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Abstract: Differential flat underactuated robots have fewer actuators than degrees of freedom (DOFs).
This characteristic makes it possible to design light and cost-effective robots with great dexterity.
The primary challenge associated with these robots lies in effectively controlling the passive joint, in
particular, when collisions with obstacles in the workspace have to be avoided. Most of the previous
research focused on point-to-point motions without any control on the actual robot trajectory. In
this work, a new method is presented to plan trajectories that include one or more via points. In
this way, the underactuated robot can avoid the obstacles in the workspace, similarly to traditional
fully actuated robots. First, a trajectory planning strategy is analytically described; then, numerical
results are presented. The numerical results show the effects of the via points and of the order of
the polynomials adopted to define the motion laws. In addition, experimental tests performed on a
two-DOF underactuated robot are presented, and their results validate the proposed method.

Keywords: robot; underactuated; trajectory planning; via point

1. Introduction

Most mechanical systems used in engineering applications have one controlled ac-
tuator for each degree of freedom (DOF) or have no actuator and are driven by external
forces that cannot be controlled. The first class includes machine tools and robots, and
the second class includes vibrating systems excited by base motion, unbalance, wind, and
other physical phenomena. Underactuated mechanical systems are less common and have
more DOFs than actuators [1,2]. In recent years, the interest in underactuated systems has
increased in the field of robotics [3–5] and legged locomotion [6,7].

Underactuated robots are a promising solution for applications requiring an increase
in dexterity and, at the same time, decreases in the cost, encumbrance, and weight of the
robot [8,9]. In this class of robots, one or more joints of the kinematic chain are not driven by
motors but are equipped with springs. From the mathematical point of view, underactuated
robots are characterized by the presence of nonholonomic second-order constraints that
represent the dynamics of the passive joints [10,11]. The main problem of underactuated
robots is control, since the passive joints have to be indirectly controlled by the motors of
the commanded joints.

A great deal of research has been carried out on the planning of point-to-point motions
exploiting differential flatness properties [12–15]. In order to achieve differential flatness,
the last links of the robot must have a particular mass distribution with the center of mass
(COM) of some links lying on joint axes [12,16]. This property simplifies the last rows of the
mass matrix and leads to the cancellation of some gravity, Coriolis, and centrifugal torques,
and the nonholonomic constraint becomes integrable [10]. When a mechanical system—
in particular, a robot—is differentially flat, a set of variables can be defined to express
the state variables, which are called flat variables [8,12]. The number of flat variables is
equal to the number of actuated DOFs. The relationship between state variables and flat
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variables is called diffeomorphism [17]. Actually, the diffeomorphism transforms a system
of second-order differential equations into a reduced set of higher-order equations.

In robotic applications, often there are obstacles in the workspace. The possibility of
avoiding an obstacle can be strongly increased by not only specifying the initial and final
configurations but also introducing one or more via points that modify the trajectory of the
end effector near the obstacle [18,19]. However, to the best of the authors’ knowledge, the
trajectory planning for differentially flat underactuated robots has never been performed
including via points. In fact, many aspects of the control of differentially flat robots have
been studied over the years, but only point-to-point motions have been considered [13,20],
leaving a research gap to be filled. It is worth noticing that trajectory planning with via
points for underactuated robots has been studied before (e.g., for mobile robots [21,22]),
but not in the case of differentially flat robots. For this reason, this paper deals with motion
planning of differentially flat underactuated robots with one or more via points.

The main contribution of the paper is the development and validation of a general
trajectory planning algorithm in the space of flat variables. It is worth noting that for this
class of robots, trajectory planning is not a purely kinematic problem, but it is influenced
by dynamics, since the last joint is not directly driven.

The paper is organized as follows. In Section 2, the conditions of differential flatness
are stated, and the equations of motion of the planar underactuated robot are presented and
their special features are discussed. Section 3 discusses the main point of the research and
deals with path planning considering one or more via points. In Section 4, numerical results
are presented and discussed. An experimental validation of the method is presented in
Section 5. Finally, conclusions and possible future developments are presented in Section 6.

