
Robotics 2015, 4, 398-420; doi:10.3390/robotics4040398
OPEN ACCESS

robotics
ISSN 2218-6581

www.mdpi.com/journal/robotics

Article

Robotic Design Choice Overview Using Co-Simulation and
Design Space Exploration
Martin Peter Christiansen *, Peter Gorm Larsen and Rasmus Nyholm Jørgensen

Department of Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus N, Denmark;
E-Mails: pgl@eng.au.dk (P.G.L.); rnj@eng.au.dk (R.N.J.)

* Author to whom correspondence should be addressed; E-Mail: mpc@eng.au.dk;
Tel.: +45-4042-0617.

Academic Editor: Huosheng Hu

Received: 17 June 2015 / Accepted: 8 September 2015 / Published: 29 September 2015

Abstract: Rapid robotic system development has created a demand for multi-disciplinary
methods and tools to explore and compare design alternatives. In this paper, we present a
collaborative modeling technique that combines discrete-event models of controller software
with continuous-time models of physical robot components. The proposed co-modeling
method utilizes the Vienna development method (VDM) and MATLAB for discrete-event
modeling and 20-sim for continuous-time modeling. The model-based development of a
mobile robot mink feeding system is used to illustrate the collaborative modeling method.
Simulations are used to evaluate the robot model output response in relation to operational
demands. An example of a load-carrying challenge in relation to the feeding robot is
presented, and a design space is defined with candidate solutions in both the mechanical and
software domains. Simulation results are analyzed using design space exploration (DSE),
which evaluates candidate solutions in relation to preselected optimization criteria. The
result of the analysis provides developers with an overview of the impacts of each candidate
solution in the chosen design space. Based on this overview of solution impacts, the
developers can select viable candidates for deployment and testing with the actual robot.

Keywords: animal feeding; crescendo; collaborative modeling; sensor fusion

Robotics 2015, 4 399

1. Introduction

The general goal of automatic robotic system development is to enable a robot to perform the desired
tasks within the context of overall system requirements [1], and modeling and simulation are gradually
being adopted as an integral part of the developmental process [2–4]. Modeling enables developers to
explore hardware and software solutions before developing the actual component. In conjunction with
simulation, it also enables the automatic evaluation of a much larger potential design space compared
to a manual trial-and-error approach. The alternative approach to developing a robotic system involves
time-intensive ad hoc trial-and-error testing to achieve a usable configuration of the physical system. One
drawback of this approach is that developers may spend valuable time determining the optimal solution
to some aspect of the system, only for such effort to show little impact on the overall desired outcome.

The primary challenge of the modeling and simulation approach is that knowledge of many
complementary disciplines, such as electrical, mechanical, software and embedded systems engineering
and signal processing, is required to determine viable solutions [5–7]. These disciplines have different
cultures, tools and methodologies, which may prove to be an impediment to cross-disciplinary projects.
In this paper, we propose a collaborative modeling approach known as co-modeling that enables the
combination of models from different disciplines. Collaborative simulations, or co-simulations, allow
developers to examine different aspects of a system to explore design alternatives. They utilize models
to describe the different aspects of the robotic system.

The aim of the present study is the analysis of cross-disciplinary robotic design alternatives using
co-simulation. This type of co-simulation-based analysis is known as a design space exploration
(DSE) [8]. The co-model robot design is based on a mink feeding vehicle used in agricultural farming
applications, as illustrated in Figures 1 and 3. The co-modeling and co-simulation were accomplished
by a combination of the Crescendo technology produced by the European Design Support and Tooling
for Embedded Control Software (DESTECS) FP7 project [9,10] and a MATLAB extension.

Figure 1. Three-dimensional visualization of a co-simulated load-carrying robot dispensing
mink fodder.

In the Crescendo technology, DSE is used to select viable candidate sensor positions on an R2-G2P
line-following robot with a fixed controller setup [11]. Co-simulations performed using other tools apart
from Crescendo have also been documented. For example, the MODELISAR [12] project developed

Robotics 2015, 4 400

the Functional Mock-up Interface (FMI), which enables co-simulation and model exchange between
different domain-specific simulation frameworks. The standard FMI can support MATLAB/Simulink,
Modelica, Python and C/C++, among other tools. In the Integrated Tool Chain for Model-based Design
of Cyber-Physical Systems (INTO-CPS) project [13], the Crescendo technology is taken further in an
FMI setting [14].

