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Abstract: This paper focuses on the real-time obstacle avoidance and safe navigation of autonomous
ground vehicles (AGVs). It introduces the Selective MPC-PF-PSO algorithm, which includes model
predictive control (MPC), Artificial Potential Fields (APFs), and particle swarm optimization (PSO).
This approach involves defining multiple sets of coefficients for adaptability to the surrounding
environment. The simulation results demonstrate that the algorithm is appropriate for generating
obstacle avoidance paths. The algorithm was implemented on the ROS platform using NVIDIA’s Jet-
son Xavier, and driving experiments were conducted with a steer-type AGV. Through measurements
of computation time and real obstacle avoidance experiments, it was shown to be practical in the
real world.

Keywords: autonomous ground vehicle; path planning; model predictive control; particle swarm
optimization; potential field; driving simulation; driving test

1. Introduction

Autonomous driving vehicles are a subject of active research worldwide, particularly
in the fields of indoor and outdoor robots, automobiles, space robot, and the military. The
primary objectives of this research are efficient exploration, saving time, and safety. Various
ideas are being researched and presented to achieve these goals.

Autonomous driving consists of three main components: environmental awareness,
path planning, and driving control [1]. Environmental awareness involves the use of
sensors, such as cameras and LiDAR, to perceive surroundings. Path planning incorpo-
rates various methodologies, including graph-search-based, sampling-based, interpolation-
based, and optimization-based methods [1]. These techniques aim to formulate a safe
driving path based on the information gathered from environmental awareness.

Graph-search-based methods create nodes within the domain and construct a graph [2],
which includes algorithms like Dijkstra [3] for finding the shortest path and A-Star [4] for
determining the optimal path, using heuristic techniques. Sampling-based approaches
randomly sample and connect points within the surrounding space [5]. Examples of
such methods include the probabilistic roadmap method [6] and the rapidly explored
random tree method [7]. Interpolation-based methods define a function using multiple
coefficients and determine these coefficients [8]. Optimization-based methods formulate
an optimization problem with constraints and cost functions to find a path that minimizes
the cost. Examples of such methods include the potential field algorithm [9,10] and model
predictive control (e.g., [11]).

The potential field algorithm is widely employed for real-time collision-free path
planning [12]. In this approach, an attractive force is generated in the direction of the
goal, while a repulsive force emanates from obstacles. Despite its frequent use due to its
mathematical simplicity, issues such as local minima and oscillations around obstacles have
been encountered [12]. Sfeir [13] introduced new formulas to mitigate these oscillations and
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prevent conflicts when obstacles are situated near a target. Kim [14,15] proposed a novel
framework for escaping local minima in a robot’s path using the potential field method.

Path planning using model predictive control (MPC) is being studied as one of the
important technologies in mobility systems such as autonomous vehicles and robots. MPC-
based path planning solves an optimization problem for a set of future control inputs,
creating a stable, collision-free, and efficient path.

However, there are still issues with path generation using MPC. The first issue is
how to describe obstacles, and the second is the calculation of the optimization problem
in MPC [16]. Recently, attempts have been made to integrate Artificial Potential Fields
(APFs) into MPC. Potential fields are used to identify obstacles instead of using inequality
constraints [17,18]. To tackle the second issue, optimization techniques have been em-
ployed, including the use of genetic algorithms (GAs) [19] or particle swarm optimization
(PSO) [20–22]. Zuo [16] conducted a study on vehicle lane changes using MPC, potential
fields, and PSO.

When generating a path using MPC and potential field, the decision must be made
as to whether to choose a safe or fast path. This is typically adjusted by establishing
coefficients for the potential field and MPC’s cost function. However, it is not possible
to change these assigned coefficients while driving. This paper proposes a method for
defining multiple sets of weight coefficients when using MPC. We aim to guide path
selection through an additional evaluation using a weight coefficient set appropriate for
the surrounding environment.

