street-sweeping.

Lower-level and higher-level path planning algorithms were developed to overcome
such limitations. The lower-level path generation creates the optimal coverage path within
each sub-area, while the higher-level path generation creates the total path for each vehicle

Robotics 2024, 13, 37 5 of 22

while considering the respective constraints. The lower-level path generation is composed
of a novel route optimization algorithm named the Smart Selective Navigator (SSN), and
the higher-level path generation makes use of a modified version of the GA. Higher-level
path generation is also responsible for generating complete routes that include depot trips
as necessary (when the water or debris capacity is met). Both path-generation methods will
be explained in detail in this section.

For the proposed methods to work, it is assumed that a target area has been converted
into a graph structure and that the total graph is divided into several sub-areas that are to
be serviced. Each sub-area may have serviceable and non-serviceable edges. The sub-area
division can be performed automatically (as seen in literature as the decomposition method)
or manually for logistical purposes, and each sub-area can have several candidates starting
locations with predetermined endpoints.

2.1. Lower-Level Path Generation

A novel algorithm named the Smart Selective Navigator (SSN) was used to generate
the lower-level paths. However, any other route optimization methods can be used in this
stage. The purpose of the lower-path generation is to pre-process several candidate paths
for each sub-area such that the optimal one is selected by the higher-level path generation
algorithm (which will be discussed in the next section). The SNN is a non-backtracking
heuristic method created for logistics problems. SSN is a turn-based approach that assigns
jobs (serviceable edges) to idle vehicles at each Time Interval (TI). This method can handle
multiple vehicles at the same time and incorporate many different constraints such as
fuel restriction, turn restriction, etc. Instead, the vehicle constraints are handled in the
higher-level path generation (which will be discussed in the next section). However, it is
assumed that only a single vehicle is used, and it is equipped with enough resources to
service the entire area. In the SSN, the vehicle should have a predefined starting point, and
the vehicle will continue to service the graph until one of the following conditions are met:

1. All the required edges are serviced;
2. The generated path length exceeds a given threshold.

The second condition is defined to prevent vehicles from getting stuck in loops. The
quality of the routes created using the SSN can be calculated using Equation (1).

cost = (total operation time + time penalty)× (remaining edges + 1) (1)

In Equation (1), the remaining edges is the number of edges that were supposed to be
serviced but were not due to the second stop condition. In the ideal case, the remaining edges
will be 0, but this is not the case for the initial solutions produced using SSN. Additionally, a
time penalty is applied to the paths created using SSN, which can be formulated in Equation
(2). The time penalty is applied to penalize sharp turns that are difficult for vehicles to
perform. In Equation (2), it is assumed that a 180◦ turn (u-turn) takes 10 s to perform, so
any other turn is a fraction of this. This was considered because the turn radius was not
directly integrated into the lower-level graphs.

time penalty =
turning angle

180
× 10 (2)

As previously stated, SSN operates using a turn-based approach to assign jobs to the
vehicle at each TI. At each TI, the vehicle’s current position is acquired (ni), then the score of
all neighboring nodes (nj) is calculated. The edge created (ek =

(
ni, nj)) by the neighboring

node with the best score will be assigned to the vehicle. The score for neighboring nodes can
be calculated using Equation (3) where x1 − x5 are coefficients that need to be optimized
(using a GA), and each sub-score in Equation (3) can be calculated using Equations (4)–(8).

score = x1(jobScore) + x2(layerScore) + x3(turnScore) + x4(chainScore) + x5(repAvoidScore) (3)

Robotics 2024, 13, 37 6 of 22

jobScore =
number o f remaining jobs
number o f required jobs

(4)

layerScore =
1

layer number
(5)

turnScore =
1

turn
, turn ∈ {1, 2, 3} (6)

chainScore =
∑3

i=1 JSi + LSi + TSi

9
(7)

repAvoidScore =
1

number o f visits + 1
(8)

In Equation (5), layer number corresponds to the layer that nj is located on. The layer
numbers are defined during the lower-level graph generation stage, where they increase
inwards. In Equation (6), the set {1, 2, 3} corresponds to the turn type to reach node nj
from ni, where 1 is straight, 2 is right and left, and 3 is a u-turn. This is used to provide
a preference for fewer turns in the generated path. The chainScore in Equation (7) is used
as a predictive method to observe the score of the three edges following nj. For this, only
the first 3 scores (jobScore: JSi, layerScore: LSi, turnScore: TSi) are used. Then, the average
can be taken, hence the division by 9. Finally, the repAvoidScore in Equation (8) is used to
prevent redundant travel and to avoid endless loops. The number o f visits corresponds
to the number of times that nj has been visited. Then, 1 is also added to the denominator
since unvisited nodes would have a number o f visits equal to 0.

The output of the lower-level path generation is a service path that begins at the
desired starting node for the corresponding lower-level graph. Due to the complexity of the
problem (NP-hard), it is assumed that the solution found is a local optimum near the global
one. Since a GA is used to find an acceptable set of coefficients (x1 − x5) used by the SSN,
the complexity for a single solution can be estimated as O(gnm), where g is the number of
generations, n is the population size, and m is the size of the individuals. To ensure that a
good solution is found, a sufficient population size and number of generations should be
used, but this directly affects the computation time.

2.2. Higher-Level Path Generation

The purpose of the higher-level path generation is to assign the vehicles to each area,
add depot trips (in the event of constraint violations), and create the total path that begins
at the depot, services all required areas, and returns to the depot. To do so, a modified GA
is proposed that can manage the fleet scheduling problem while considering all constraints.
A similar approach was proposed by Sun et al. to assign robots to areas; however, their
approach lacked the inclusion of depot trips since constraints were not considered in their
problem [39].

The GA was developed for solving complex discrete (combinatorial) optimization
problems [40], but it can also be encoded to solve continuous optimization problems. It
does so by mimicking the evolutionary process proposed by Darwin, which consists of
crossover, mutation, and survival of the fittest. After several generations, the solutions will
have converged at an optimal solution. The GA process can be visualized in Figure 1.

Robotics 2024, 13, 37 7 of 22Robotics 2024, 13, x FOR PEER REVIEW 7 of 22

Figure 1. The GA process visualized.

To use the GA, the problem parameters should be encoded into a structure referred
to as a “chromosome,” which can be thought of as a list. In the chromosome, there are
several values called “genes” that will be used to calculate how ideal the chromosome is.
This is also called “fitness”; where the lower the fitness is, the better the solution is. Since
the GA is a population-based metaheuristic, it consists of a population of solutions that
will be continuously evolving over several generations.

As shown in Figure 1, the GA process begins with an initial population. The popula-
tion can be initialized by randomly assigning values to each gene within the problem con-
straints. Since the initial population is randomly generated, the average fitness is usually
not good. To improve the solutions, the selection, crossover, and mutation operations are
used over several generations.

A roulette-style selection is commonly used to select parents. The purpose of selec-
tion is to pick two members of the population to create children with. The hypothesis is
that when two good chromosomes are selected, the children of the parents will be even
better. By using a roulette-style parent selection, solutions with better fitness have a higher
probability of being selected. Additionally, the parents should both be unique such that a
new pair of children is created. An example of the roulette-style selection can be visualized
in Figure 2.

Figure 2. Roulette style parent selection scheme used in the GA. The red arrow represents the ran-
domized selection process mimicking that of a roulette wheel.

The parents selected using the roulette selection will undergo crossover and muta-
tion to create two unique children. The selection and reproduction stage repeats until the
new population is the same size as the old one. Additionally, the best two solutions from
the previous generation will be carried over into the next population to preserve them.

To perform crossover, a random crossover point (index) is selected, and the genes
from each parent can be spliced together to create a pair of unique children. Crossover

Figure 1. The GA process visualized.

To use the GA, the problem parameters should be encoded into a structure referred to
as a “chromosome,” which can be thought of as a list. In the chromosome, there are several
values called “genes” that will be used to calculate how ideal the chromosome is. This is
also called “fitness”; where the lower the fitness is, the better the solution is. Since the GA
is a population-based metaheuristic, it consists of a population of solutions that will be
continuously evolving over several generations.

As shown in Figure 1, the GA process begins with an initial population. The population
can be initialized by randomly assigning values to each gene within the problem constraints.
Since the initial population is randomly generated, the average fitness is usually not good.
To improve the solutions, the selection, crossover, and mutation operations are used over
several generations.

A roulette-style selection is commonly used to select parents. The purpose of selection
is to pick two members of the population to create children with. The hypothesis is that
when two good chromosomes are selected, the children of the parents will be even better. By
using a roulette-style parent selection, solutions with better fitness have a higher probability
of being selected. Additionally, the parents should both be unique such that a new pair of
children is created. An example of the roulette-style selection can be visualized in Figure 2.

Robotics 2024, 13, x FOR PEER REVIEW 7 of 22

Figure 1. The GA process visualized.

To use the GA, the problem parameters should be encoded into a structure referred
to as a “chromosome,” which can be thought of as a list. In the chromosome, there are
several values called “genes” that will be used to calculate how ideal the chromosome is.
This is also called “fitness”; where the lower the fitness is, the better the solution is. Since
the GA is a population-based metaheuristic, it consists of a population of solutions that
will be continuously evolving over several generations.

As shown in Figure 1, the GA process begins with an initial population. The popula-
tion can be initialized by randomly assigning values to each gene within the problem con-
straints. Since the initial population is randomly generated, the average fitness is usually
not good. To improve the solutions, the selection, crossover, and mutation operations are
used over several generations.

A roulette-style selection is commonly used to select parents. The purpose of selec-
tion is to pick two members of the population to create children with. The hypothesis is
that when two good chromosomes are selected, the children of the parents will be even
better. By using a roulette-style parent selection, solutions with better fitness have a higher
probability of being selected. Additionally, the parents should both be unique such that a
new pair of children is created. An example of the roulette-style selection can be visualized
in Figure 2.

