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Abstract: Electromagnet arrays show significant potential in the untethered guidance of particles, de-
vices, and eventually robots. However, complications in obtaining accurate models of electromagnetic
fields pose challenges for precision control. Manipulation often requires the reduced-order modeling
of physical systems, which may be computationally complex and may still not account for all possible
system dynamics. Additionally, control schemes capable of being applied to electromagnet arrays of
any configuration may significantly expand the usefulness of any control approach. In this study,
we developed a data-driven approach to the magnetic control of a neodymium magnets (NdFeB
magnetic sphere) using a simple, highly constrained magnetic actuation architecture. We developed
and compared two regression-based schemes for controlling the NdFeB sphere in the workspace of a
four-coil array of electromagnets. We obtained averaged submillimeter positional control (0.85 mm) of
a NdFeB hard magnetic sphere in a 2D plane using a controller trained using a single-layer, five-input
regression neural network with a single hidden layer.

Keywords: magnetic guidance; neural-network-based controller; untethered manipulation; regression
neural networks; machine learning

1. Introduction

The magnetic guidance of particles and devices shows potential for untethered ma-
nipulation across a range of medical [1] and industrial applications [2]. Specifically, the
manipulation and actuation of particles [3], robots [4], and devices [5] in the milli- to
micrometer size range hold particular relevance, as these particles may serve as untethered
agents capable of remote-controlled action at a distance [6]. Numerous control algorithms
have been developed for the magnetic guidance of various devices [7,8] via an assortment
of magnetic coil arrays [9]. Detailed physical modeling approaches have been successfully
implemented for controlling magnetic particles [10] and magnetic nanofluids [11] using coil
arrays. Often, accomplishing such control requires a reduced-order model of a physical sys-
tem in which particle motion is driven by external fields [12] (e.g., optical [13], electric [14],
acoustic [15], or magnetic [16] fields).

Finite element approaches have been used to model the magnetic fields generated by
arrays of coils [17], demonstrating the high-fidelity manipulation of magnetic agents [18].
However, such implementations may be computationally complex and may not innately
account for all system dynamics such as coil heating, heterogeneities in the sample environ-
ment, or other complexities. Here, we introduced a simple, one-layer, five-input regression
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neural network for controlling a magnetic sphere in a workspace. Artificial neural net-
works (ANNs) have a long history in DC motor control [19], with early research applying
ANNs for the magnetic guidance of surgical devices such as catheters and implanted
magnetic devices [20]. Increasingly, ANNs are being implemented to fine tune magnetic
manipulation protocols, gaining ever-increasing precision with iterative training. Prior
demonstrations indicate that artificial neural networks can be trained to outperform linear
multipole electromagnet modeling relying on fundamental physics, particularly in cases
in which iron cores demonstrate nonlinear behavior in the presence of varying applied
magnetic fields from electromagnets [21]. Using arrays of electromagnets controlled by
ANNs, researchers have positioned millimeter-scale neodymium magnet (NdFeB) disc
agents in 2D using an eight-coil array [22], generated real-time predictions of motion
dynamics on polymer-based soft magnetic manipulators [23], as well as guided helical
microswimmers in 3D [24] and through uncharacterized biomimetic environments [25].
Magnetically guided wheeled robots have been controlled using neuro-fuzzy networks [26],
and researchers have made significant progress in guiding endoscopy instruments via
intelligent controllers [27–29]. Recently, artificial neural networks have been combined with
proportional resonant differential feed-forward control methods for controlling currents
in coil arrays aimed at supplying rotational fields to magnetic robots, demonstrating im-
proved control of the robot’s position and rotation with extremely small error [30]. Previous
work using model-free reinforcement learning aimed at teaching a system to guide a needle
using arrays of electromagnets [31] or to suspend a magnetic bead in a fluid against the
force of gravity [32,33].