Additionally, using multiple sets of weight coefficients may cause issues with real-time
performance. Our objective is to demonstrate the practical applicability of this method
in real-world driving. This will be accomplished by measuring computation times and
conducting experiments.

This paper is structured as follows: Section 2 describes the selective MPC-PF-PSO
algorithm, including the system configuration, potential field, model predictive path
planning, particle swarm optimization, and the cost function used. Section 3 presents
the simulation results, which demonstrate the algorithm’s effectiveness in autonomous
driving scenarios. Section 4 delves into the experimental setup, showcasing the algorithm’s
performance in real-world driving scenarios.

2. Selective MPC-PF-PSO Algorithm
2.1. System Configuration

By simplifying the steering-type vehicle model to a bicycle model, we can obtain the
following dynamic equations:

.
xV = v,

.
θ =

vtanδ

L
(1)

v = R
.
θ, R =

L
tanδ

(2)

→
dPV =

[
dx
dy

]
V
=

[
Rsindθ
Rcosdθ

]
(3)

→
dP0 = Rv

0

→
dPV =

[
cosθ −sinθ
sinθ cosθ

][
dxV
dyV

]
(4)

x0 and y0 refer to the global frame, while xv and yv refer to the frame fixed to the vehicle.
P0 is the displacement vector from the global frame to the vehicle frame, while θ represents
the rotation angle of the vehicle frame in relation to the global frame. The vehicle has a
wheelbase of L, a speed of v, and a front wheel steering angle of delta, which affects the
rotation angle θ and results in a turning radius of R as shown in Figure 1.
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Figure 1. Modeling for steering-type vehicle.

2.2. Potential Field

The potential field algorithm is a method that creates a virtual potential field for
obstacles or a goal point, and the robot determines its movement based on this potential
field. It was initially proposed by Oussama Khatib [23] in 1986. Due to its simple and
intuitive design, it is widely used in the fields of robotics and autonomous driving, and
research is continuously being conducted to apply it to actual vehicles [9,24].

Obstacle information in real vehicles is obtained by integrating Lidar and IMU data.
The location of the obstacle is then used to calculate the potential field of the area surround-
ing the vehicle. The potential of each point (U) is calculated based on its distance from the
obstacle, using the following equation [25]:

U =


0 d > D2(

1
d −

1
D2

)2
i f D1 < d < D2

Umax d < D1

(5)

d is the distance between the vehicle and the obstacle, D1 is the distance at which the
vehicle collides with the obstacle, and the potential U is calculated only for obstacles within
distance D2. The potential field, calculated by placing obstacles around the vehicle, is
shown in the figure below.

The distance between the vehicle and the obstacle is represented by d, while D1
represents the distance at which the vehicle collides with the obstacle. The potential is only
calculated for obstacles within a distance of D2. The Figure 2 shows the potential field
obtained by placing obstacles around the vehicle.

Figure 2. Potential field graph.
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2.3. Model Predictive Path Planning

Model predictive control (MPC) is generally used to analytically determine the inputs
that optimize cost when planning a path to a destination. However, in real-time systems,
numerical optimization techniques are preferred over finding a global optimal input. This
paper utilizes MPC to apply the vehicle model and input/output limits, rather than finding
the optimal path.

In model predictive path planning, the path is planned by predicting up to T in time
intervals dt. The variables at the k-th time step and k + 1-th time step can be expressed
using the formulas below, as shown in Equations (1)–(4):

θ(k + 1) = θ(k) +
vtanδ

L
dt (6)

x(k + 1) = x(k) +
L

tanδ

(
cosθsin

vtanδ

L
dt− sinθcos

vtanδ

L
dt
)

(7)

y(k + 1) = y(k) +
L

tanδ

(
sinθsin

vtanδ

L
dt + cosθcos

vtanδ

L
dt
)

(8)

δmin < δ < δmax (9)

.
δmin <

.
δ <

.
δmax (10)

where x, y, and θ represent the position and angle of the vehicle. The speed of the vehicle,
denoted by v, is assumed to be constant, while the steering angle, δ, is treated as an input
to the system.