2. Mathematical Model of the Underactuated Robot

In the framework of this research, the analyzed robots are differentially flat since they
comply with the requirements of the theory of differential flatness [8] as follows:

• The last link center of mass (n) lies on the axis of the n-th joint;
• The overall center of mass of the links n and n − 1 lies on the axis of the (n − 1)-th joint.

Such requirements remain valid for the last j links (i.e., n, n − 1, . . . , n − j + 1), where
j − 1 is the number of passive joints. As a result, the center of mass of the last j links lies on
the (n − j + 1)-th joint axis, and the final j links are considered “fully balanced”.

To achieve controllability of the passive joints, a torsional spring is placed on the last
j − 1 joints.

This work focuses solely on a single passive joint; therefore, j = 2. Therefore, only the
joints n and n − 1 are fully balanced.

The scheme of the robot is depicted in Figure 1, in which for each i-th link, qi is the
joint angle, ai is the link length, aGi is the position of the center of mass with respect to the
joint axis, and mi and IGi are the mass and the moment of inertia about the center of mass,
respectively. In the fully balanced links, aci is the distance of the balancing mass mci from
joint i. At the passive joints, the torsional spring has stiffness ki. A viscous damper with
coefficient ci is included to introduce dissipative phenomena in the model. Neither elastic
nor dissipative phenomena are included in the actuated joints because it is assumed that
the control system of the actuated joints compensates for such effects.
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Figure 1. Scheme of a robot with n degrees of freedom (DOFs) equipped with one passive joint.

The equations of motion of the planar robot can be obtained using Lagrange’s method.
The system of equations of motion can be expressed in matrix form as follows [15]:

Mn(q)q̈ + Cnq̇ + Knq + b(q, q̇) + g(q) = τ

Mn(q)



q̈1
q̈2
...

q̈n−2
q̈n−1

q̈n


+ Cn



q̇1
q̇2
...

q̇n−2
q̇n−1

q̇n


+ Kn



q1
q2
...

qn−2
qn−1

qn


+



b1(q, q̇)
b2(q, q̇)

...
bn−2(q, q̇)

0
0


+



g1(q)
g2(q)

...
gn−2(q)

0
0


=



τ1
τ2
...

τn−2
τn−1

0


(1)

where Mn(q) is the mass matrix; matrices Cn and Kn contain the joint damping and stiffness
terms, respectively; vector b(q, q̇) contains the Coriolis and centrifugal terms; vector g(q)
contains the gravitational terms; and vector τ contains the motor torques. The following
three features of the system of Equation (1) are worth noting:

• There are neither gravitational nor Coriolis-centrifugal torques on the last joints be-
cause the last two links are fully balanced (the last two elements of vectors b(q, q̇) and
g(q) are null);

• The last element of τ is null because there is no motor on the last joint (i.e., a pas-
sive joint);

• Matrices Cn and Kn are entirely null except the last bottom-right element, in which
there are the torsional stiffness (kn) and damping coefficient (cn) of the passive joint;
this happens because neither elastic nor dissipative phenomena are included in the
actuated joints.

Matrix Mn(q) is configuration-dependent. However, since the robot satisfies the condi-
tions of differential flatness, the last [n − 1, n] rows and columns of the matrix are constant:

Mn(q) =



I∗n−1 I∗n
I∗n−1 I∗n

...
...I∗(n−2)×(n−2)(q)

I∗n−1 I∗n
I∗n−1 · · · I∗n−1 I∗n−1 I∗n
I∗n · · · I∗n I∗n I∗n


(2)
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Addtionally, only the submatrix I∗(n−2)×(n−2)(q) depends on the robot configuration. I∗n−1
and I∗n are the moments of inertia reduced to joints n − 1 and n, respectively.

The theory of differential flatness is then used to define a reduced set of variables y
(called flat variables), equal to the number of actuators [23]. For a planar robot equipped
with only one passive joint, the flat variables are defined as follows [15]:

y1 =
n

∑
i=1

qi

yi = qi−1 with i = 2, 3, . . . , n − 1

(3)

The flat variables are used to manipulate Equation (1), performing a diffeomorphism
that maps the joint values into the flat variables, i.e., q ∈ Rn 7→ y ∈ Rn−1.