These implementations often require complex, deep, multi-input ANNs requiring sig-
nificant training via expansive training data sets. Here, we applied a single-layer, five-input
ANN architecture to a simple four-coil array, demonstrating the manipulation of a mag-
netic sphere using magnetic gradients, achieved with no prior training or computational
modeling. Using a four-coil array, we achieved the ANN-based manipulation of a hard
NdFeB magnetic sphere with average submillimeter precision using a protocol trained on
the optical observation of random motions of the sphere in response to random current
inputs to a randomly selected coil in the array. We demonstrate that the system is capable of
following patterns with both sharp asperities (star-shaped pattern), as well as smooth and
continuous curves (circle-shaped pattern). We first describe the mapping of the physical
system and delineate the forces involved in actuation. We then describe the experimental
apparatus and data collection methodology, including localization and tracking of the
NdFeB magnetic sphere. In the sections that follow, we describe the preprocessing of
the data and the development of two data-driven controllers (surface fitting model and
artificial neural network). We then introduce the ANN developed for manipulating the
magnetic sphere and briefly describe system integration and deployment via a custom
graphical user interface (GUI). Next, we describe our results, detailing the collected sphere
position data set and comparing the accuracy of our ANN approach with the accuracy of
a surface fitting model approach. We demonstrate controlled motion along two paths (a
star-shaped polygon path and a circular path). Finally, we discuss our control findings
and provide some details on the GUI response time, as well as the variability in magnetic
sphere detection given different lighting conditions.

2. Methods

In this section, we first establish a system model to provide a basis of the forces in-
volved in magnetic manipulation using our system. Then, we describe our experimental
apparatus and data collection protocols, including localization approaches for the electro-
magnet coils and the NdFeB magnetic sphere. Following that, we describe magnetic sphere
tracking, data preprocessing, and the development of two data-driven controllers. Finally,
we describe system integration and deployment.
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2.1. System Model

Here, we introduce the system with a model that covers the relevant forces involved
in magnetic manipulation. We consider a mapping the position of the NdFeB sphere in
the workspace as can be described by position p , where p ∈ R3. Magnetic fields in R3 are
generated by currents i (unit, A) running through any electromagnet Nem surrounding the
workspace [34]. Following an established approach [9], we define the magnetic field B at a
given location p generated by any single coil carrying current i as B(p, i), where

B(p, i) =

∫
µ0

i dl × (p − pdl)
4π ∥p − pdl∥3 (1)

where dl is a differential length (unit, m) of the conductor at a specific location pdl. As-
suming Nem electromagnets have air cores, we consider the system using a linear magnetic
model that follows the principle of superposition, allowing us to write the magnetic field B
for position p as

B(p) =

Nem

∑
k=1

Bk(p) ik (2)

where ik is the current (unit, A) supplied to the kth coil. Here, we denote the centroid of
the position of the magnetic sphere by p = [x, y]T . For a NdFeB magnetic sphere having a
magnetic moment of mp, the magnetic field B(p) applies a force Fm on the magnetic sphere
that is proportional to the magnetic field and field gradient, as given by

Fm = ∇(mp · B), (3)

and all translational motion generated on the magnetic sphere is induced by magnetic field
gradients. Accordingly, we denote the linear velocity of the magnetic sphere with

ṗ = [ẋ, ẏ]T , (4)

and the acceleration by
p̈ = [ẍ, ÿ]T . (5)

Here, in addition to the applied magnetic force (Fm), there are additional forces including
the the buoyancy force (Fb), gravitational force (Fg), friction force (Ff), and fluidic drag
force (Fd). Similarly, magnetic fields induce torques on the magnetic sphere, given by τm,
where

τm = mp × B, (6)

as well as the associated drag torque (τd), and friction torque (τf). Numerous works
have presented detailed control approaches for the magnetic manipulation of various
magnetic agents, and reviews have covered this topic [7,8]. Here, we bypassed all model-
based approaches to magnetic agent control and instead developed two regression-based
approaches that do not rely on a priori assessments of coils generating magnetic fields in
the presence of magnetic objects.