2.4. Particle Swarm Optimization

PSO is a population-based optimization method that uses a bionic intelligent algorithm.
It aims to find the optimal value quickly, using few parameters. The PSO is a method
of optimization based on population, where a group of candidate solutions, known as
particles, iteratively search for the best solution (fitness) by exchanging information about
their discoveries in the search space [26].

Each particle has a position and velocity, and these equations are as follows:

V j+1
i = γV j

i + c1rand1

(
pBj

i − X j
i

)
+ c2rand2

(
gBj − X j

i

)
(11)

X j+1
i = X j

i + V j+1
i (12)

X j
i is the position of the i-th particle in the j-th iteration and V j

i is the velocity of the i-th
particle in the j-th iteration. c1 and c2 are positive constants, defined as the acceleration
coefficients, γ is the inertia weight factor, and rand1 and rand2 are chosen as uniform
random values in the range [0:1].

The position of the i-th particle in the j-th iteration is represented by X j
i , and its velocity

is represented by V j
i . The acceleration coefficients, c1 and c2, are positive constants. The

inertia weight factor is represented by γ, while rand1 and rand2 are chosen as uniform
random values in the range [0:1].

For model predictive path planning, particles are defined for the time range [0:dt:T].
The global best particles are found through iteration. The best particle is expressed as
X j

ik, which represents the steering angle of the i-th particle at the k-th time step in the j-th

iteration. Similarly, V j
ik denotes the angular rate of the steering of the i-th particle at the

k-th time step in the j-th iteration [27].
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2.5. Cost Function for Selectiveness

The cost function for obtaining an optimal output through PSO is typically defined
in order to find the shortest path while avoiding collisions or to follow a given path as
closely as possible while avoiding collisions. Optimization can be achieved by using the
cost function and cost map obtained from the potential field to balance safe driving and the
shortest route. The equation for the cost function f can be expressed as follows:

f
(

X j
i (t)
)
= wsU

(
X j

i (t)
)
+ wdD

(
X j

i (t)
)
+ wuu(t) (13)

where the weights for safety, distance from the global path, and input are represented by
ws, wd, and wu respectively. By adjusting these weights, a balance can be achieved between
distance from obstacles, adherence to the global path, and the magnitude of steering input
changes.

This approach prevents unnecessary avoidance in sparsely populated obstacle spaces
and reduces the risk of generating dangerous paths in areas with numerous obstacles. To
ensure optimal obstacle avoidance, it is recommended that multiple sets of coefficients
W = [ws, wd, wu] are defined and optimized accordingly.

The global best (gB) is obtained for each coefficient set W. The cost function can be
formulated as follows, utilizing the r-th gB(gBr), the maximum potential value Max(U)|gBr

,
and the distance between the final position of gBr and the destination point Dgoal(gBr).

g(gBr) = k1Max(U)|gBr
+ k2Dgoal(gBr) (14)

where choosing the gBr with a minimum g(gBr) as the final path will allow us to avoid the
problems mentioned above.

3. Simulation

To achieve autonomous driving using the MPC-PF-PSO algorithm, it is crucial to
prioritize obstacle avoidance and path maintenance by adjusting the tunable variables
which are shown in Table 1.

Table 1. Simulation variables.