The last row of Equation (1) becomes

I∗n(q̈1 + q̈2 + · · ·+ q̈n−1 + q̈n) + cn q̇n + knqn = 0 (4)

which can be rewritten through the flat variable:

I∗n ẏ1 + cn q̇n + knqn = 0 (5)

This equation is linear since the inertia term I∗n is constant. As a result, the Laplace
transform can be calculated [15]:

I∗n sY1(s) + (cns + kn)Qn(s) = 0 (6)

From this equation, the last joint rotation can be related to the flat variable:

Qn(s) = − I∗n
cns + kn

s2Y1(s) (7)

Collecting the torsion spring stiffness kn, the right term of the equation can be
rearranged as

Qn(s) = − I∗n
kn

(
1 +

cn

kn
s
)−1

s2Y1(s) (8)

If low-friction bearings are used, the torsion spring stiffness is much larger than
the damping coefficient cn. Hence, using the first-order Taylor expansion, the term
(1 + cn/kn s)−1 can be simplified, yielding the following:

Qn(s) = − I∗n
kn

(
1 − cn

kn
s
)

s2Y1(s) = − I∗n
kn

s2Y1(s) +
I∗n cn

k2
n

s3Y1(s) (9)

Finally, the passive joint position can be expressed as a function of time using the
inverse Laplace transform, in which the initial conditions are null:

qn(t) = − I∗n
kn

ÿ1(t) +
I∗n cn

k2
n

y(3)1 (t) (10)

It is worth noting that Equation (10) is more complex than the one usually found in the
literature. Actually, many papers (e.g., [24,25]) simplify the system by neglecting damping
(thus, cn = 0) so that qn is related only to the second derivative of y1 rather than to a
combination of ÿ1 and y(3)1 . For this reason, the following sections will deal with trajectory
planning for robots with both damped and undamped passive joint.

The dynamic model of Equation (1) contains joint accelerations. Hence, Equation (10)
must be derived twice to obtain the passive joint acceleration, which depends on the
flat variable:

q̈n(t) = − I∗n
kn

y(4)1 (t) +
I∗n cn

k2
n

y(5)1 (t) (11)
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Joint rotations qi(t) should be twice continuously differentiable (C2) to avoid vibratory
phenomena. As a result, Equation (11) yields that y1(t) must be continuously differentiable
five times (C5). The other flat variables (y2, . . . , yn−1) are equal to the actuated joint values;
hence, to avoid vibratory phenomena, these flat variables must be twice continuously
differentiable (C2).

3. Trajectory Planning

The typical trajectory planning of differentially flat underactuated robots considers
only point-to-point movements and is performed in the space of flat variables. These
movements provide fixed initial and final conditions for joint positions and their derivatives.
The conditions for joint positions are the joint angles required to complete the task, apart
from the passive joints, whose angles are set to zero to ensure the static equilibrium of the
torsional spring. The conditions for the joint variable derivatives are null values at the
beginning and at the end of the motion.

In trajectory planning with via points, the trajectories of fully actuated robots are
usually planned in the joint space so that the via points are reached by the robot in specific
configurations (i.e., joint variables), while the derivatives of joint variables are typically
different from zero. Even if joint velocities and accelerations can be imposed, the continuity
of joint variable derivatives is more important than the specific values. As a result, the
conditions in the via points are limited to the joint positions and the continuity of joint
variable derivatives. (please note that trajectory planning can also be performed in the
Cartesian space by choosing proper Cartesian via points; however, Cartesian trajectory
planning can be converted into joint space via robot inverse kinematics).

Considering an n-DOF robot equipped with only one passive joint, trajectory planning
with via points is again performed in the space of flat variables. Since there are n − 1 flat
variables, the definition of the values of flat variables at the via point does not completely
define robot configuration. This problem is solved by including at the via point a further
condition that comes from the last equation of motion (Equation (10)) and links the joint
variable of the passive joint with the derivatives of the first flat variable.

Trajectory planning can be performed through very different motion laws [26]. In this
paper, polynomial laws are used; such laws ensure the continuity of the derivatives and
the polynomial degree can be changed according to the conditions.