2.2. Experimental Apparatus

Our actuation array consisted of four electromagnets (EMs) positioned in a plane (X–Y
plane) and oriented such that coils sat along the cardinal directions (Figure 1a). Opposing
EM faces were 40 mm apart, and each EM had an outer diameter of 40 mm, an inner
diameter of 22 mm, and a length of 40 mm. Magnets contained 14 layers of windings
with 29 turns per layer (AWG 16 magnet wire). We used 3D-printed forms (ULTEM 1010,
Stratasys Direct, Rehovot, Israel) to wind the EMs, and iron cores (19 mm diameter, 40 mm
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length) were placed inside the EMs to increase the fields and gradients generated by the
system (Figure 1b).

  35 mm

40 mm
40 m

m

b

CAMERA

MOTOR CONTROLLER 2

CH1 CH2

PC
DC 

POWER 
SUPPLY

MOTOR CONTROLLER 1

CH1 CH2

a

Figure 1. (a) Schematic diagram of the experimental setup. (b) Picture of the actual setup mounted
on a 3D-printed base with labeled dimensions. ArUco markers were assigned to each of the four coils.
Centered in the coil array sits a Petri dish (35 mm diameter).

Magnetic fields were generated via PWM signals supplied by two dual-channel motor
controllers (RoboClaw, Basicmicro Motion Control, Temecula, CA, USA) (Figure 1a). Motor
controllers were powered by 60VDC AC/DC converters (CUI Inc., Tualatin, OR, USA); EMs
were controlled by a computer that generated either random current pulses for training or
controlled specific current pulses for prescribed planned object manipulation. All training
and experimental manipulations were performed in polycarbonate Petri dishes 35 mm in
diameter and 10 mm tall (Falcon 351008, Becton Dickinson Labware, Dubai, United Arab
Emirates). The Petri dish was filled with hand sanitizer, and the magnetic sphere was
placed in the hand sanitizer for manipulation. A camera (Ipevo Ziggi USB Camera, Ipevo
Inc., Taipei, Taiwan) was placed above the petri dish to acquire video frames that were
streamed to the PC. The video frames recorded the movement of the magnetic sphere over
time. Here, we chose a simple 4.8 mm diameter NdFeB magnetic sphere (K&J Magnetics,
Pipersville, PA, USA, product # S3, grade N42). Motor controllers were connected to a
computer and graphical user interface (GUI) via USB and controlled using packet serial
methods based on a C# library. The simultaneous control of the two motor controllers was
accomplished via multithreading handled by the GUI.

2.3. Data Collection

An automated data collection process was implemented in which random currents
were supplied to the coils sequentially, and the response of the magnetic sphere was
recorded. A diagram of the data collection procedure is shown in Figure 2. During data
collection, only one coil was ever activated at a given time to produce one data point on
the relationship between that coil activation and the resultant magnetic sphere movement.
The single-coil actuation constraint significantly simplified the data collection process but
also generated an artificially bounded, artificially simple training dataset. Data collection
started by determining the position of the magnetic sphere and recording the sphere’s
starting position (Figure 2A). The protocol then determined the distance between the
magnetic sphere and any of the four coils. If the magnetic sphere was within 20 mm of
a given coil (Figure 2B), the protocol algorithm automatically selected the opposing coil
(Figure 2C). For locations more than 20 mm from any coil, the data collection algorithm
selected a coil at random for actuation (Figure 2D). The selected coil was activated with a
random current scale value, which was recorded and collated with the resulting sphere
motion (Figure 2E,F). The above steps were then repeated until stopped. The recorded data
were saved in a CSV file for easy examination and analysis.
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Figure 2. Data collection procedure flowchart.