Figure 2. Roulette style parent selection scheme used in the GA. The red arrow represents the ran-
domized selection process mimicking that of a roulette wheel.

The parents selected using the roulette selection will undergo crossover and muta-
tion to create two unique children. The selection and reproduction stage repeats until the
new population is the same size as the old one. Additionally, the best two solutions from
the previous generation will be carried over into the next population to preserve them.

To perform crossover, a random crossover point (index) is selected, and the genes
from each parent can be spliced together to create a pair of unique children. Crossover

Figure 2. Roulette style parent selection scheme used in the GA. The red arrow represents the
randomized selection process mimicking that of a roulette wheel.

The parents selected using the roulette selection will undergo crossover and mutation
to create two unique children. The selection and reproduction stage repeats until the new
population is the same size as the old one. Additionally, the best two solutions from the
previous generation will be carried over into the next population to preserve them.

To perform crossover, a random crossover point (index) is selected, and the genes
from each parent can be spliced together to create a pair of unique children. Crossover
only occurs if a randomly generated number (between 0 and 1) is less than the predefined

Robotics 2024, 13, 37 8 of 22

crossover rate. If crossover should not occur, the children are simply the same as the
parents. Then, mutation can be applied to each of the children produced. The mutation
operation randomly changes one (or more) gene in each child with respect to the problem
constraints. This is performed by iterating over the genes of the children and generating a
random number between 0 and 1. If this number is less than the predefined mutation rate,
the gene will be mutated. In the literature, the crossover probability is much higher than
the mutation probability. This is because the large crossover probability allows for greater
exploration of the solution space, while the lower mutation probability allows the solutions
to explore the neighboring solutions space more effectively. The crossover and mutation
processes can be visualized in Figure 3.

Robotics 2024, 13, x FOR PEER REVIEW 8 of 22

only occurs if a randomly generated number (between 0 and 1) is less than the predefined
crossover rate. If crossover should not occur, the children are simply the same as the par-
ents. Then, mutation can be applied to each of the children produced. The mutation oper-
ation randomly changes one (or more) gene in each child with respect to the problem con-
straints. This is performed by iterating over the genes of the children and generating a
random number between 0 and 1. If this number is less than the predefined mutation rate,
the gene will be mutated. In the literature, the crossover probability is much higher than
the mutation probability. This is because the large crossover probability allows for greater
exploration of the solution space, while the lower mutation probability allows the solu-
tions to explore the neighboring solutions space more effectively. The crossover and mu-
tation processes can be visualized in Figure 3.

Figure 3. The GA crossover and mutation process visualized. The lists of numbers represent an
arbitrary set of genes in a chromosome. In the mutation process, the red gene is selected to un-
dergo mutation, changing it from 8 to 9.

The GA was selected for this research as a means of assigning vehicles to sub-areas
and selecting the optimal start point within each sub-area. The objective of the GA was to
find the optimal solution that yields the lowest overall traveling time. The overall travel-
ing time can be defined as the longest traveling time out of all operating vehicles. This can
be formulated in Equations (9) and (10). In Equation (9), 𝑓 is the objective function, which
is to minimize the overall operation time (maximum operation of all operational vehicles),
and 𝑣 is the operation time of vehicle 𝑛. The vehicle operation time (𝑣) can be formu-
lated in Equation (10), where 𝑝 is the distance from the last area assigned to vehicle 𝑛
to the depot, 𝑠 is the deadhead speed, 𝑠 is the servicing speed, 𝑝 is the distance from
the vehicle to the starting point of the next service area 𝑖, 𝑑 is the distance of the servic-
ing path in sub-area 𝑖, and 𝑝 is the distance from the point where a constraint is violated
to the depot. 𝑝 is multiplied by 2 since the vehicle needs to go to the depot and back
when a constraint (water or debris capacity) is violated. When 𝑖 = 0, 𝑝 is the distance
from the depot to the starting point of the first sub-area. All distances were calculated
using the A* shortest path algorithm [41].

The objective function can be modified to improve the workload balance, minimize
distance, or any other quantifiable metric. However, it was found from experimentation
that the overall servicing time minimization yielded the best results. 𝑓 = min{max{𝑣 , … , 𝑣 }} (9)𝑣 = + ∑ + + ∑ (10)

2.3. Real-Time Scheduling
When the higher-level path generation algorithm is executed, the paths for each ve-

hicle are planned based on the initial conditions. Typically, each vehicle begins at the de-
pot with a full water tank, empty debris tank, and full battery. However, the algorithm
can provide optimal solutions based on the input conditions if they differ from the

Figure 3. The GA crossover and mutation process visualized. The lists of numbers represent an
arbitrary set of genes in a chromosome. In the mutation process, the red gene is selected to undergo
mutation, changing it from 8 to 9.

The GA was selected for this research as a means of assigning vehicles to sub-areas
and selecting the optimal start point within each sub-area. The objective of the GA was to
find the optimal solution that yields the lowest overall traveling time. The overall traveling
time can be defined as the longest traveling time out of all operating vehicles. This can be
formulated in Equations (9) and (10). In Equation (9), f is the objective function, which is
to minimize the overall operation time (maximum operation of all operational vehicles),
and vn is the operation time of vehicle n. The vehicle operation time (vn) can be formulated
in Equation (10), where pj is the distance from the last area assigned to vehicle n to the
depot, sd is the deadhead speed, ss is the servicing speed, pi is the distance from the vehicle
to the starting point of the next service area i, di is the distance of the servicing path in
sub-area i, and pk is the distance from the point where a constraint is violated to the depot.
pk is multiplied by 2 since the vehicle needs to go to the depot and back when a constraint
(water or debris capacity) is violated. When i = 0, pi is the distance from the depot to the
starting point of the first sub-area. All distances were calculated using the A* shortest path
algorithm [41].

The objective function can be modified to improve the workload balance, minimize
distance, or any other quantifiable metric. However, it was found from experimentation
that the overall servicing time minimization yielded the best results.

f = min{max{v1, . . . , vn}} (9)

vn =
pj

sd
+ ∑j

i=0

(
pi
sd

+
di
ss

)
+ ∑l

k=0
2pk
sd

(10)

2.3. Real-Time Scheduling

When the higher-level path generation algorithm is executed, the paths for each vehicle
are planned based on the initial conditions. Typically, each vehicle begins at the depot with
a full water tank, empty debris tank, and full battery. However, the algorithm can provide
optimal solutions based on the input conditions if they differ from the expected ones. For

Robotics 2024, 13, 37 9 of 22

example, the vehicles’ starting locations may differ from the depot, which will result in
different paths.

This concept can be extended to the real-time scheduling aspect of this study. Specifi-
cally, when a vehicle becomes out of service (due to an unexpected breakdown), the portion
of the path that has already been serviced does not need to be serviced again by the remain-
ing vehicles. So, each vehicle should be keeping a record of the originally planned path
and the portion of that path that has been serviced already. When a breakdown occurs
for one of the vehicles, the higher-level path generation algorithm can be executed again
with the portion of the graph that has not yet been serviced. To do this, the edges that
have been serviced in each sub-area can be removed from the higher-level graph, and the
lower-level paths can be updated with new starting point(s) that are dependent on how
much of the sub-area has been serviced before the breakdown. A graphical example of this
can be found in Figure 4, where the same concept can be extended to all sub-areas in the
higher-level graph.

Robotics 2024, 13, x FOR PEER REVIEW 9 of 22

expected ones. For example, the vehicles’ starting locations may differ from the depot,
which will result in different paths.

This concept can be extended to the real-time scheduling aspect of this study. Specif-
ically, when a vehicle becomes out of service (due to an unexpected breakdown), the por-
tion of the path that has already been serviced does not need to be serviced again by the
remaining vehicles. So, each vehicle should be keeping a record of the originally planned
path and the portion of that path that has been serviced already. When a breakdown oc-
curs for one of the vehicles, the higher-level path generation algorithm can be executed
again with the portion of the graph that has not yet been serviced. To do this, the edges
that have been serviced in each sub-area can be removed from the higher-level graph, and
the lower-level paths can be updated with new starting point(s) that are dependent on
how much of the sub-area has been serviced before the breakdown. A graphical example
of this can be found in Figure 4, where the same concept can be extended to all sub-areas
in the higher-level graph.

(a) (b)

Figure 4. Example of the start points changing in real-time scheduling due to an unexpected break-
down. The original starting points can be seen in green in (a), and the updated starting points can
be seen in red in (b). The updated starting points are dependent on the portion of the sub-area that
was serviced before the breakdown (highlighted in yellow).

3. Problem Specific Parameters for Uchi Park Zoo
In this section, the problem-specific parameters (for the case study in Uchi Park), the

graph generation methods, and the application of the proposed route optimization meth-
odology will be discussed in detail.

3.1. Vehicle and Park Specific Parameters
Uchi Park is equipped with a fleet of 2 identical autonomous street sweepers. The

sweepers have a width of 1.295 m and a length of 3.810 m; all other dimensions can be
seen in Figure 5. Additionally, the vehicle parameters can be seen in Table 1. In Table 1,
some parameters are situation-specific. For example, the debris collection rate and water
collection rate are variables and can be set based on debris conditions in the park. These
values are rough estimates that were calculated using historical data, a common approach
seen in the capacitated arc routing problem (CARP) model with relatively static routes
[42]. All variable parameters are denoted with an asterisk in Table 1.

Figure 4. Example of the start points changing in real-time scheduling due to an unexpected
breakdown. The original starting points can be seen in green in (a), and the updated starting points
can be seen in red in (b). The updated starting points are dependent on the portion of the sub-area
that was serviced before the breakdown (highlighted in yellow).

3. Problem Specific Parameters for Uchi Park Zoo

In this section, the problem-specific parameters (for the case study in Uchi Park),
the graph generation methods, and the application of the proposed route optimization
methodology will be discussed in detail.