The planning of the i-th flat variable (with i > 1) can be performed via any function
that can satisfy the condition on the double continuity (C2). The damping of the passive
joint has no effect since the flat variable depends only on the joint variable of the actuated
joint (Equation (3)). Hence, this paper focuses on the first flat variable y1(t).

The trajectory of y1(t) is planned using polynomial functions between each pair of
points. Hereby, the j-th polynomial of the trajectory is named y1j(λ), with
λ = (t − tj,0)/Tj ∈ [0, 1], tj,0 is the initial time of the polynomial, and Tj is the polyno-
mial duration. The final polynomial is named y1 f (λ). The polynomials of degree p are
defined in the following way:

y1j(τ) =
p

∑
k=0

ajkλk (12)

The i-th derivative of the j-th polynomial with respect to real time t can be calculated
as follows:

y(i)1j (λ) =
diy1j(λ)

dti =
dλi

dti

diy1j(λ)

dλi =
1

(tj − tj−1)i

diy1j(λ)

dλi =
1
Ti

j

diy1j(λ)

dλi (13)

3.1. Undamped Robot (cn = 0)

If damping in the passive joint of the underactuated robot can be neglected,
Equation (11) shows that y1 must be continuously differentiable four times (C4). If there
are nvia via points, nvia + 1 polynomials are needed.
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The conditions at the initial point, the generic via point, and the final point are as
follows:

• Initial point: Initial values of flat variable y1 are based on the initial values of joint
variables, and flat variable derivatives are set to zero:

y11(0) =
n

∑
i=1

qi,0

ẏ11(0) = ÿ11(0) = y(3)11 (0) = y(4)11 (0) = 0

(14)

• Via point: The value of flat variable y1 is based on joint values at the via point, with
continuity of the flat variable derivatives and Equation (10) with cn = 0:

y1j(1) =
n

∑
i=1

qi,via

y1j(1) = y1,j+1(0) , ẏ1j(1) = ẏ1,j+1(0) , ÿ1j(1) = ÿ1,j+1(0)

y(3)1j (1) = y(3)1,j+1(0) , y(4)1j (1) = y(4)1,j+1(0)

(15)

ÿ1j(1) = − qn,via(t)kn

I∗n
(16)

• Final point: The final joint values of flat variable y1 are based on the final values of
joint variables, and flat variable derivatives are set to zero:

y1 f (1) =
n

∑
i=1

qi, f

ẏ1 f (1) = ÿ1 f (1) = y(3)1 f (1) = y(4)1 f (1) = 0

(17)

The conditions of Equations (15) and (16) are repeated for each via point that the robot
has to reach, while the conditions of Equations (14) and (17) are applied to the first and last
polynomial, respectively. If nvia via points are used, the total number of conditions ncond on
the trajectory is

ncond = 10 + 7nvia (18)

Such conditions can be enforced by using polynomials of specific degrees. In particular,
since, for a polynomial of p-th degree, there are p + 1 coefficients, the degrees of the
polynomials can be calculated as follows:

(p1 + 1) + (p2 + 1) + (nvia − 1)(pvia + 1) = ncond (19)

where p1 and p2 are the degrees of the first and last polynomials, respectively, and pvia
is the degree of the polynomials connecting via points (if needed). For a single via point,
it yields

p1 + p2 = 15 (20)

As a result, for a single via point the degree of the two polynomials cannot be the same. In
this work, two polynomials of 8-th degree and 7-th degree are chosen. Such polynomial
differentiability class is greater than C4; thus, the conditions are met.

If multiple via points are employed (nvia ≥ 2), p1 = 8, and p2 = 7, Equations (18)
and (19) yield

pvia =
7nvia − 7
nvia − 1

− 1 = 6 (21)

It is worth noticing that Equation (19) allows for multiple polynomial combinations.
However, the proposed solution with p1 = 8, p2 = 7, and pvia = 6 ensures constancy in the
degree of the polynomials even with many via points.
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3.2. Damped Robot (cn ̸= 0)

If the passive joint presents some damping (cn ̸= 0), the first flat variable must be
continuously derivable five times (C5). Also, in this case, nvia + 1 polynomials are needed.