2.3.1. Coil Localization

The object detection module was also tasked with orienting and calibrating the po-
sitions and poses of all EM coils relative to the workspace. To accommodate >30 frames
per second imaging and operation, localization of the EM coils was performed in <190 ms.
EM coil detection was performed via recognition of coil-specific ArUco fiducial markers
(OpenCV) placed on top of each coil [35] (see Figure 1b). The method applied an adaptive
threshold to obtain black borders of each ArUco marker, then contoured the image for
candidate markers. Following contouring, the object detection module rejected candidates
based on an internal filter. The binary pattern of each remaining contour was then analyzed,
and the four corners of a marker (defining its location) were returned. For simplicity, here,
we refer to individual coils as +X, −X, +Y, and −Y coils.

2.3.2. Magnetic Sphere Localization

An object detection module was created for receiving and processing the optical
data collected via the camera, including detection of the magnetic sphere across streamed
frames. For magnetic sphere localization in each frame, we first obtained a preoperative
comparison image (background image), which could then be subtracted from subsequent
streamed frames. Following subtraction, images were segmented within the area of interest
(Petri dish region of the image) and then filtered to obtain the magnetic sphere’s location.
The background image was generated by taking and averaging sequential images of the
system with the magnetic sphere positioned at the face of each EM coil via the application
of a magnetic field gradient pulling the sphere toward the coil. By actuating each EM
sequentially, we positioned the magnetic sphere at the face of each EM coil, collecting
an image at each position (Figure 3a–d). We repeated the process, collecting a total of
two example images for each of the four magnetic sphere positions. The eight images
were then averaged to mitigate the presence of a magnetic sphere, and this averaging step
generated a background image that was sufficiently clean to allow for system tracking
in future images in which the magnetic sphere could be positioned anywhere in the
workspace. Figure (Figure 3e) depicts the generated background image created from the
above process of averaging eight images having the magnetic sphere in front of each
EM coil. Figure (Figure 3f) presents an image of the Petri dish with the magnetic sphere
completely removed from the dish. Our goal with image processing was to accomplish
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magnetic sphere localization in less than 35 ms, as longer delays in sphere localization
result in delays in camera frame acquisition.

a b c d fe

Figure 3. Background image generated by image averaging works well. (a–d) Images of a magnetic
sphere positioned in front of EM coils. (e) Background image created by averaging (a–d). (f) Background
image was taken with the magnetic sphere removed from the Petri dish. The scale bar is 1 cm.

2.3.3. Magnetic Sphere Tracking

A user can interactively draw the path for the sphere to follow using the GUI.The
system can control the magnetic sphere to follow any trajectory, including those with sharp
turns. The system has two customizable parameters for path configuration. The first one is
the path interpolation amount, which determines the discretization resolution of the given
path. Even if the specified path has only a few anchor points, with a small interpolation
amount the path can be finely discretized so that the magnetic sphere can continuously
follow a smooth and interpolated path. The second parameter is the path tolerance, which
specifies the acceptable distance of the sphere from a path point within which the sphere
is considered as successfully following the corresponding path point, and the next target
point is then updated. With these two parameters specified by the user, our system ensures
locally smooth path specification and sufficient tracking resolution so that any target path
can be followed.

2.4. Preprocessing

The collected data were preprocessed before use in model training. Our preprocessing
procedure involved first removing all data samples where current scale values were zero.
This means that the +X coil input only included values for which the +X coil current was
not zero; the same applied for the other coils. Since coils were activated one at a time,
the original dataset contained a large proportion of instances in which the current for a
given coil was zero, which should be excluded in model training. Following the initial
cleaning, approximately 15% of the dataset (≈4500 instances) remained for the training set.

Once data were cleaned of zero values, position data were normalized to a common
spatial scale (2D, X–Y plane). Initial x and y positions of the sphere, X0 and Y0, and final
positions, X f and Yf , were all in the range of −17.5 mm and 17.5 mm. The measured
distance of the sphere to a coil D was in the range of 5 to 40 mm. Z-score normalization
was applied to all data.