3.1. Vehicle and Park Specific Parameters

Uchi Park is equipped with a fleet of 2 identical autonomous street sweepers. The
sweepers have a width of 1.295 m and a length of 3.810 m; all other dimensions can be
seen in Figure 5. Additionally, the vehicle parameters can be seen in Table 1. In Table 1,
some parameters are situation-specific. For example, the debris collection rate and water
collection rate are variables and can be set based on debris conditions in the park. These
values are rough estimates that were calculated using historical data, a common approach
seen in the capacitated arc routing problem (CARP) model with relatively static routes [42].
All variable parameters are denoted with an asterisk in Table 1.

Robotics 2024, 13, 37 10 of 22Robotics 2024, 13, x FOR PEER REVIEW 10 of 22

Figure 5. Vehicle dimensions. Here, the vehicle width (1.295 m) and length (3.810 m) can be seen.
The vehicle width relates to how much of the road can be swept at one time.

Table 1. Vehicle parameters.

Parameter Value
Driving Speed (Servicing) 3 km/h
Driving Speed (Deadhead) 8 km/h

Debris Tank Capacity 240 L
Debris Collection Rate * 133.33 L/km

Water Tank Capacity 150 L
Water Distribution Rate * 16.67 L/km

Batter Capacity 40 kWh
Battery Drainage Rate (Servicing) 8 kW
Battery Drainage Rate (Deadhead) 5 kW

* Parameters that are situational dependent.

Uchi Park consists of 18 serviceable sub-areas. Some of these are roads (ring roads)
that circle the perimeter of the park, and others are paths leading to cages for various
animals at the zoo. An aerial view of Uchi Park can be seen in Figure 6. The 18 sub-areas
were predefined by Uchi Park to be used as inputs to the algorithm. This provides the
freedom to select which set of sub-areas are to be serviced.

Figure 6. Aerial view of Uchi Park Zoo. The main roads can be seen annotated in yellow, and several
key features of the park can be described with text.

Figure 5. Vehicle dimensions. Here, the vehicle width (1.295 m) and length (3.810 m) can be seen.
The vehicle width relates to how much of the road can be swept at one time.

Table 1. Vehicle parameters.

Parameter Value

Driving Speed (Servicing) 3 km/h
Driving Speed (Deadhead) 8 km/h

Debris Tank Capacity 240 L
Debris Collection Rate * 133.33 L/km

Water Tank Capacity 150 L
Water Distribution Rate * 16.67 L/km

Batter Capacity 40 kWh
Battery Drainage Rate (Servicing) 8 kW
Battery Drainage Rate (Deadhead) 5 kW

* Parameters that are situational dependent.

Uchi Park consists of 18 serviceable sub-areas. Some of these are roads (ring roads)
that circle the perimeter of the park, and others are paths leading to cages for various
animals at the zoo. An aerial view of Uchi Park can be seen in Figure 6. The 18 sub-areas
were predefined by Uchi Park to be used as inputs to the algorithm. This provides the
freedom to select which set of sub-areas are to be serviced.

Robotics 2024, 13, x FOR PEER REVIEW 10 of 22

Figure 5. Vehicle dimensions. Here, the vehicle width (1.295 m) and length (3.810 m) can be seen.
The vehicle width relates to how much of the road can be swept at one time.

Table 1. Vehicle parameters.

Parameter Value
Driving Speed (Servicing) 3 km/h
Driving Speed (Deadhead) 8 km/h

Debris Tank Capacity 240 L
Debris Collection Rate * 133.33 L/km

Water Tank Capacity 150 L
Water Distribution Rate * 16.67 L/km

Batter Capacity 40 kWh
Battery Drainage Rate (Servicing) 8 kW
Battery Drainage Rate (Deadhead) 5 kW

* Parameters that are situational dependent.

Uchi Park consists of 18 serviceable sub-areas. Some of these are roads (ring roads)
that circle the perimeter of the park, and others are paths leading to cages for various
animals at the zoo. An aerial view of Uchi Park can be seen in Figure 6. The 18 sub-areas
were predefined by Uchi Park to be used as inputs to the algorithm. This provides the
freedom to select which set of sub-areas are to be serviced.

Figure 6. Aerial view of Uchi Park Zoo. The main roads can be seen annotated in yellow, and several
key features of the park can be described with text.
Figure 6. Aerial view of Uchi Park Zoo. The main roads can be seen annotated in yellow, and several
key features of the park can be described with text.

Robotics 2024, 13, 37 11 of 22

3.2. Lower-Level Graph Generation

Raw data for Uchi Park were provided in the form of a set of coordinates for each of
the predefined sub-areas. However, the serviceable area within each boundary needs to be
converted into a graph so the developed routing algorithms can compute optimal coverage
paths. This is called the lower-level graph generation. To do this, an offset method that is
dependent on the outer boundary of the sub-area is proposed.

Using the buffer function provided by the Shapely Python library [43], serviceable
tracks can be continuously generated by offsetting the outer boundary of the sub-area
inwards with respect to the vehicle width. The boundary can be continuously offset until
the new boundary’s perimeter is less than 10 m. 10 m was selected as the threshold, which
is based on the vehicle length. Since the vehicle is approximately 4 m long, it should be
able to service a loop that is at least twice the length of the vehicle. So, 10 m (slightly larger
than twice the vehicle length) was selected as the minimum length of an offset boundary
for the lower-graph generation. The static obstacles (buildings and animal cages) within
the sub-areas should be removed before the offset method is applied so edges that collide
with them are not created. As seen in Figure 7, there is a hole in the area, which represents a
static obstacle. Each time the boundary is offset inwards, another serviceable ring is created;
this is called a layer route. The shape of the layer routes is dependent on the geometry of
the sub-area.

Several other methods were considered for the lower-level graph generation, such as
a grid-based approach, but the offset method yielded comparatively smoother serviceable
edges. Additionally, the offset method guarantees full area coverage (over 94%) for all
sub-areas. A graphical representation of the layer routes created by the offset method can
be seen in Figure 7. In Figure 7, each color ring corresponds to a layer route created by
offsetting the outer boundary (perimeter) inwards. The perpendicular distance between
each layer route is proportional to the vehicle width, and the smallest layer route has a
length that exceeds the 10 m threshold.

Robotics 2024, 13, x FOR PEER REVIEW 11 of 22

3.2. Lower-Level Graph Generation
Raw data for Uchi Park were provided in the form of a set of coordinates for each of

the predefined sub-areas. However, the serviceable area within each boundary needs to
be converted into a graph so the developed routing algorithms can compute optimal cov-
erage paths. This is called the lower-level graph generation. To do this, an offset method
that is dependent on the outer boundary of the sub-area is proposed.

Using the buffer function provided by the Shapely Python library [43], serviceable
tracks can be continuously generated by offsetting the outer boundary of the sub-area
inwards with respect to the vehicle width. The boundary can be continuously offset until
the new boundary’s perimeter is less than 10 m. 10 m was selected as the threshold, which
is based on the vehicle length. Since the vehicle is approximately 4 m long, it should be
able to service a loop that is at least twice the length of the vehicle. So, 10 m (slightly larger
than twice the vehicle length) was selected as the minimum length of an offset boundary
for the lower-graph generation. The static obstacles (buildings and animal cages) within
the sub-areas should be removed before the offset method is applied so edges that collide
with them are not created. As seen in Figure 7, there is a hole in the area, which represents
a static obstacle. Each time the boundary is offset inwards, another serviceable ring is cre-
ated; this is called a layer route. The shape of the layer routes is dependent on the geom-
etry of the sub-area.

Several other methods were considered for the lower-level graph generation, such as
a grid-based approach, but the offset method yielded comparatively smoother serviceable
edges. Additionally, the offset method guarantees full area coverage (over 94%) for all
sub-areas. A graphical representation of the layer routes created by the offset method can
be seen in Figure 7. In Figure 7, each color ring corresponds to a layer route created by
offsetting the outer boundary (perimeter) inwards. The perpendicular distance between
each layer route is proportional to the vehicle width, and the smallest layer route has a
length that exceeds the 10 m threshold.

Figure 7. Layer routes are created by the offset method for a sub-area. Each layer route is highlighted
in a different color.

After applying the offset method, all layer routes are initially disconnected. To create
a graph, edges should be added to connect each layer route. A search algorithm was de-
veloped for this task to ensure that each point on the layer routes is connected to a mean-
ingful set of points (nearest points on adjacent layer routes). The connections that are
made in this process are unserviceable edges since the vehicle width covers the area be-
tween each layer route. Some examples of the completed lower-level graph can be seen in
Figure 8. In Figure 8, the black edges are created by offsetting the perimeter of the sub-
area inwards, while the red edges correspond to the connections made between each layer
route. As seen in Figure 8, the connections between each layer route (red edges) are joined
by the nearest points on the adjacent layer routes. The connections between the layer

Figure 7. Layer routes are created by the offset method for a sub-area. Each layer route is highlighted
in a different color.

After applying the offset method, all layer routes are initially disconnected. To create
a graph, edges should be added to connect each layer route. A search algorithm was
developed for this task to ensure that each point on the layer routes is connected to a
meaningful set of points (nearest points on adjacent layer routes). The connections that
are made in this process are unserviceable edges since the vehicle width covers the area
between each layer route. Some examples of the completed lower-level graph can be seen in
Figure 8. In Figure 8, the black edges are created by offsetting the perimeter of the sub-area
inwards, while the red edges correspond to the connections made between each layer route.
As seen in Figure 8, the connections between each layer route (red edges) are joined by the
nearest points on the adjacent layer routes. The connections between the layer routes allow

Robotics 2024, 13, 37 12 of 22

for minimum distance deadhead traveling between serviceable edges. Additionally, the
deadhead connections are used as required to reach other serviceable edges; thus, only a
subset of them may be used.

Robotics 2024, 13, x FOR PEER REVIEW 12 of 22

routes allow for minimum distance deadhead traveling between serviceable edges. Addi-
tionally, the deadhead connections are used as required to reach other serviceable edges;
thus, only a subset of them may be used.