The conditions are similar to the one stated in Section 3.1, with some notable exceptions:

• Initial point: Initial values of flat variable y1 are based on the initial values of joint
variables, and flat variable derivatives are set to zero up to the fifth derivative:

y11(0) =
n

∑
i=1

qi,0

ẏ11(0) = ÿ11(0) = y(3)11 (0) = y(4)11 (0) = y(5)11 (0) = 0

(22)

• Via point: The value of flat variable y1 is based on joint values at the via point, with
continuity of the flat variable derivatives and Equation (10):

y1j(1) =
n

∑
i=1

qi,via

y1j(1) = y1,j+1(0) , ẏ1j(1) = ẏ1,j+1(0) , ÿ1j(1) = ÿ1,j+1(0)

y(3)1j (1) = y(3)1,j+1(0) , y(4)1j (1) = y(4)1,j+1(0) , y(5)1j (1) = y(5)1,j+1(0)

(23)

qn,via = − I∗n
kn

ÿ1j(1)

T2
j

+
I∗n cn

k2
n

y(3)1j (1)

T3
j

(24)

• Final point: The final joint values of flat variable y1 are based on the final values of
joint variables, and flat variable derivatives are set to zero up to the fifth derivative:

y1 f (1) =
n

∑
i=1

qi, f

ẏ1 f (1) = ÿ1 f (1) = y(3)1 f (1) = y(4)1 f (1) = y(5)1 f (1) = 0

(25)

Following Section 3.1, the total number of conditions ncond for a damped system
passing through nvia via points is

ncond = 12 + 8nvia (26)

since, in the case of multiple via point, the conditions of Equations (23) and (24) are repeated
for each via point that the robot must reach, while the conditions of Equations (22) and (25)
are applied to the first and last polynomial, respectively.

Equation (19) holds true for a damped system as well. Thus, for a single via point,
it yields

p1 + p2 = 18 (27)

In this work, two polynomials of 9-th degree are chosen. The differentiability class of
these polynomials is larger than C5; thus, the conditions are met.

If multiple via points are employed (nvia ≥ 2) and p1 = p2 = 9, Equations (26) and (19)
yield

pvia =
8nvia − 8
nvia − 1

− 1 = 7 (28)

The condition stated in Equation (24) is difficult to manipulate for a general function
since it is a differential equation. However, since y1j is a polynomial function, the condition
can be manipulated by introducing the polynomial derivatives. For the first via point,
(j = 1) y11 is a 9-th degree polynomial function; thus, its second and third derivatives are

d2y11(λ)

dλ2 =
1

T2
1

(
72a19λ7 + 56a18λ6 + 42a17λ5 + 30a16λ4 + 20a15λ3 + 12a14λ2 + 6a13λ + 2a12

)
(29)
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d3y11(λ)

dλ3 =
1

T3
1

(
504a19λ6 + 336a18λ5 + 210a17λ4 + 120a16λ3 + 60a15λ2 + 24a14λ + 6a13

)
(30)

which, combined with the conditions of Equation (22) in Equation (24), yield

a19

(
504

cn

T1
− 72kn

)
+ a18

(
336

cn

T1
− 56kn

)
+

+ a17

(
210

cn

T1
− 42kn

)
+ a16

(
120

cn

T1
− 30kn

)
=

qn,viak2
nT2

1
I∗n

(31)

For the following via points, y1j are 7-th degree polynomials; thus, the derivatives are

d2y1j(λ)

dλ2 =
1

T2
j

(
42aj7λ5 + 30aj6λ4 + 20aj5λ3 + 12aj4λ2 + 6aj3λ + 2aj2

)
(32)

d3y1j(λ)

dλ3 =
1

T3
j

(
210aj7λ4 + 120aj6λ3 + 60aj5λ2 + 24aj4λ + 6aj3

)
(33)

which, introduced in Equation (24), yield

aj7

(
210

cn

Tj
− 42kn

)
+ aj6

(
120

cn

Tj
− 30kn

)
+ aj5

(
60

cn

Tj
− 20kn

)
+

+ aj4

(
24

cn

Tj
− 12kn

)
+ aj3

(
6

cn

Tj
− 6kn

)
+ aj2(30kn) =

qn,viak2
nT2

j

I∗n

(34)

Equations (31) and (34), although limited to the polynomial trajectories, can be easily
implemented in a linear system to obtain the polynomial coefficients.