Feeding robots used in animal husbandry have also been developed and documented. In [15], a static
feeding system was used in combination with an RFID reader to dispense food to cows with the aid
of an attached RFID tag. A mobile feeding platform was also used for outdoor piglet feeding in [16].
The pig-feeding robot was used to influence the behavioral pattern of the piglets to facilitate manure
collection by daily changing of the feeding position in the field.

The remainder of the paper is organized as follows. Section 2 describes the co-modeling technologies
utilized for coupling the Crescendo technology with MATLAB. Section 3 introduces the robotic
design challenge of the mink feeding ground vehicle as a system boundary definition consisting of a
problem area and modeling case. Section 4 describes the co-modeling of the developed vehicle, design
exploration and evaluated simulation conditions. The domain-specific modeling methods applied to the
robot and its environment are documented in Section 5. Section 6 describes the signal processing and
control. Section 7 presents the results of the simulations and an overview of the candidate solutions.
Section 8 discusses the simulation results and setups that are considered to be capable of ensuring the
expected performance under the required conditions. Finally, concluding remarks are made in Section 9.

2. Co-Modeling Technologies

Co-modeling enables the modeling of system components using different developmental tools, as well
as facilitating simultaneous co-simulation [9,17,18]. Co-modeling involves the combination of separate
domain-specific models to create a complete model of the intended system by collaborative exchange of
information between the utilized tools. The exchanged information comprises the simulation parameters,
control signals and system events.

2.1. Crescendo Technology

The Crescendo technology enables modeling using different specialized tools [19]. It combines the
discrete event (DE) modeling of a digital controller and the continuous time (CT) modeling of the
plant/environment for the purpose of co-simulation. The Overture tool [20] and Vienna development
method (VDM) [21,22] formalism are used for the DE modeling, and the 20-sim tool was used for
the CT modeling. The 20-sim tool models multi-disciplinary dynamic systems, such as the combined
mechanical, electrical and hydraulic systems [23]. VDM real time (VDM-RT) [24] is the dialect
used for the Crescendo co-model, which is capable of describing real-time, asynchronous, distributed,
object-oriented software systems. The Crescendo technology also provides different patterns for
checking the fault tolerance of the co-models, so different kinds of design patterns are suggested for
different situations [9].

The Crescendo co-simulation engine coordinates the 20-sim and VDM simulations by implementing
a protocol for time-step synchronization between the tools. It is possible to support both event-triggered,

Robotics 2015, 4 401

as well as time-triggered synchronization between the two simulators. This is achieved by having a
master-slave architecture where there is a master that controls the progress of time in the two individual
simulators, so they exchange information whenever the discrete step side can take its smallest step,
affecting the points that have an effect on the CT side (measured in nanoseconds). Crescendo binds the
domain models together with a Crescendo contract and is responsible for the exchange of information
between the tools. The overall semantics of this mechanism is formalized in [25], and a journal paper
enhancement of this is under construction. The Crescendo contract contains the parameters and variables
that the CT and DE developers require for the development of a combined model. Crescendo has a
feature known as automated co-model analysis (ACA) that can be used for the DSE of a co-model [8].
ACA enables the testing of different system configurations by running all of the combinations chosen by
a user. The system configurations comprise different combinations of the actuators, controllers, filters,
platforms and sensors of the candidate systems in the design space that the developers intend to explore.

2.2. MATLAB Extension

We have extended the current Crescendo technology to the two-tool DE co-modeling solution
illustrated in Figure 2. The DE side was constructed so that actions sent to the CT side are determined
by VDM, and the sensory signal processing and sensor fusion are performed in MATLAB. MATLAB is
well known for signal processing and sensor fusion [26,27]. VDM utilizes MATLAB as an extension to
obtain a combined position estimate to input into the VDM controllers.

Figure 2. The Crescendo technology with a MATLAB extension to allow for signal
processing development.

Providing a ground position and system state reference is a well-known method for evaluating sensor
fusion precision [28,29]. The 20-sim model provides these ground-truth position and system state values
to MATLAB for the evaluation of both the signal processing and overall intended system response.
Because MATLAB is implemented as an extension interface, the time step synchronization of the overall
model is kept intact without the need to change the co-simulation engine structure.

Robotics 2015, 4 402

3. System Boundary Definition

3.1. Problem Area Definition

Identification tags, such as radio frequency identification (RFID) tags, have been used for the last
decade to provide local and global positioning information about a vehicle [30–32]. RFID tags with
known positions are placed along the vehicle’s path to provide fixed position references (landmarks).
Using an a priori map of the identification tag locations, the vehicle is able to obtain absolute positioning
estimates in relation to the soundings. Positioning estimates from the identification tags are provided to
the vehicle when the tag is within the detection zone of the tag reader. Using sensory information
from other sensor sources can be used to lower the number of RFID tags required. By combining the
RFID tag locations with other on-board positioning sensors, for example wheel rotary encoders and an
inertial measurement unit (IMU), the vehicle can continually update its current position estimate [33].
The allowable distance between identification tags is dependent on the required position accuracy and
available data from other sensor sources.