Variables

γ Inertia of V j
i in PSO

c1 Weight of particle best in PSO

c2 Weight of global best in PSO

ws Weight of safety in cost function

wd Weight of distance from global path in cost function

wu Weight of input in cost function

Pseudo code of the MPC-PF-PSO algorithm is as shown as Algorithm 1. When the
vehicle is located at position (5, 25) and its destination is set at (30, 25), the resulting graphs
for M = 1, 10, and 30 are shown in the Figure 3. The parameters used were γ = 0.95,
c1 = 0.333, c2 = 0.5, T = 3, dt = 0.2, and N = 40. The bold red line is the optimal path, and
other colored lines are path candidates.
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Algorithm 1: Pseudo code of the MPC-PF-PSO algorithm

initialize cost map using Potential Field as shown in Figure 2
costmap(x, y) = U(d)

T—prediction time
dt—time step
N—Number of Particles
M—Maximum number of iteration

for all Wr = [ws, wd, wu]r,

gBj = Max value
pBj = Max value

initialize particles randomly
for i = 1: N

X0
i ← a random vector

V0
i ← a random vector

apply Equations (6)–(8) to calc x, y, θ

Calc cost f
(
X0

i
)

if f
(
X0

i
)
< f

(
pB0

i

)
, pB0

i ← X0
i

if f
(
X0

i
)
< f

(
gB0

)
, gB0 ← X0

i
end for

while j < M
for i = 1: N

apply Equations (11) and (12) to calc X j
i , V j

i
apply Equations (6)–(8) to calc x, y, θ

Calc cost f
(
X0

i
)

if f
(

X j
i

)
< f

(
pBj

i

)
, pBj

i ← X j
i

if f
(

X j
i

)
< f

(
gBj
)

, gBj ← X j
i

end for
end while
Calc cost g(gBr)

end for
Choose argmin(g(gBr)) as a final path

Figure 3. Path change according to number of iterations performed.

If the number of iterations is set to 1, particles are randomly generated and the optimal
path is then selected from them. As the number of iterations increases, particles converge
to the optimal path through PSO, and the optimal path is selected from them.

When an obstacle is encountered like Figure 4, the path generated will vary depending
on the values of Wr = [ws, wd, wu]r. The resulting paths when applying W1 = [0.2, 0.5, 0]
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and W2 = [1.0, 0.5, 0] are shown Figure 5. The red line is the optimal path when W1 is
applied, and the blue line is the optimal path when W2 is applied. Other colored lines are
path candidates.

Figure 4. Path generation for obstacle avoidance.

Figure 5. Generated paths, according to the coefficient W, for one obstacle.
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As ws increases, the algorithm generates a path that avoids obstacles further away.
Conversely, decreasing ws results in a path that approaches obstacles more closely. When
there are two obstacles, the algorithm creates a path as shown Figure 6.

Figure 6. Generated paths, according to the coefficient W, for two obstacles.

Five sets of W were defined using Wr = [1.5− 0.2r, 0.5, 0], each with different ws val-
ues. The generated paths are illustrated in the Figure 7, where K =

[
k1 k2

]
in Equation (11)

is defined as K =
[
1.5 0.5

]
and K =

[
0.5 0.5

]
.

Figure 7. Generated paths, according to the coefficient K, for two obstacles.

The figure below shows the r values of the final selected Wr, and the difference in
Max(U)|gBr

and Dgoal(gBr), when r = 1 and r = 5 at each step until the vehicle reaches
its destination.
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In the Figure 8, variations occur in the values of Max(U)|gBr
and Dgoal(gBr) when

encountering the first and second obstacles, and the coefficient K begins to influence the
path selection. In case (a), a long-distance route is chosen for safety when encountering an
obstacle. Once the obstacle has been passed, the shortest route to the destination is chosen.
In case (b), although a safer path is selected when an obstacle is encountered, there is a
higher tendency to choose the shortest path to the global path.

Figure 8. Graphs of selected coefficient index r and difference between Max(U)|gBr
and Dgoal(gBr).

This simulation was performed on a PC equipped with an Intel® Core™ i7-8559U
CPU @ 2.7 GHz and 16 GB RAM. 124 time steps were calculated before the vehicle reached
its destination. The constants related to MPC that have a significant impact on computation
time were set as follows: T = 3, dt = 0.2, N = 40, and M = 30. After calculating the average
time taken, it was found that one time step took approximately 33 ms.