4. Numerical Results

To test the proposed approach, a two-DOF robot was simulated in Matlab. The robot
lies on the horizontal plane; thus, ggg(qqq) = 000. Link 2 is symmetric and complies with the
requirements of the differential flatness theory.

The geometrical and inertial parameters of the robot are summarized in Table 1.

Table 1. Geometrical and inertial parameters of the 2-DOF robot.

Parameters Units Link 1 Link 2

mi kg 3.0 × 10−2 1.2 × 10−2

mci kg 0 1.2 × 10−2

IGi kg · m2 5.8 × 10−5 4.9 × 10−5

ai m 1.3 × 10−1 8.5 × 10−2

aGi m 7.1 × 10−2 0
aci m 0 8.5 × 10−2

Simulations aim to show that the introduction of proper via points allows the robot to
avoid obstacles in the workspace. The simulations comprise eight tests.

The first six tests are summarized in Table 2. They differ in the number of obstacles
and in the damping value (cn = 0 or cn ̸= 0). The number of via points is set equal to the
number of obstacles. The damping coefficient cn can take different values in the trajectory
planning and in the dynamic model:

• cn = 0 both for planning and in the model. This is the case of an ideal robot;
• cn = 0 for planning and cn ̸= 0 in the model. This test shows the effect of neglecting the

damping during trajectory planning, whereas the actual robot has relevant damping
phenomena in the passive joint;
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• cn ̸= 0 both for planning and in the model. This test is the most realistic case. Because
of the presence of damping, the polynomial orders increase [15].

Table 2. Numerical tests.

Test nvia cn in Planning cn in Model Order of
Polynomials

1 1 0 0 8-7
2 1 0 ̸=0 8-7
3 1 ̸=0 ̸=0 9-9
4 2 0 0 8-6-7
5 2 0 ̸=0 8-6-7
6 2 ̸=0 ̸=0 9-7-9

The motion parameters are listed in Table 3, considering that the initial joint values
are zero for both joints. It is worth noting that for an underactuated system, the trajectory
depends on robot dynamics, which is influenced by the total motion duration (t f ) and
the real time when the robot passes through the via point (tvia). At the moment, this is a
limitation of the proposed trajectory planning and will be studied in future works.

Table 3. Numerical tests motion parameters. Each couple of qqqvia and each value of tvia are related to
one via point.

Test qqqvia (◦) qqq f (
◦) tvia (s) t f (s)

1, 2, 3 [95 ,−87] [180 , 0] 0.17 0.64

4, 5, 6 [104 ,−92],
[80 , 88] [180 , 0] 0.27, 0.52 0.7

Figures 2–4 show the simulated trajectory with one obstacle. The obstacle is a cylinder
of radius 35 mm; the center of the base of the cylinder is placed at the point with coordinates
[75, 182] mm in the base reference system. For completeness, in Figures 2 and 4, the
trajectories without via points and with the same final configuration qqq f and t f are shown. It
is clear how the robot, without a via point, is not able to avoid the collision with the obstacle.
The Cartesian trajectories of the end effector (Figure 2) are similar, although Test 3 (Figure 2c)
shows an entangled path in the middle of the trajectory. The flat variables (Figure 3) are
very similar in magnitude; this result is expected since the Cartesian trajectories are similar
and the Cartesian trajectory is the result of the joint trajectories, which, in turn, are the
result of the flat variables. For the flat variable derivatives, Figure 3 shows the continuity of
the derivatives up to the fourth order. Moreover, the regularity of the fourth derivative of
the flat variable in Test 3 confirms the continuity of the fifth derivative. The same behavior
cannot be found for Tests 1 and 2.