(a) (b)

Figure 8. (a,b) show two examples of lower-level graphs created using the offset method. Servicea-
ble edges are highlighted in black, while the deadhead edges used to connect layer routes are high-
lighted in red.

3.3. Higher-Level Graph Generation
The higher-level graph is the “total graph” that connects the lower-level graphs to-

gether. Without the higher-level graph connections, each lower-level graph is isolated,
and a path between each lower-level graph cannot be found. Creating the connections to
make the higher-level graph makes all lower-level graphs strongly connected, so a path
exists connecting any pair of nodes.

To make such connections, a search algorithm was developed. Initially, all lower-
level graphs are isolated from each other, but they are geographically very close to each
other. The developed search algorithm explores the possible connections for all nodes in
adjacent sub-areas. First, adjacent sub-areas are identified by offsetting two target sub-
areas outwards using the Shapely buffer function [43], then checking to see if the resulting
buffers overlap. If they overlap, this means that the two target sub-areas are adjacent.
Then, all nodes from the two target sub-areas can be joined with an edge, and the edges
below a specified threshold are kept as the connecting edges. For this case, the threshold
was set to 2.0 m (slightly above the vehicle width). Adding the connections can be graph-
ically seen in Figure 9, where the highlighted edges are connections that were added man-
ually to create the higher-level graph. As seen in Figure 5, the connections made join ad-
jacent sub-areas by placing an edge in the blank space between the sub-areas.

Figure 9. Connections made to create the higher-level graph can be seen drawn in red and high-
lighted in yellow. The connections were added to join each lower-level graph.

As seen in Figure 9, the highlighted connections are in the most logically correct lo-
cations. Meaning that each added edge connects a node from one lower-level graph to the
nearest node in an adjacent lower-level graph. After creating the connections between
each lower-level graph, the higher-level graph is completed. A graphical representation

Figure 8. (a,b) show two examples of lower-level graphs created using the offset method. Serviceable
edges are highlighted in black, while the deadhead edges used to connect layer routes are highlighted
in red.

3.3. Higher-Level Graph Generation

The higher-level graph is the “total graph” that connects the lower-level graphs
together. Without the higher-level graph connections, each lower-level graph is isolated,
and a path between each lower-level graph cannot be found. Creating the connections to
make the higher-level graph makes all lower-level graphs strongly connected, so a path
exists connecting any pair of nodes.

To make such connections, a search algorithm was developed. Initially, all lower-
level graphs are isolated from each other, but they are geographically very close to each
other. The developed search algorithm explores the possible connections for all nodes in
adjacent sub-areas. First, adjacent sub-areas are identified by offsetting two target sub-areas
outwards using the Shapely buffer function [43], then checking to see if the resulting buffers
overlap. If they overlap, this means that the two target sub-areas are adjacent. Then, all
nodes from the two target sub-areas can be joined with an edge, and the edges below a
specified threshold are kept as the connecting edges. For this case, the threshold was set to
2.0 m (slightly above the vehicle width). Adding the connections can be graphically seen in
Figure 9, where the highlighted edges are connections that were added manually to create
the higher-level graph. As seen in Figure 5, the connections made join adjacent sub-areas
by placing an edge in the blank space between the sub-areas.

Robotics 2024, 13, x FOR PEER REVIEW 12 of 22

routes allow for minimum distance deadhead traveling between serviceable edges. Addi-
tionally, the deadhead connections are used as required to reach other serviceable edges;
thus, only a subset of them may be used.

(a) (b)

Figure 8. (a,b) show two examples of lower-level graphs created using the offset method. Servicea-
ble edges are highlighted in black, while the deadhead edges used to connect layer routes are high-
lighted in red.

3.3. Higher-Level Graph Generation
The higher-level graph is the “total graph” that connects the lower-level graphs to-

gether. Without the higher-level graph connections, each lower-level graph is isolated,
and a path between each lower-level graph cannot be found. Creating the connections to
make the higher-level graph makes all lower-level graphs strongly connected, so a path
exists connecting any pair of nodes.

To make such connections, a search algorithm was developed. Initially, all lower-
level graphs are isolated from each other, but they are geographically very close to each
other. The developed search algorithm explores the possible connections for all nodes in
adjacent sub-areas. First, adjacent sub-areas are identified by offsetting two target sub-
areas outwards using the Shapely buffer function [43], then checking to see if the resulting
buffers overlap. If they overlap, this means that the two target sub-areas are adjacent.
Then, all nodes from the two target sub-areas can be joined with an edge, and the edges
below a specified threshold are kept as the connecting edges. For this case, the threshold
was set to 2.0 m (slightly above the vehicle width). Adding the connections can be graph-
ically seen in Figure 9, where the highlighted edges are connections that were added man-
ually to create the higher-level graph. As seen in Figure 5, the connections made join ad-
jacent sub-areas by placing an edge in the blank space between the sub-areas.

Figure 9. Connections made to create the higher-level graph can be seen drawn in red and high-
lighted in yellow. The connections were added to join each lower-level graph.

As seen in Figure 9, the highlighted connections are in the most logically correct lo-
cations. Meaning that each added edge connects a node from one lower-level graph to the
nearest node in an adjacent lower-level graph. After creating the connections between
each lower-level graph, the higher-level graph is completed. A graphical representation

Figure 9. Connections made to create the higher-level graph can be seen drawn in red and highlighted
in yellow. The connections were added to join each lower-level graph.

Robotics 2024, 13, 37 13 of 22

As seen in Figure 9, the highlighted connections are in the most logically correct
locations. Meaning that each added edge connects a node from one lower-level graph to
the nearest node in an adjacent lower-level graph. After creating the connections between
each lower-level graph, the higher-level graph is completed. A graphical representation of
the higher-level graph can be seen in Figure 10. Since the higher-level graph is strongly
connected, the A* algorithm can be used to compute the shortest path between any pair of
nodes in the network.

Robotics 2024, 13, x FOR PEER REVIEW 13 of 22

of the higher-level graph can be seen in Figure 10. Since the higher-level graph is strongly
connected, the A* algorithm can be used to compute the shortest path between any pair
of nodes in the network.

Figure 10. The completed higher-level graph with the depot location circled in red. The edges are
coloured black, and the nodes are coloured blue.

3.4. Using the Lower-Level Path Generation
The lower-level path generation should be executed several times (once for each

starting point) for each sub-area. The starting points are the nodes that were used to con-
nect adjacent sub-areas. As explained in Section 3.3, edges were added to connect the sub-
areas together to create the higher-level graph. The nodes in the connecting edges are used
as the starting points for each respective sub-area. So, each sub-area can have several pos-
sible starting points. This results in several servicing paths that are dependent on the start-
ing point selected. The optimal start point is determined in the higher-level path genera-
tion and is dependent upon the sub-areas assigned to each vehicle, the vehicle location,
and the vehicle constraints. It should be mentioned that a lower-level path generation is a
pre-processing event that does not occur in real-time. Additionally, the SSN algorithm is
applied to each sub-area as many times as there are starting points. This further increases
the computation time since the algorithm needs to be executed several times for each sub-
area. As a result, all lower-level paths should be computed before using the higher-level
path generation.

3.5. Using the Higher-Level Path Generation
The chromosome structure needs to reflect the sub-area assigned to each vehicle, the

order of operation, and the sub-area starting point. This means that each sub-area should
only appear once in the chromosome, while each vehicle should appear at least once. The
chromosome structure can be seen in Figure 11.

Figure 11. Chromosome structure for the higher-level path generation.

As previously stated, the crossover operation splices the genes from 2 different par-
ents together to create a pair of children. However, the crossover point cannot be any in-
dex in the chromosome structure. This is because crossover is used to change the order of
operation for servicing sub-areas. Additionally, the starting points for each sub-area
should be associated with the corresponding sub-area. Because of this, preserving the

Figure 10. The completed higher-level graph with the depot location circled in red. The edges are
coloured black, and the nodes are coloured blue.

3.4. Using the Lower-Level Path Generation

The lower-level path generation should be executed several times (once for each
starting point) for each sub-area. The starting points are the nodes that were used to
connect adjacent sub-areas. As explained in Section 3.3, edges were added to connect the
sub-areas together to create the higher-level graph. The nodes in the connecting edges
are used as the starting points for each respective sub-area. So, each sub-area can have
several possible starting points. This results in several servicing paths that are dependent
on the starting point selected. The optimal start point is determined in the higher-level
path generation and is dependent upon the sub-areas assigned to each vehicle, the vehicle
location, and the vehicle constraints. It should be mentioned that a lower-level path
generation is a pre-processing event that does not occur in real-time. Additionally, the
SSN algorithm is applied to each sub-area as many times as there are starting points. This
further increases the computation time since the algorithm needs to be executed several
times for each sub-area. As a result, all lower-level paths should be computed before using
the higher-level path generation.

3.5. Using the Higher-Level Path Generation

The chromosome structure needs to reflect the sub-area assigned to each vehicle, the
order of operation, and the sub-area starting point. This means that each sub-area should
only appear once in the chromosome, while each vehicle should appear at least once. The
chromosome structure can be seen in Figure 11.

Robotics 2024, 13, x FOR PEER REVIEW 13 of 22

of the higher-level graph can be seen in Figure 10. Since the higher-level graph is strongly
connected, the A* algorithm can be used to compute the shortest path between any pair
of nodes in the network.

Figure 10. The completed higher-level graph with the depot location circled in red. The edges are
coloured black, and the nodes are coloured blue.

3.4. Using the Lower-Level Path Generation
The lower-level path generation should be executed several times (once for each

starting point) for each sub-area. The starting points are the nodes that were used to con-
nect adjacent sub-areas. As explained in Section 3.3, edges were added to connect the sub-
areas together to create the higher-level graph. The nodes in the connecting edges are used
as the starting points for each respective sub-area. So, each sub-area can have several pos-
sible starting points. This results in several servicing paths that are dependent on the start-
ing point selected. The optimal start point is determined in the higher-level path genera-
tion and is dependent upon the sub-areas assigned to each vehicle, the vehicle location,
and the vehicle constraints. It should be mentioned that a lower-level path generation is a
pre-processing event that does not occur in real-time. Additionally, the SSN algorithm is
applied to each sub-area as many times as there are starting points. This further increases
the computation time since the algorithm needs to be executed several times for each sub-
area. As a result, all lower-level paths should be computed before using the higher-level
path generation.