2.5. Development of Two Data-Driven Controllers

Two data-driven controllers were independently developed using the same collected
data for comparison. The first controller is an ANN-based controller, which learns a
predictive model to determine the optimal control signal to move the magnetic particle in
the desired direction by the desired travel distance. The second controller is a surface-fitting
model, which results in polynomial functions of the distance between the particle and a coil
and the desired travel distance. Both models learn the relationship between coil current
levels and particle location and travel distance but in different ways. Figure 4 depicts
a block diagram of the magnet control system with two controllers. The controllers are
detailed in the following sections.
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Figure 4. Block diagram of the magnet control system.

2.5.1. Artificial-Neural-Network-Based Controller

Artificial neural networks were used to control sphere movement in the 2D plane.
Four ANNs of the same architecture were trained for the four coils that moved the sphere
in the x and y directions (Figure 5). To choose the architecture, the number of hidden layers
was varied between 1 and 3, and the number of hidden neurons was tested at 10, 15, 20, 30,
and 60 systematically. One hidden layer and ten sigmoid logistic neurons were determined
as the best architecture parameters. More complex architectures did not provide any
significant increase in performance (measured using the R2 correlation coefficient). Here,
we used ANNs based on the generalized regression neural network approach [36]. Each
ANN took in five input features, X0, Y0, X f , Yf , and D as defined above. These five inputs
were chosen by applying Scikit–Learn’s mutual information regression feature selection
method [37] to determine the most relevant features for inclusion. All inputs are expressed
in millimeters. Each ANN contained one hidden layer with ten hidden nodes. The output
of the ANN was the predicted current scale value of the corresponding coil that would
move the sphere to the destination.

Input data were the five measurements collected from tracking the motion of the
spherical magnetic sphere as a result of randomly generated pulses applied to the coils.
The collected data were split in such a way that 80% was used for training and 20% for
testing. Training and testing the ANN models were implemented in the Matlab Deep
Learning Toolbox [38] using the Levenberg–Marquardt algorithm [39]. Training the ANN
model does not require a specialized computer workstation but can be performeds on any
laptop or desktop that has Matlab installed. In our study, training the ANN model took
about 10 min only.

Figure 5. Four ANNs of the same architecture were trained to compute the current scale values of
the four coils. X0, Y0: initial x and y positions of the sphere, respectively; X f and Yf : final x and y
positions of the sphere, respectively; D: measured distance of the sphere to a coil.
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2.5.2. Surface Fitting Model-Based Controller

The other control method that we implemented for comparison was the surface fitting
model. The same collected data described previously werew used to learn a direct mapping
between the applied current scale to a coil and the resultant sphere position. System states
such as the viscosity of the liquid agent that the sphere traveled in and hardware setup
were also captured by the mapping. A nonlinear regression model was used to represent
the mapping, which could then be used to predict the amount of coil current needed to
move the sphere in the desired direction by the desired distance. Four models, one for
each coil, were implemented by using the ’polyfit’ function in Matlab. Figure 6 illustrates
one fitted surface model, which represents the nonlinear association between the sphere
distance from a coil and the traveled distance to the current scale.

Figure 6. An example of the learned surface model, which maps the sphere distance to the corre-
sponding coil and the traveled distance of the sphere to the current scale applied.

2.6. System Integration and Deployment

Each trained neural network model’s weights and biases were exported to our C++
program so that they could be used with the program controlling the actual system. The C++
matrix library Eigen [40] was used to initialize the weight and bias values for each network.
User interaction with the system followed a sequence of steps, starting with system calibra-
tion, followed by session setup, after which the user drew a path within the Petri dish area
and initiated the controller to move the sphere along the drawn path (Figure 7).