When driving with only one set of W in an area with complex obstacles, the vehicle
may excessively avoid obstacles, as shown in (a) of Figure 9, or avoidance may occur due
to it being too close to obstacles, even in non-dense areas, as shown in (b). However, by
defining five sets of W and creating paths through adjusting the constant K, it is possible to
avoid obstacles that are far away in less dense areas, as shown in (c) and (d). Additionally, it
is possible to achieve a close avoidance of obstacles in dense areas during path generation.

Figure 9. Cont.
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Figure 9. Generated paths in a multiple-obstacle area.

4. Experiment

A steering-type vehicle was equipped with an RTK GPS for localization, LiDAR for
obstacle recognition, and NVIDIA’s Jetson AGX Xavier for executing driving control. The
appearance of the vehicle is as shown in Figure 10.

Figure 10. Vehicle for driving experiment.

Using LiDAR, the point cloud information of the surrounding obstacles was acquired.
Subsequently, a 2D grid map was generated from that point cloud information, and a grid
map with a calculated potential field was obtained as shown in Figure 11. After that, a
global path was created, in a straight line, to the destination, and a local path was generated
using the MPC-PF-PSO algorithm.
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Figure 11. From point cloud to potential field grid map.

Computation time is a crucial factor in obstacle avoidance during navigation. We have
implemented the MPC-PF-PSO algorithm and a package that computes the potential field
of an obstacle point cloud in an ROS Melodic environment. We measured the computation
time used by each package.

The MPC-PF-PSO-related constants were defined as T = 3, dt = 0.2, N = 40, M = 30, and
5 sets of W. It took 7 ms to generate a 2D grid map containing potential field information,
and the MPC-PF-PSO algorithm’s operation took 24 ms as shown in Figure 12.

Figure 12. Computation times for each package.

A driving experiment was performed by applying the MPC-PF-PSO algorithm. Ob-
stacles were placed, using bricks, and a global path was established in a straight line to
the destination point as shown in Figure 13. Experiments were conducted by altering the
constant K. When the coefficient k1 (for the maximum potential Max(U)|gBr

) was relatively
larger than the coefficient k2 (for the distance to the destination Dgoal(gBr)), a path was
generated that avoided the obstacle further, as confirmed in the simulation.

The driving vehicle and data visualization for the cases of K = [0.5 0.5] and
K = [1.5 0.5] are shown in Figure 14. We measured the distance using log data to see
how far the vehicle traveled from the obstacle, and the results are shown in the Figure 15.
For K = [0.5, 0.5] and K = [1.5, 0.5], the shortest distances between the obstacle and the global
path were 0.44 m and 0.62 m, respectively. The shortest distances between the obstacle and
the vehicle were 1.03 m and 1.25 m, respectively. For K = [0.5, 0.5], even though a distance
from the global path to the obstacle were closer than that of K = [1.5, 0.5], the vehicle drove
closer to the obstacle.
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Figure 13. Visualized data during obstacle avoidance experiments.

Figure 14. Obstacle avoidance experiments with different K coefficients.
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Figure 15. Results of obstacle avoidance experiments.

5. Discussion

In this paper, our focus was on developing an algorithm that can be applied in practical
scenarios, not only for obstacle avoidance but also for real-time decision making to ensure
safe navigation. We applied a potential field to assess safety, used MPC to consider the
characteristics of the actual moving vehicle, and employed the PSO algorithm to ensure real-
time responsiveness. Additionally, we introduced a method for utilizing various coefficient
sets to determine whether to select a safe path or a fast path according to the surrounding
environment. The algorithm was implemented through ROS on Jetson Xavier, which was
released by NVIDIA. Through computational time measurements and experiments, we
demonstrated that this algorithm is suitable for practical use.

While the proposed method is suitable for real-time applications, a challenge lies
in the low consistency of its path generation, attributed to the utilization of randomness
at each step of finding the optimal path. Future research will focus on enhancing path
consistency, considerations for dynamic obstacles, and developing path generation methods
for irregular terrains.
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