3.5. Using the Higher-Level Path Generation
The chromosome structure needs to reflect the sub-area assigned to each vehicle, the

order of operation, and the sub-area starting point. This means that each sub-area should
only appear once in the chromosome, while each vehicle should appear at least once. The
chromosome structure can be seen in Figure 11.

Figure 11. Chromosome structure for the higher-level path generation.

As previously stated, the crossover operation splices the genes from 2 different par-
ents together to create a pair of children. However, the crossover point cannot be any in-
dex in the chromosome structure. This is because crossover is used to change the order of
operation for servicing sub-areas. Additionally, the starting points for each sub-area
should be associated with the corresponding sub-area. Because of this, preserving the

Figure 11. Chromosome structure for the higher-level path generation.

Robotics 2024, 13, 37 14 of 22

As previously stated, the crossover operation splices the genes from 2 different parents
together to create a pair of children. However, the crossover point cannot be any index
in the chromosome structure. This is because crossover is used to change the order of
operation for servicing sub-areas. Additionally, the starting points for each sub-area should
be associated with the corresponding sub-area. Because of this, preserving the vehicle + sub-
area + sub-area starting point is desired. To do so, the introduction of “chromosome blocks”
is proposed. A chromosome block is used to group every three genes in the chromosome
together such that the desired genes cannot be separated. Instead of performing the
crossover at any random index, the crossover point should be selected at an index that
preserves the chromosome blocks. An example of the chromosome block structure and the
candidate crossover points can be seen in Figure 12.

Robotics 2024, 13, x FOR PEER REVIEW 14 of 22

vehicle + sub-area + sub-area starting point is desired. To do so, the introduction of “chro-
mosome blocks” is proposed. A chromosome block is used to group every three genes in
the chromosome together such that the desired genes cannot be separated. Instead of per-
forming the crossover at any random index, the crossover point should be selected at an
index that preserves the chromosome blocks. An example of the chromosome block struc-
ture and the candidate crossover points can be seen in Figure 12.

Figure 12. Chromosome blocks and possible crossover points that can be used to preserve the area,
start point, and vehicle assignment.

Similarly, mutation cannot occur on any random gene. Since the purpose of mutation
is to explore the neighboring solutions, only small changes should be applied to the chro-
mosome. As such, two mutation operators are proposed: vehicle mutation and start point
mutation. Additionally, mutation should occur only once per chromosome block to pre-
vent redundant solution space exploration. If mutation should occur in the chromosome
block, there is a 50/50 chance of applying vehicle mutation or starting point mutation. The
proposed mutation scheme can be visualized in Figure 13.

Figure 13. Example of applying vehicle and starting point mutation in the chromosome.

Since the higher-level path generation uses the pre-processed results generated by
the lower-level path generation, the GA can select the optimal start point for each sub-
area such that the overall travel time is minimized. Additionally, the GA is responsible
for managing the debris and water tank levels. Based on the input parameters (debris and
water rate), the GA can predict when the vehicle should make a depot trip to dump debris
or refill the water tank. In these cases, the vehicle travels from the point where the con-
straint is violated to the depot and then back carries on the path as expected.

As seen in the literature, the typical process for multi-vehicle coverage begins with
dividing the area into several sub-areas, and then the paths are generated in each sub-
area. In the proposed approach, several paths are pre-processed in predetermined sub-
areas. The main benefit of this approach is that pre-processing can save computation time
in the GA, and several candidate paths are calculated with different starting and ending
points. The GA can then select the optimal starting/ending point pair that yields the least
total distance. Since each starting point has a predetermined ending point, the starting
point has a direct influence on the total distance since the vehicle will need to travel from
one sub-area to the next. In the traditional case, the paths are to be calculated after divid-
ing them amongst a fleet of vehicles, which requires additional computation time and
typically has a fixed starting and ending point pair that can result in increased distance.

Additionally, the GA penalizes solutions where the battery constraint for any vehicle
is violated. As highlighted in Table 1, different battery drainage rates are applied based
on the vehicle’s status (servicing or deadheading). When any of the vehicle’s battery

Figure 12. Chromosome blocks and possible crossover points that can be used to preserve the area,
start point, and vehicle assignment.

Similarly, mutation cannot occur on any random gene. Since the purpose of mutation
is to explore the neighboring solutions, only small changes should be applied to the
chromosome. As such, two mutation operators are proposed: vehicle mutation and start
point mutation. Additionally, mutation should occur only once per chromosome block to
prevent redundant solution space exploration. If mutation should occur in the chromosome
block, there is a 50/50 chance of applying vehicle mutation or starting point mutation. The
proposed mutation scheme can be visualized in Figure 13.

Robotics 2024, 13, x FOR PEER REVIEW 14 of 22

vehicle + sub-area + sub-area starting point is desired. To do so, the introduction of “chro-
mosome blocks” is proposed. A chromosome block is used to group every three genes in
the chromosome together such that the desired genes cannot be separated. Instead of per-
forming the crossover at any random index, the crossover point should be selected at an
index that preserves the chromosome blocks. An example of the chromosome block struc-
ture and the candidate crossover points can be seen in Figure 12.

Figure 12. Chromosome blocks and possible crossover points that can be used to preserve the area,
start point, and vehicle assignment.

Similarly, mutation cannot occur on any random gene. Since the purpose of mutation
is to explore the neighboring solutions, only small changes should be applied to the chro-
mosome. As such, two mutation operators are proposed: vehicle mutation and start point
mutation. Additionally, mutation should occur only once per chromosome block to pre-
vent redundant solution space exploration. If mutation should occur in the chromosome
block, there is a 50/50 chance of applying vehicle mutation or starting point mutation. The
proposed mutation scheme can be visualized in Figure 13.

Figure 13. Example of applying vehicle and starting point mutation in the chromosome.

Since the higher-level path generation uses the pre-processed results generated by
the lower-level path generation, the GA can select the optimal start point for each sub-
area such that the overall travel time is minimized. Additionally, the GA is responsible
for managing the debris and water tank levels. Based on the input parameters (debris and
water rate), the GA can predict when the vehicle should make a depot trip to dump debris
or refill the water tank. In these cases, the vehicle travels from the point where the con-
straint is violated to the depot and then back carries on the path as expected.

As seen in the literature, the typical process for multi-vehicle coverage begins with
dividing the area into several sub-areas, and then the paths are generated in each sub-
area. In the proposed approach, several paths are pre-processed in predetermined sub-
areas. The main benefit of this approach is that pre-processing can save computation time
in the GA, and several candidate paths are calculated with different starting and ending
points. The GA can then select the optimal starting/ending point pair that yields the least
total distance. Since each starting point has a predetermined ending point, the starting
point has a direct influence on the total distance since the vehicle will need to travel from
one sub-area to the next. In the traditional case, the paths are to be calculated after divid-
ing them amongst a fleet of vehicles, which requires additional computation time and
typically has a fixed starting and ending point pair that can result in increased distance.

Additionally, the GA penalizes solutions where the battery constraint for any vehicle
is violated. As highlighted in Table 1, different battery drainage rates are applied based
on the vehicle’s status (servicing or deadheading). When any of the vehicle’s battery

Figure 13. Example of applying vehicle and starting point mutation in the chromosome.

Since the higher-level path generation uses the pre-processed results generated by the
lower-level path generation, the GA can select the optimal start point for each sub-area such
that the overall travel time is minimized. Additionally, the GA is responsible for managing
the debris and water tank levels. Based on the input parameters (debris and water rate),
the GA can predict when the vehicle should make a depot trip to dump debris or refill
the water tank. In these cases, the vehicle travels from the point where the constraint is
violated to the depot and then back carries on the path as expected.

As seen in the literature, the typical process for multi-vehicle coverage begins with
dividing the area into several sub-areas, and then the paths are generated in each sub-area.
In the proposed approach, several paths are pre-processed in predetermined sub-areas.
The main benefit of this approach is that pre-processing can save computation time in the
GA, and several candidate paths are calculated with different starting and ending points.

Robotics 2024, 13, 37 15 of 22

The GA can then select the optimal starting/ending point pair that yields the least total
distance. Since each starting point has a predetermined ending point, the starting point
has a direct influence on the total distance since the vehicle will need to travel from one
sub-area to the next. In the traditional case, the paths are to be calculated after dividing
them amongst a fleet of vehicles, which requires additional computation time and typically
has a fixed starting and ending point pair that can result in increased distance.

Additionally, the GA penalizes solutions where the battery constraint for any vehicle is
violated. As highlighted in Table 1, different battery drainage rates are applied based on the
vehicle’s status (servicing or deadheading). When any of the vehicle’s battery constraints
are violated, a large penalty is applied to exclude these solutions from the evolutionary
pool. This is because charging the battery takes too long in real-time applications, and
solutions should be provided so that the battery for all vehicles does not drain. This is an
emerging topic in routing applications that requires special attention [44]. A case where the
battery constraint is violated can be when most of the sub-areas are assigned to a vehicle,
while the remaining vehicles only service one sub-area each. It should be noted that the
entire park cannot be serviced by only one vehicle, and thus multiple should be used.

The higher-level path generation can also handle breakdown conditions. In these cases,
the remainder of the path assigned to the broken vehicle can be redistributed amongst
the in-service vehicles. The GA will have to be executed again to generate the new paths.
This results in routes that may differ from the originally planned ones (from the non-
breakdown case).