Figure 7. GUI allows the user to first (a) calibrate the system, choosing filter thresholds, and mini-
mum and maximum particle sizes (pixels). (b) Setup and user–directed file naming, camera status,
and motor controller status. (c) How a user interacts with the system. First, the start location, end
location, and waypoints are selected, and system control is initiated.
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3. Results
3.1. Data Collection

Training data collection included a total of 30,000 instances collected over 3 days.
Of the 30,000 instances, approximately 19,000 instances were deemed usable for the train-
ing protocol. Unusable instances were characterized by insufficient magnetic sphere motion,
unclear visualization of the magnetic sphere, or poor magnetic sphere localization. The con-
figuration of the four coils and the constraint on actuating a single coil at a time made
it challenging for the magnetic sphere to move to cover the entire workspace. As such,
a majority of the observable instances were constrained to the central and +-shaped central
region of the workspace. Figure 8 shows the trajectories of the magnetic sphere over the
training period. The majority of the sphere movement was along the horizontal and vertical
axes. Much less data were collected in “dead zones”, depicted by regions with a lack of
data points (red + signs with green circles).

Figure 8. Training data were collected continuously by tracking magnetic sphere positions after the
application of a sequence of randomly distributed magnetic pulses. Pulse protocol as described above.

3.2. Accuracy Comparison of Predicted Current Scales from Two Models

Control current scales predicted by the ANN model and surface fitting models were
compared to the applied current scales in the test data. R2 values were calculated to assess
the accuracy of the predicted control currents of each model. Figure 9a shows the current
scales predicted by the ANN model in comparison to the expected current scales of all
the test data instances. The R2 value of the +X coil instances was 0.93 and that of the −X
coil was 0.88, both showing the efficacy of the ANN in generating the control currents to
move the sphere by the desired distances. In particular, the predicted model showed a
close association with the expected current value when they were under a scale factor of
50. Figure 9b shows the current scales predicted by the surface fitting model in comparison
to the expected current scales of the test data. The R2 values of the +X and −X coils were
0.65 and 0.73, respectively. A comparison of the R2 values of both horizontal coils showed
that the ANN controller performed significantly better than the surface fitting model, with
an increase in the R2 values of the current scales of 0.28 and 0.15, respectively, as predicted
by the ANN controller.
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Figure 9. Performance comparison of current scale factor inference between the ANN +X and −X
coil models (a) and the surface-fitting +X and −X coil models (b).

Table 1 compares the performance of all coils controlled by the ANN model to those
controlled by the surface fitting model. The ANN controller outperformed the surface
fitting model for all coils, yielding R2 values at least 10% larger than those obtained with
the surface fitting model. The averaged ANN model R2 value was 0.91, while that of the
surface fitting model was 0.735, demonstrating the significantly better accuracy of the
ANN controller.

Table 1. R2 values for each coil based on the surface fitting model and the single-layer, 10-neuron
artificial neural network.

Trained Coil Surface Fitting R2 Artificial Neural Network R2

+X 0.650 0.932
−X 0.729 0.882
+Y 0.735 0.887
−Y 0.827 0.934

AVERAGE 0.735 0.910

3.3. Comparison of Magnetic Sphere following Trajectories

Both ANN and surface fitting translation models were tested using the same starting
sphere location and proposed pathway. Both models allowed translation toward the desired
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final location following the given path. However, as shown in Figure 10a, the surface fitting
model induced frequent and dramatic (several sphere body lengths) overshoot of the
sphere position at locations near the coils, especially near the +X and −Y coils. On the
other hand, the sphere path that was controlled by the ANN-based controller (shown in
blue) was significantly more even throughout the workspace and more closely followed
the desired path than the path from the surface fitting model (shown in green). The results
suggested that the ANN controller outperformed the surface fitting controller in moving
the magnetic sphere. After training, the GMU-Magneto system was capable of controlling
the magnetic sphere (4.8 mm diameter NdFeB sphere) with submillimeter precision, using
a trained ANN having a single hidden layer with 10 nodes. Across all trials, the average
standard deviation from the path for the magnetic sphere was 0.85 mm. The reported
results demonstrated the overall bound on the stability of the system. The four actuators
were activated one at a time in a sequence. If any single actuator was unreliable, it would
have contributed to errors in the overall performance.

a b

Figure 10. Path traversal comparison. Desired and actual paths traversed by the particle using the
two different motion models (a). The average path traversed by the particle across N = 10 trials using
the neural network model (b).