Tests 1 and 3 show no oscillations of the end effector around the final point of the
trajectory (Figure 4a,c). This is an expected result since the model used for trajectory
planning is the same one adopted for simulation. Conversely, the dynamic model of Test 2
is different from the one assumed in the planning phase. The result is that the robot
mathematically does not exactly pass on the via point since all conditions of Section 3.2
are not met. This phenomenon is not highlighted in Figure 2b since the difference is very
small; however, this difference may increase for different values of the via points qqqvia and
tvia. Finally, a wide natural oscillation of q2 can be found after the end of the trajectory
(Figure 4b).
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(a) Test 1 (b) Test 2 (c) Test 3

Figure 2. Simulated trajectories. with one via point. The white points are the two extremities of the
underactuated link, and the filled points represent the passive joint.

(a) Test 1 (b) Test 2 (c) Test 3

Figure 3. Simulated flat variables with one via point. The different colors represent the different
polynomial functions joining the subsequent pairs of points.

(a) Test 1 (b) Test 2 (c) Test 3

Figure 4. Simulated joint values with one via point.

The results of the simulations with two obstacles in the workspace are reported in
Figures 5–7. The obstacles are the cylinder of Tests 1, 2, and 3 (in the same position) and a
cube of 50 mm per side. The centroid of the cube is placed at the point with coordinates
[−80, 178] mm in the base reference system, with the sides parallel to the base reference
system axes. In this case, two via points are considered. Test 5 shows that when there
is a relevant damping value, but trajectory planning is carried out neglecting damping,
oscillations appear at the end of the motion, and the via points positions are not reached.
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(a) Test 4 (b) Test 5 (c) Test 6

Figure 5. Simulated trajectories with two via points. The white points are the two extremities of the
underactuated link, and the filled points represent the passive joint.

(a) Test 4 (b) Test 5 (c) Test 6

Figure 6. Simulated flat variables with two via points. The different colors represent the different
polynomial functions joining the subsequent pairs of points.

(a) Test 4 (b) Test 5 (c) Test 6

Figure 7. Simulated joint values with two via points.

At the Cartesian trajectories (Figure 5), two results can be note. Firstly, the trajectory
shapes are rather different between Tests 4, 5, and 6; this is due to the fast movements,
which results in different shapes of the polynomials. In particular, the trajectory of the
damped robot (Figure 5c) does not present the entanglement of Tests 4 and 5. Secondly, the
trajectory of Test 5 collides with both obstacles, although the trajectory of Test 4 does not;
this aspect may be crucial in very tight environments.

Finally, it is worth noting that the designer must be aware of the trajectory of the back
of link 2 (black lines of Figures 2 and 5) since this point may collide with the obstacle,
especially for high displacements of q2.
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The last two tests highlight how the trajectory changes when different via points are
chosen. In Figure 8, two different trajectories (orange and green lines) are shown, which are
obtained with cn ̸= 0 and t f = 0.64 s (the same as Test 3) but different via points and tvia.
In particular, the orange trajectory is obtained with a via point placed at qqqvia = [80,−75]◦

and tvia = 0.11 s; the green trajectory is obtained with a via point placed at qqqvia = [55, 70]◦

and tvia = 0.32 s. The results show that the obstacle can be avoided with very different via
points and tvia. An optimization of via point placement will be the focus of future work.

Figure 8. Two different trajectories with two different via points but the same obstacle within
the workspace.

5. Experimental Validation

The proposed approach was adopted for trajectory planning of a prototype two-DOF
planar underactuated robot with the same inertial properties as the one simulated in
Section 4. The task of the robot was to move from one point to another, avoiding two
obstacles. Although no damper was installed on the passive joint, damping phenomena
due to friction were present. Friction torques are usually proportional to velocity [27];
hence, when the robot performed fast trajectories, damping could not be neglected. The
experimental validation is equivalent to Test 6 of Section 4.