4. Results and Discussion

Two test case scenarios were used to evaluate the performance of the proposed algo-
rithms. The first scenario consists of two vehicles operating under normal conditions, while
the second scenario consists of a vehicle breaking down during operations. The statistics
for each case will be presented and analyzed with the objective of validating the proposed
methods. All results presented in this section are based on simulated experiments which
are used to validate the proposed methodology. This technology has not been applied in
real-world scenarios yet.

The same parameters for the higher-level path generation algorithm were used for
both scenarios. They can be seen in Table 2. As seen in Table 2, several processors can be
used for parallel computing. This means that the population can be divided into chunks
and distributed to each processor to be calculated in parallel. From experimentation, the
optimal number of processors was found to be five since additional time needs to be
allocated for the work division amongst the processors. Furthermore, the variables in
Table 1 were used during optimization and to calculate the statistics.

Table 2. Higher-level GA parameters used for both test scenarios.

Parameter Value

Generations 60
Population Size 20

Crossover Probability 0.90
Mutation Probability 0.05

Processors * 5
* Parameters that are specifically for parallel computing.

4.1. Scenario 1: 2 Normal Vehicles

A summary of the normal scenario can be found in Table 3. In Table 3, the time penalty
is applied to the total path generated in accordance with Equation (2). Since the servicing
paths created by the lower-level path generation approach consist of many turns, most of the
time, a penalty is applied to the service route. Specifically, this was assumed to be 90% since
deadheading was a comparatively simple and less time-consuming operation. Additionally,
the lower-level paths are more complicated since the layer routes are dependent on the

Robotics 2024, 13, 37 16 of 22

geometry of the sub-areas, which can be complex (creating many turns). This means
that more time is allocated to servicing than deadheading, which results in a higher time-
based efficiency than distance-based efficiency. Additionally, the servicing speed is less
than the deadhead speed, so there will naturally be more time allocated to servicing than
deadheading, resulting in a greater difference between the time-based efficiency and the
distance-based efficiency. A graphical representation of the sub-area traversal sequence can
be seen in Figure 14 for the normal scenario.

Table 3. Statistics for the normal scenario. In this case, both vehicles operate as expected without any
breakdown.

Vehicle 1 2

Total Distance 10,783.4 m 11,334.7 m
Total Time 3 h 49 min 48 s 3 h 52 min 48 s

Service Distance 6836.3 m 6272.9 m
Service Time 2 h 16 min 48 s 2 h 5 min 24 s

Deadhead Distance 2384.0 m 3022.2 m
Deadhead Time 0 h 18 min 0 s 0 h 22 min 48 s

Depot Trip Distance 1563.1 m 2039.6 m
Depot Trip Time 0 h 12 min 0 s 0 h 15 min 0 s

Time Penalty 1 h 3 min 36 s 1 h 9 min 36 s
Depot Trips 1 3 3

Total Distance Efficiency 2 59.27%
Total Time Efficiency 3 82.59%
Total Coverage Ratio 4 99.23%

1 This is the total number of times each vehicle requires a trip to the depot to dump debris and refill water. 2

Defined as the serviceable distance divided by the total distance. 3 Defined as the servicing time divided by
the total travel time. 90% of the time penalty is allocated to servicing. 4 Defined as the total area coverage for
all vehicles.

Robotics 2024, 13, x FOR PEER REVIEW 16 of 22

Table 3. Statistics for the normal scenario. In this case, both vehicles operate as expected without
any breakdown.

Vehicle 1 2
Total Distance 10,783.4 m 11,334.7 m

Total Time 3 h 49 min 48 s 3 h 52 min 48 s
Service Distance 6836.3 m 6272.9 m

Service Time 2 h 16 min 48 s 2 h 5 min 24 s
Deadhead Distance 2384.0 m 3022.2 m

Deadhead Time 0 h 18 min 0 s 0 h 22 min 48 s
Depot Trip Distance 1563.1 m 2039.6 m

Depot Trip Time 0 h 12 min 0 s 0 h 15 min 0 s
Time Penalty 1 h 3 min 36 s 1 h 9 min 36 s
Depot Trips 1 3 3

Total Distance Efficiency 2 59.27%
Total Time Efficiency 3 82.59%
Total Coverage Ratio 4 99.23%

1 This is the total number of times each vehicle requires a trip to the depot to dump debris and refill
water. 2 Defined as the serviceable distance divided by the total distance. 3 Defined as the servicing
time divided by the total travel time. 90% of the time penalty is allocated to servicing. 4 Defined as
the total area coverage for all vehicles.

(a) (b)

Figure 14. Graphical results showing the order of operation for vehicle 1 in yellow (a) and vehicle 2
in green (b).

4.2. Scenario 2: 1 Normal Vehicle with 1 Breakdown Vehicle
A breakdown scenario was proposed to evaluate the performance of the real-time

scheduling aspect of the algorithm. In this scenario, the remainder of the path left by the
broken vehicle can be redistributed to the active vehicle(s). So, a simulated breakdown
was created for vehicle 2 after traveling 8 km. A summary of the normal scenario can be
found in Table 4. Like the normal scenario, the same trend is seen for distance and time
efficiency (time efficiency is much higher) because of the slower servicing speed and time
penalty applied for sharp turns while servicing. A graphical representation of the sub-
area traversal sequence for the breakdown scenario can be seen in Figure 15. In Figure
15b, the location of the second vehicle breakdown is shown, and the remainder of that
sub-area is assigned to the first vehicle.

Figure 14. Graphical results showing the order of operation for vehicle 1 in yellow (a) and vehicle 2
in green (b).

4.2. Scenario 2: 1 Normal Vehicle with 1 Breakdown Vehicle

A breakdown scenario was proposed to evaluate the performance of the real-time
scheduling aspect of the algorithm. In this scenario, the remainder of the path left by the
broken vehicle can be redistributed to the active vehicle(s). So, a simulated breakdown
was created for vehicle 2 after traveling 8 km. A summary of the normal scenario can be

Robotics 2024, 13, 37 17 of 22

found in Table 4. Like the normal scenario, the same trend is seen for distance and time
efficiency (time efficiency is much higher) because of the slower servicing speed and time
penalty applied for sharp turns while servicing. A graphical representation of the sub-area
traversal sequence for the breakdown scenario can be seen in Figure 15. In Figure 15b, the
location of the second vehicle breakdown is shown, and the remainder of that sub-area is
assigned to the first vehicle.

Table 4. Statistics for the breakdown scenario. In this case, vehicle 2 breaks down while vehicle 1
remains in service.

Vehicle 1 2

Total Distance 13,925.5 m 8007.4 m
Total Time 4 h 51 min 36 s 2 h 50 min 24 s

Service Distance 8483.3 m 4624.1 m
Service Time 2 h 49 min 48 s 1 h 32 min 24 s

Deadhead Distance 3492.7 m 2294.9 m
Deadhead Time 0 h 26 min 24 s 0 h 17 min 24 s

Depot Trip Distance 1949.5 m 1088.4 m
Depot Trip Time 0 h 14 min 24 s 0 h 8 min 24 s

Time Penalty 1 h 21 min 36 s 0 h 52 min 48 s
Depot Trips 1 4 2

Total Distance Efficiency 2 59.76%
Total Time Efficiency 3 82.94%
Total Coverage Ratio 4 99.23%

1 This is the total number of times each vehicle requires a trip to the depot to dump debris and refill water. 2

Defined as the serviceable distance divided by the total distance. 3 Defined as the servicing time divided by
the total travel time. 90% of the time penalty is allocated to servicing. 4 Defined as the total area coverage for
all vehicles.

Robotics 2024, 13, x FOR PEER REVIEW 17 of 22

Table 4. Statistics for the breakdown scenario. In this case, vehicle 2 breaks down while vehicle 1
remains in service.

Vehicle 1 2
Total Distance 13,925.5 m 8007.4 m

Total Time 4 h 51 min 36 s 2 h 50 min 24 s
Service Distance 8483.3 m 4624.1 m

Service Time 2 h 49 min 48 s 1 h 32 min 24 s
Deadhead Distance 3492.7 m 2294.9 m

Deadhead Time 0 h 26 min 24 s 0 h 17 min 24 s
Depot Trip Distance 1949.5 m 1088.4 m

Depot Trip Time 0 h 14 min 24 s 0 h 8 min 24 s
Time Penalty 1 h 21 min 36 s 0 h 52 min 48 s
Depot Trips 1 4 2

Total Distance Efficiency 2 59.76%
Total Time Efficiency 3 82.94%
Total Coverage Ratio 4 99.23%

1 This is the total number of times each vehicle requires a trip to the depot to dump debris and refill
water. 2 Defined as the serviceable distance divided by the total distance. 3 Defined as the servicing
time divided by the total travel time. 90% of the time penalty is allocated to servicing. 4 Defined as
the total area coverage for all vehicles.

(a) (b)

Figure 15. Graphical results showing the order of operation for vehicle 1 in yellow (a) and vehicle 2
in green (b) in the breakdown scenario. In this case, vehicle 2 breaks down (the breakdown location
can be seen in (b)).

As expected, the overall operation time (maximum travel time) was higher for the
breakdown condition since vehicle 1 was assigned more sub-areas after vehicle 2 broke
down. Specifically, the operation time increased by approximately 1 h because of this.
Additionally, each vehicle is required to do three depot trips in the normal scenario,
whereas vehicle 2 breaks down after performing two depot trips, and vehicle 1 must do
four depot trips because of the increased sub-area servicing. In both scenarios, the respec-
tive efficiencies (time efficiency and distance efficiency) remain almost constant. This
highlights the performance of the algorithm’s real-time scheduling capabilities for the
breakdown scenario. This also confirms that the proposed algorithm can be used to yield
optimal solutions in any scenario for a fleet of vehicles.

Figure 15. Graphical results showing the order of operation for vehicle 1 in yellow (a) and vehicle 2
in green (b) in the breakdown scenario. In this case, vehicle 2 breaks down (the breakdown location
can be seen in (b)).