4. Discussion

Here, we developed a system that provides a test bed for examining the application
of artificial-neural-network-based controllers in object manipulation using electromag-
netic fields. Here, we made use of simple and sparse training data in which the overall
sampling of the workspace was relatively incomplete. Even though Figure 8 contains a
significant amount of the unsampled space, the controller performed well across the entire
workspace, as evidenced in Figure 11. A video of the controller moving the magnetic
sphere is included as Supplementary Material. ANN controllers were demonstrated to
have reasonable (submillimeter) positional resolution in a 2D setting when trained using
our simple approach. An additional limitation in the training data set was that the supplied
coil current was binary, either 0 A or 20 A. This means that smaller incremental motions
of the sphere, as would be expected for coil currents between 0 A and 20 A, were not
represented in the training dataset. One future direction is to design a better training
process so that the training data incorporate a richer set of positions and trajectories. We
anticipate significant improvements in the system with the addition of incremental coil
currents. Significantly, the ANN used here contained only one hidden layer, suggesting
that fairly simple networks are capable of positional control of simple magnetic objects with
accuracy being significantly smaller than the object diameter. More complex workspaces,
for example, workspaces having surfaces with varying coefficients of friction, may be ideal
testbeds for future experimentation, as computational assessment of varying friction over a
workspace is likely challenging to model well.
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Figure 11. Sphere manipulation demonstration. Using a GUI, a user-defined pattern is proposed
having a start position (a), 10 intermediate waypoints (b–k), and a finish position (l). Despite the
overwhelming data on sphere response to the random distribution of pulses being centered on the
cardinal axes of the workspace (Figure 8), the system readily moves the magnetic sphere through a
broad range of the workspace (traversing 270° around the center point, (a–j)) and finally returns the
magnetic sphere to the center of the workspace (k,l).

The system presented here has implications for quickly establishing the ANN-based
control of magnet objects via electromagnets. For example, the method we presented for
learning control of a spherical magnetic sphere may, in the future, be extended to teach coil
arrays to control broad libraries of spheres with diverse magnetic properties. Additionally,
the presented method may be applied to highly asymmetric arrays of electromagnets to
expedite and simplify expectations of how current supplied to such coils would move
a magnetic sphere of a given, and perhaps unknown, magnetic ordering. Additionally,
expanding on our approach by applying it to systems of moving electromagnets or per-
manent magnets may allow for control approaches for complex magnet array systems
having numerous variables (magnet position, coil current, magnet angle) to be explored
quickly, in a randomized fashion, for the creation of a reliable, low-error control approaches.
Future applications of the method may be implemented in other fields using magnetic
manipulation, such as microfluidics [41], magnetic drug targeting [42], or the future of
microscale devices for medicine [43,44]. Additionally, comparing our ANN approach with
control methods based on analytical models may be a future method of benchmarking the
ANN results and determining how the ANN may be improved in the future. Combining
such control efforts with tracking of more complex and medically relevant devices such
as surgical needles [45] and incorporating other nonoptical imaging modalities such as
ultrasound (US), computed tomography (CT), or magnetic resonance imaging (MRI) may
expand the toolbox of magnetic surgical instrument guidance. However, the overall ma-
nipulation of surgical instruments requires significant on-the-fly tunability, and control
paradigms that can begin to address the dynamics of in vivo operation are only just now
emerging [46,47].