The first link was directly connected to the motor, which was a brushed DC motor
(Portescap 35NT2R82 426SP by Mclennan Servo Supplies Ltd., Surrey, UK). The rotation of
this joint was acquired by means of an incremental encoder Baumer BHK 16.05A2000-I8-5
(by Baumer Italia S.r.l., Milan, Italy) mounted on the motor. The joint was controlled
using a Teensy 4.0 and employing a feed-forward control strategy with PD to compen-
sate for uncertainties. The passive joint torsional spring stiffness (k2 = 0.0026 Nm/rad)
and damping (c2 = 2.4704 × 10−5 Nms/rad) were identified by means of experimental
modal analysis [28]. The trajectory of link 2 was recorded using a high frame-rate camera
for industrial use (Dalsa Genie Nano GM30-M2050 by Teledyne DALSA, Waterloo, ON,
Canada) that detects the white markers fixed to the second link. For this camera, at the
maximum resolution (2064 × 1544 pixels), the maximum frame rate is 187 fps. However,
the frame rate was increased to 280 fps by setting a region of interest (ROI) of dimensions
1600 × 800 pixels.

The test setup is shown in Figure 9a. To replicate the simulation, a paper cylinder and
a paper cube were placed in the work area in the same position as in the simulation. The
two obstacles are shown in Figure 9b. The movement was performed with the via points of
Test 6 but with a different set of tvia (tvia = 0.175 s for the first via point, and tvia = 0.4185 s
for the second via point).
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Link 2
Joint 2

Joint 1
Link 1

Torsional spring

Marker 1

Marker 2

(a) (b)

Figure 9. (a) Prototype of the two-DOF robot used for the experimental validation. (b) The two
obstacles positioned in the working area.

Before the recording, the camera was calibrated on the plane containing the markers
to remove any distortions and to ensure a correct mm/pixel ratio. The camera feed was
post-processed after the robot movement, and the marker positions were measured. The
coordinates of marker 2 (Figure 9a) were compared to the end effector trajectory of the
numerical simulation (i.e., the point placed at a distance a2 with respect to joint 2). At the
same time, since no position sensors were located on joint 2, the joint trajectory q2(t) was
obtained by measuring the absolute angle of the line connecting marker 1 and 2 and by
subtracting the joint 1 trajectory q1(t).

Both Cartesian and joint trajectories (Figure 10a and Figure 10b, respectively) showed
very good agreement between experimental and numerical results. The overshoot that
can be seen at the end of the Cartesian trajectory is present both in the numerical and
experimental trajectories and is due to robot dynamics. The robot was able to reach the via
points according to the planning, and no noticeable oscillations of the passive joint were
present at the end of the movement. It is worth noting that the movement was very fast
(t f = 0.7 s); thus, the inertial forces play a relevant role in the system dynamics. The fact
that the robot is differentially flat ensures that the centrifugal and Coriolis forces of the last
links are zero; thus, the dynamic model becomes very accurate.

(a)

Figure 10. Cont.
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(b)

Figure 10. Experimental results with a two-DOF robot: Cartesian trajectories (a) and joint values (b).

The result was obtained without having any feedback on the position of the last
joint; in fact, both the Cartesian and joint trajectories were post-processed from the video
captured by the camera and were not used in the control system. Conversely, the robot was
driven by calculating the trajectory of the first joint after the planning of the flat variable
and the employment of the dynamic model.

6. Conclusions

The main contribution of this paper is the development and validation of a method for
motion planning in the space of flat variables considering the presence of via points. It is an
extension of the approach adopted for point-to-point motion. A general formulation with
nvia via points and the flat variables interpolated by high-order polynomial functions has
been presented. Since the number of flat variables is lower than the number of DOFs, the
indetermination of the configuration of the robot at the via point is solved, adding another
condition that comes from the equations of motion.

A series of numerical simulations and an experimental test on a prototype were carried
out to assess the validity of the proposed method. The results show that the introduction
of one or more via points strongly increases the possibility of avoiding obstacles in the
workspace. The numerical results show that the trajectories of the robot in the Cartesian
space depend on the position of the via points, the total duration of the motion, and the
duration of the various motion sections between the via points.

Since, in actual industrial applications, these parameters can be varied within assigned
ranges, future research will deal with the optimization of these parameters. The goal
of the optimization can be the minimization of the distance from the obstacles or the
minimization of the torques demanded by the actuated joints for an assigned distance of
the robot path from the obstacles. Further developments will deal with the interpolation of
the flat variables by means of different families of functions as well.
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