As expected, the overall operation time (maximum travel time) was higher for the
breakdown condition since vehicle 1 was assigned more sub-areas after vehicle 2 broke
down. Specifically, the operation time increased by approximately 1 h because of this.
Additionally, each vehicle is required to do three depot trips in the normal scenario, whereas

Robotics 2024, 13, 37 18 of 22

vehicle 2 breaks down after performing two depot trips, and vehicle 1 must do four
depot trips because of the increased sub-area servicing. In both scenarios, the respective
efficiencies (time efficiency and distance efficiency) remain almost constant. This highlights
the performance of the algorithm’s real-time scheduling capabilities for the breakdown
scenario. This also confirms that the proposed algorithm can be used to yield optimal
solutions in any scenario for a fleet of vehicles.

4.3. Computation Time, Area Coverage, and Work Efficiency

To ensure that the proposed algorithms can perform in real time, an analysis of the
computation time should be conducted. In Table 5, a summary of the computation time for
different scenarios and conditions can be seen. Specifically, the computation time for several
different generations in the GA and the two mentioned scenarios (two normal vehicles and
the breakdown scenario) is highlighted. As seen in Table 5, the runtime increases with more
generations. This trend is seen for both scenarios. Increasing the generations (allowing
the solutions to evolve more) means that a higher quality solution will be produced at
the expense of a longer computation time. However, experimentation shows that little
improvement is made to the overall travel time using more generations, thus leading to
the conclusion that fewer generations can be used to apply the proposed methods in real
time. For the results presented in this paper, 60 generations were used for the GA since the
experiments were conducted offline. In real-time applications, it is recommended to use
three generations since there are no significant improvements made to the solutions that
can justify the extended computation times. Additionally, in any number of generations,
the GA cannot guarantee that the global optimum has been found. It can only be assumed
that an acceptable local optimum has been found due to the complexity of the problem.

Table 5. Runtime comparison for different scenarios and conditions.

Scenario Generations (In the GA) Runtime (s)

2 Vehicles—Complete 60 170
1 + 1 Vehicles—Breakdown 60 19

2 Vehicles—Complete 30 85
1 + 1 Vehicles—Breakdown 30 13

2 Vehicles—Complete 3 16
1 + 1 Vehicles—Breakdown 3 6

Another metric used to highlight the performance of real-time scheduling is work
efficiency. The work efficiency can be formulated in Equation (11). Ideally, this number
should be near 100%, but it is also dependent on where the breakdown occurs. In this
study, vehicle 2 broke down after traveling 8 km, which yields a work efficiency of 79.8%.
However, if the vehicle were to break down earlier, the work efficiency would decrease
since the remaining vehicle would service more sub-areas.

work e f f iciency =
overall travel time f or the normal scenario

overall travel time f or the breakdown scenario
(11)

Another method of quantifying real-time scheduling can be defined. This is called
recovery efficiency, and it can be formulated in Equation (12). The recovery efficiency
quantifies how optimal the breakdown paths are in comparison to the paths planned for the
normal scenario. If this is 100%, this means that the proposed methods can schedule paths
that are of the same quality as the originally planned paths. The recovery efficiency was
calculated to be 100.1%. Having such a high recovery efficiency means that the proposed
methods can create paths that are comparable to the ones originally planned.

recovery e f f iciency =
total travel time f or the normal scenario

total travel time f or the breakdown scenario
(12)

Robotics 2024, 13, 37 19 of 22

Since the lower-level path generation is used to pre-process the service paths for each
sub-area, the area coverage remains the same for any scenario and is independent of the
performance of the higher-level path generation. The area coverage for each sub-area can be
seen in Table 6, where all sub-area coverages are over 94%, and the average area coverage is
99.23%. Having such high area coverage rates validates the performance of the lower-level
path generation methods (SSN) for the street-sweeping application.

Table 6. Area coverage percentage for each sub-area.

Area Coverage Ratio (%)

lane_1 99.99
lane_2 99.72
lane_3 99.98
lane_4 99.99
lane_5 99.62
lane_6 100.00
lane_7 100.00
lane_8 94.26
lane_9 99.97

lane_10 99.91
lane_11 99.54
lane_12 96.83
lane_13 99.86
node_1 99.73
node_2 99.35
node_3 99.74
node_4 97.62
node_5 99.98
Average 99.23

It should also be mentioned that using a lower and higher-level path generation
approach is something that has seen little to no consideration in existing studies. As a
result, a direct comparison between the methods discussed in this paper and existing studies
is not applicable. Instead, the promising results presented in this paper are used to validate
the proposed approaches for real-time scheduling of autonomous mobile applications.

5. Conclusions

In this study, a method of generating optimal servicing paths for a fleet of autonomous
street sweepers was proposed for a case study in Uchi Park, South Korea. Methods were
proposed to convert the serviceable area into a graph-like structure that can be used for
optimization methods and graph traversal algorithms. The developed graph generation
methods can guarantee an average area coverage rate of over 99.23% for all sub-areas.
The proposed path generation algorithms operate on two levels: the lower level and
the higher level. The novel SSN path planning method was used on the lower level to
generate optimal service routes in each sub-area, while a modified GA was applied on
the higher level to schedule the fleet and manage the vehicle constraints. The proposed
methods were validated using two scenarios: the normal scenario and the breakdown
scenario. The recovery efficiency shows that the routes produced after a breakdown share
similar statistics, thus validating the proposed methodology for real-time applications.
Additionally, the proposed methodology improves existing multi-robot scheduling by
considering several complex constraints (specific to street-sweeping) that have not been
explored in the literature. The methodology discussed in this paper can be applied to many
other scheduling and routing applications and is not limited to the case study in Uchi Park.
Specifically, the proposed methodology can be applied to any real-time multi-robot (or
multi-vehicle) CARPs with a fixed set of required edges. Since the mentioned methods have
been applied to street-sweeping, it is confirmed that many constraints (battery, water, and
debris capacity) can be handled simultaneously. This concludes that the same approach can

Robotics 2024, 13, 37 20 of 22

be applied to real-time multi-robot CARPs with the same number (or less) constraints. An
example of this can be waste collection, where several vehicles can be dispatched from a
single depot to collect curbside waste. The higher-level approach can handle many vehicles;
however, it was only tested with two. This was performed to mimic the expected conditions
in Uchi Park since they only have two autonomous street sweepers.

Limitations to this study include the runtime and turn radius. Since the quality of the
solution and runtime increase proportional to the number of generations, low generations
for real-time applications cannot guarantee near-optimal solutions. Methods were taken
to try to reduce the computation time (parallel computing and storing repeated paths);
however, it is still relatively high for real-time applications. Additionally, the vehicle
turn radius was not considered for this study. This means that the paths generated using
the proposed methods contain sharp turns that cannot be achieved because of the turn
radius constraint. Another target for future studies can include simulations and real-world
applications. In this study, the methods used to generate the routes were validated, but the
lack of physical experiments with the generated routes leaves room for further research.
When experimenting in real-world scenarios, the local path planner onboard the vehicles
will be instructed to follow the global paths generated by the proposed methodology, and
the routes will be distributed to the vehicles wirelessly as required. This was not within the
scope of the research presented in this paper since only the static obstacles were considered.
As a result, additional research would be required to implement the path-tracking control
technology with dynamic obstacle avoidance and trajectory recovery.

Author Contributions: Conceptualization, T.P., F.B. and J.S.; methodology, T.P. Furthermore, F.B.;
software, T.P. Furthermore, F.B.; validation, T.P., F.B., J.S., W.K. and M.L.; writing—original draft
preparation, T.P., F.B. and J.S.; writing—review and editing, T.P., F.B. and J.S.; visualization, T.P. Fur-
thermore, F.B.; supervision, J.S.; project administration, J.S. Furthermore, W.K.; funding acquisition,
J.S. Furthermore, W.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Korea Institute of Industrial Technology and The Associa-
tion of Korean-Canadian Scientists and Engineers.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Viet, H.H.; Dang, V.H.; Laskar, M.N.U.; Chung, T. BA: An online complete coverage algorithm for cleaning robots. Appl. Intell.

2013, 39, 217–235. [CrossRef]
2. Hasan, K.M.; Al-Nahid, A.; Reza, K.J. Path planning algorithm development for autonomous vacuum cleaner robots. In

Proceedings of the 3rd International Conference on Informatics, Electronics & Vision, Dhaka, Bangladesh, 23–24 May 2014.
3. Hameed, I.A. Coverage path planning software for autonomous robotic lawn mower using Dubins’ curve. In Proceedings of the

2017 IEEE International Conference on Real-time Computing and Robotics, Okinawa, Japan, 14–18 July 2017.
4. Wang, T.; Huang, P.; Dong, G. Modeling and path planning for persistent surveillance by unmanned ground vehicle. IEEE Trans.

Autom. Sci. Eng. 2021, 18, 1615–1625. [CrossRef]
5. Parsons, T.; Hanafi Sheikhha, F.; Ahmadi Khiyavi, O.; Seo, J.; Kim, W.; Lee, S. Optimal path generation with obstacle avoidance

and subfield connection for an autonomous tractor. Agriculture 2022, 13, 56. [CrossRef]
6. Yang, N.; Zhang, W.; Yu, W. Coverage path planning for autonomous road sweepers in obstacle-cluttered environments. In

Proceedings of the 2022 IEEE Conference on Control Technology and Applications, Trieste, Italy, 22–25 August 2022.
7. Gonzalez-de-Santos, P.; Ribeiro, A.; Fernandez-Quintanilla, C.; Lopez-Granados, F.; Brandstoetter, M.; Tomic, S.; Pedrazzi, S.;

Peruzzi, A.; Pajares, G.; Kaplanis, G.; et al. Fleets of robots for environmentally-safe pest control in agriculture. Precision Agric.
2017, 18, 574–614. [CrossRef]

8. Bautin, A.; Simonin, O.; Charpillet, F. Towards a communication free coordination for multi-robot exploration. In Proceedings of
the 6th National Conference on Control Architectures of Robots, Grenoble, France, 24–25 May 2011.