4.1. Magnetic Sphere Detection Sensitivity Analysis

To assess system tolerance to various lighting conditions, we recorded the sphere
location under three different lighting scenarios: dark room of ≈6 lux (Figure 12a), ambient
overhead room lighting of ≈80 lux (Figure 12b), and direct overhead lighting supplied by a
lamp of ≈220 lux (Figure 12c). For each determination, a video of the sphere was collected
for 60 s, during which time the sphere was not manipulated. During the 60 s video under
each lighting condition, 50 frames were collected and segmented to estimate sphere location.
The standard deviation in sphere location for each lighting condition was computed. Dark
room, ambient, and direct overhead lamp lighting conditions yielded standard deviations
in sphere position of 0.34 mm, 0.05 mm, and 0.13 mm, respectively. We suspect that the
ambient lighting condition yielded the lower standard deviation in sphere position because
the dark room condition provided insufficient illuminance to reliably determine the edges
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of the sphere, and the direct overhead lamp condition yielded saturated pixels and shadows
that also inhibited accurate edge detection in our object detection scheme.

a cb
Figure 12. Comparison of sphere location detection in various laboratory lighting scenarios. (a) Dark
room with only sunlight, approximately 6 lux. (b) Ambient lighting from room lights, approximately
80 lux. (c) Direct lighting from lamp positioned over Petri dish and coil array, approximately 220 lux.

4.2. GUI Response Time

For the GUI to be practical, reasonable response times are required for a seamless
user interface. We quantified system response times to ensure smooth operation, as shown
in Table 2. Specifically, we assessed the GUI functions of the startup, camera connection,
motor controller connection, opening the settings window, applying settings window edits,
starting/pausing system operation, and stopping hardware execution. We found that
startup and camera connection initiated long delays, with each operation taking ≈1 s.
Beyond those two functions, all other functions were completed in significantly less than
100 ms.

Table 2. Typical lag time values for significant GUI functions

Function Average Lag Time (ms) Standard Deviation (ms)

Startup 1287.13 16.59
Camera Connection 987.38 182.76
Motor Controller Connection 10.81 0.59
Open Settings Window 52.38 2.11
Apply Settings Window Edits 0.16 0.10
Start/Pause System Operation 1.98 0.56
Stop Hardware Execution 0.09 0.08

Future work demonstrating operability in an array of light sources, and possibly under
actively changing lighting conditions, may shed light on how the anticipation of dynamic
lighting conditions could be incorporated into the training set for untethered magnetic
manipulation systems. Various laboratories have applied advanced learning techniques
such as reinforcement learning to the problem of controlling small magnetic devices [48–50],
and we acknowledge that the application of such learning approaches would improve
the performance of our controller. However, here, we emphasize the ability to control a
simple magnetic sphere using very simple regression models and a small sample data set.
Additionally, future efforts may include incorporating finite element model simulations for
the controller and coil array. Finally, the proposed ANN model can be improved by adding
the desired travel time as another input to provide transient movement control in addition
to the current position control.

5. Conclusions and Future Work

We developed a simple, easy-to-implement AI-based controller for an electromagnetic
system, tested its performance in a four-coil system, and compared it to a surface fitting
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controller. We described the electromagnet system, magnetic sphere tracking method,
our approach for data collection, and ANN structure. We then quantified the ANN’s
performance in comparison to that of a surface fitting control approach. Our results
showed that a simple one-layer artificial neural network could be conveniently trained to
control the magnetic sphere’s position to follow desired trajectories. The significance of
the method presented lies in its simplicity, in that no prior physics knowledge is used in
the ANN, and the collected data rely on the actuation of a single coil at a time, with only
a single current value used in the data collection. No assumption needs to be made on
the system configuration or characteristics, as the ANN model was able to learn them
through the training data. Naturally, more complex exploration of the parameter space,
such as activating multiple coils at a time or activating coils with incremental current values
(i.e., currents between 1 A and 20 A) would significantly expand the original data set and
improve the accuracy and precision of the ANN-based controller.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/robotics13030039/s1, Video S1: Operation of the GUI and posi-
tioning of the magnetic sphere.
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