9. Oksanen, T.; Visala, A. Coverage path planning algorithms for agricultural field machines. J. F. Robot. 2009, 26, 651–668. [CrossRef]
10. Current, J.R.; Schilling, D.A. The covering salesman problem. Transp. Sci. 1989, 23, 208–213. [CrossRef]
11. Wang, Z.; Bo, Z. Coverage path planning for mobile robot based on genetic algorithm. In Proceedings of the IEEE Workshop on

Electronics, Computer and Applications, Ottawa, Canada, 8–9 May 2014.

https://doi.org/10.1007/s10489-012-0406-4
https://doi.org/10.1109/TASE.2020.3013288
https://doi.org/10.3390/agriculture13010056
https://doi.org/10.1007/s11119-016-9476-3
https://doi.org/10.1002/rob.20300
https://doi.org/10.1287/trsc.23.3.208

Robotics 2024, 13, 37 21 of 22

12. Pratama, P.S.; Kim, J.W.; Kim, H.K.; Yoon, S.M.; Yeu, T.K.; Hong, S.; Oh, S.J.; Kim, S.B. Path planning algorithm to minimize an
overlapped path and turning number for an underwater mining robot. In Proceedings of the 15th International Conference on
Control, Automation and Systems, Busan, Republic of Korea, 13–16 October 2015.

13. Cabreira, T.M.; Brisolara, L.B.; Ferreira Paulo, R. Survey on coverage path planning with unmanned aerial vehicles. Drones 2019,
3, 4. [CrossRef]

14. Chakraborty, S.; Elangovan, D.; Govindarajan, P.L.; ELnaggar, M.F.; Alrashed, M.M.; Kamel, S. A comprehensive review of path
planning for agricultural ground robots. Sustainability 2022, 14, 9156. [CrossRef]

15. Nakamura, Y.; Sekiguchi, A. The chaotic mobile robot. IEEE Trans. Robot. Autom. 2001, 17, 898–904. [CrossRef]
16. Hong Li, C.; Fang, C.; Ying Wang, F.; Xia, B.; Song, Y. Complete coverage path planning for an Arnold system based mobile robot

to perform specific types of missions. Front. Inform. Technol. Electron. Eng. 2019, 20, 1530–1542.
17. Volos, C.K.; Kyprianidis, I.M.; Stouboulos, I.N.; Nistazakis, H.E.; Tombras, G.S. Cooperation of autonomous mobile robots for

surveillance missions based on hyperchaos synchronization. J. App. Math. Biol. 2016, 6, 125–143.
18. Hwan Kang, K.; Hoon Lee, Y.; Ki Lee, B. An exact algorithm for multi depot and multi period vehicle scheduling problem. In

Computational Science and Its Applications–ICCSA 2005; Gervasi, O., Gavrilova, L.M., Kumar, V., Lagana, A., Lee, H.P., Mun, Y.,
Taniar, D., Tan, C.J.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3483, pp. 350–359.

19. Liu, Y.; Lin, X.; Zhu, S. Combined coverage path planning for autonomous cleaning robots in unstructured environments. In
Proceedings of the World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008.

20. Turchin, P. Quantitative analysis of movement: Measuring and modeling population redistribution in animals and plants. Q. Rev.
Biol. 1999, 74, 240–241.

21. Kang, Y.; Shi, D. A research on area coverage algorithm for robotics. In Proceedings of the 2018 IEEE International Conference of
Intelligent Robotic and Control Engineering, Lanzhou, China, 18 October 2018.

22. Waanders, M. Coverage Path Planning for Mobile Cleaning Robots. Available online: https://api.semanticscholar.org/CorpusID:
15584364 (accessed on 14 December 2023).

23. Joshi, P. Artificial Intelligence with Python; Packt Publishing: Birmingham, UK, 2017.
24. Kabir, A.M.; Kaipa, K.N.; Marvel, J.; Gupta, S.K. Automated planning for robotic cleaning using multiple setups and oscillatory

tool motions. IEEE Trans. Autom. Sci. Eng. 2017, 14, 1364–1377. [CrossRef]
25. Barrientos, A.; Colorado, J.; Cerro, J.D.; Martinez, A.; Rossi, C.; Sanz, D.; Valente, J. Aerial remote sensing in agriculture: A

practical approach to area coverage and path planning for fleets of mini aerial robots. J. F. Robot. 2011, 28, 667–689. [CrossRef]
26. Tan, C.S.; Mohd-Mokhtar, R.; Arshad, M.R. A comprehensive review of coverage path planning in robotics using classical and

heuristic algorithms. IEEE Access 2021, 9, 119310–119342. [CrossRef]
27. Razali, N.M.; Geraghty, J. Genetic algorithm performance with different selection strategies in solving TSP. In Proceedings of the

World Congress on Engineering 2011, London, UK, 6–8 July 2011.
28. Hameed, I.A.; Bochtis, D.D.; Sorensen, C.G. Driving angle and track sequence optimization for operational path planning using

genetic algorithms. Appl. Eng. Agric. 2011, 27, 1077–1086. [CrossRef]
29. Xidias, E.; Zacharia, P.; Nearchou, A. Path planning and scheduling for a fleet of autonomous vehicles. Robotica 2016, 10, 2257–2273.

[CrossRef]
30. Almadhoun, R.; Taha, T.; Seneviratne, L.; Zweiri, Y. A survey on multi-robot coverage path planning for model reconstruction

and mapping. SN Appl. Sci. 2019, 1, 847. [CrossRef]
31. Ahmadzadeh, A.; Keller, J.; Pappas, G.; Jadbabaie, A.; Kumar, V. An optimization-based approach to time-critical cooperative

surveillance and coverage with UAVs. Springer Tracts. Adv. Robot. 2008, 39, 491–500.
32. Maza, I.; Ollero, A. Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage

algorithms. In Distributed Autonomous Robotic Systems 6; Alami, R., Chatila, R., Asama, H., Eds.; Springer: Tokyo, Japan, 2007;
pp. 221–230.

33. Khaledyan, M.; de Queiroz, M. A formation maneuvering controller for multiple non-holonomic robotic vehicles. Robotica 2018,
37, 189–211. [CrossRef]

34. Nfaileh, N.; Alipour, K.; Tarvirdizadeh, B.; Hadi, A. Formation control of multiple wheeled mobile robots based on model
predictive control. Robotica 2022, 40, 3178–3213. [CrossRef]

35. Sun, D.; Wang, C.; Shang, W.; Feng, G. A synchronization approach to trajectory tracking of multiple mobile robots while
maintaining time-varying formations. IEEE Trans. Robot. 2009, 25, 1074–1086.

36. Kucharska, E. Dynamic vehicle routing problem—Predictive and unexpected customer availability. Symmetry 2019, 11, 546.
[CrossRef]

37. Song, J.; Gupta, S.; Hare, J. Game-theoretic cooperative coverage using autonomous vehicles. In Proceedings of the 2014 Oceans,
St. John’s, NL, Canada, 14–19 September 2014.

38. Song, J.; Gupta, S. CARE: Cooperative autonomy for resilience and efficiency of robot teams for complete coverage of unknown
environments under robot failures. Auton. Robot. 2020, 44, 647–671. [CrossRef]

39. Sun, R.; Tang, C.; Zheng, J.; Zhou, Y.; Yu, S. Multi-robot path planning for complete coverage with genetic algorithms. In
Proceedings of the International Conference on Intelligent Robotics and Applications, Shenyang, China, 8–11 August 2019.

40. Holland, J.H. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 1973, 2, 88–106. [CrossRef]

https://doi.org/10.3390/drones3010004
https://doi.org/10.3390/su14159156
https://doi.org/10.1109/70.976022
https://api.semanticscholar.org/CorpusID:15584364
https://api.semanticscholar.org/CorpusID:15584364
https://doi.org/10.1109/TASE.2017.2665460
https://doi.org/10.1002/rob.20403
https://doi.org/10.1109/ACCESS.2021.3108177
https://doi.org/10.13031/2013.40615
https://doi.org/10.1017/S0263574714002872
https://doi.org/10.1007/s42452-019-0872-y
https://doi.org/10.1017/S0263574718000942
https://doi.org/10.1017/S0263574722000121
https://doi.org/10.3390/sym11040546
https://doi.org/10.1007/s10514-019-09870-3
https://doi.org/10.1137/0202009

Robotics 2024, 13, 37 22 of 22

41. Hart, P.E.; Nilsson, N.J.; Raphael, B. Formal basis for the heuristic determination of minimum cost paths. Syst. Sci. Cybern. 1968, 4,
100–107. [CrossRef]

42. Liu, G.; Zhao, H.; Yang, H.; Zhiwei, D.W.; Wang, D. A fleet management system of autonomous electric street sweepers. In
Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Penang, Malaysia, 9–12 June 2023.

43. The Shapely User Manual. Available online: https://shapely.readthedocs.io/en/stable/manual.html (accessed on 16 December
2023).

44. Almouhanna, A.; Quintero-Araujo, C.L.; Panadero, J.; Juan, A.A.; Khosravi, B.; Ouelhadj, D. The location routing problem using
electric vehicles with constrained distance. Comp. Oper. Res. 2020, 115, 104864. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSSC.1968.300136
https://shapely.readthedocs.io/en/stable/manual.html
https://doi.org/10.1016/j.cor.2019.104864

	Introduction
	Route Generation Methodology
	Lower-Level Path Generation
	Higher-Level Path Generation
	Real-Time Scheduling

	Problem Specific Parameters for Uchi Park Zoo
	Vehicle and Park Specific Parameters
	Lower-Level Graph Generation
	Higher-Level Graph Generation
	Using the Lower-Level Path Generation
	Using the Higher-Level Path Generation

	Results and Discussion
	Scenario 1: 2 Normal Vehicles
	Scenario 2: 1 Normal Vehicle with 1 Breakdown Vehicle
	Computation Time, Area Coverage, and Work Efficiency

	Conclusions
	References