When a wheel rotary encoder is used to estimate traveled distance, one normally assumes that the
estimated effective radius Ree of the tire is known a priori. By measuring the tire rotational speed using
a wheel rotary encoder, the vehicle computer can provide an estimate of the tire speed:

uwek = Reeωw ≈ Ree
2πGk

TkGn

(1)

where ωw is the wheel rotational speed, obtained from the sample time Tk at the k-th interval, Gk the
count value of the encoder at the k-th interval and Gn the encoder count per revolution. The relative tire
wheel traveled distance can then be calculated using numeric integration.

In agriculture, load-carrying vehicles are used for tasks, such as spraying plants and dispensing
animal fodder. The change in load affects the weight distribution of the vehicle and consequently
tire compression. A load-carrying robotic vehicle provided with sensory information obtained from
tire-mounted rotary encoders may over- or under-estimate current vehicle speed and position as a result
of its tire compression. If the effective radius is compressed 0.01 m compared to expected conditions,
it would, according to Equation (1), result in an estimate difference of 0.0628 m each revolution, not
accounting for other influencing factors.

These estimation problems require cross-disciplinary analyses, because multiple factors affect the
outcomes, and possible solutions can be found in different engineering disciplines. Here, we analyze
the estimation problems by modeling a load-carrying robot used for dispensing mink fodder at
predetermined locations along rows of cages. Feeding mink is a high precision task compared to other
domestic animals in livestock production. The farmer chooses the amount of fodder each cage gets based
on personal experience and knowledge about demands for mink gender, age and race. Based on feedback
from mink-farmers, each mink cage is given a portion of fodder in the range of 80–300 g. In all cases
of mink feeding, the total weight of the vehicle changes gradually throughout the feeding process. With
vehicle fodder tanks able to transport loads of 500–2500 kg, a machine would theoretically be able to
feed 1500–30,000 cages. Automatically placing the fodder at these specific areas requires an on-board
localization system that is able to determine the current vehicle position. The co-model of the robot

Robotics 2015, 4 403

is evaluated based on the required overall system performances obtained using solutions from different
disciplines.

Figure 3. Robotic Mink Feeding system mounted onto a manually operated vehicle.
(Source: Picture of a Minkpapir A/S vehicle solution, Conpleks Innovation.)

3.2. System Configuration and Performance Demands

The chosen robot is a four-wheeled vehicle with front-wheel steering and rear-wheel drive equipped
with differential gearing, as illustrated in Figure 3. The mink feeding ground vehicle is able to transport
a maximum load Mlmax of 600 kg. The robot receives sensory input from a vision system, an RFID tag
reader, an IMU and rotary encoders installed on the back wheels and front wheel kingpins. The vision
system is used to detect the entrance to the feeding area when the robot still is outside. The RFID tags are
placed along the rows of mink cages to act as fixed location reference points, as illustrated in Figure 4.
Fused sensory data are used to determine the current location and to enable the robot to perform its
required actions in the environment. A feeder arm mounted on the robot is used to dispense the fodder
on the cages (80 g) at the predetermined locations. When the robot moves into the feeding area, it stops
to deploy the feeding arm and then begins the feeding procedure.

Figure 4. Sketch of the load-carrying feeding robot and the mink feeding area.

The system performance requirements define what the robot must achieve to be considered effective.
The system performance required by the project stakeholders includes the following:

Robotics 2015, 4 404

• Maximum vehicle speed of 0.25 m/s (conforming to ISO-10218 [34])

• No collisions with the surroundings, as laid out in Figure 4.

• The distance between the RFID tags dt should be between 0.3 and 20 m.

• Feeding with a precision of ±0.08 m inside the placement area.

It should be noted that the performance requirements are non-domain specific and focus on the overall
performance of the robot. Here, the maximum distance between the RFID tags represents the length of
the feeding area and sets the limit for the minimum number of tags. The lower limit for dt is chosen
based on the length of the mink cages used in the co-modeling, resulting in one RFID tag for each cage.

3.3. Modeling Cases

The co-model describes the vehicle and its sensor, actuator, steering controller, feeding system and
sensor fusion components. The goal was to achieve maximum distance between the RFID tags without
compromising the pre-set system constraints. The question here was whether the loading of the vehicle
should be accounted for by reducing the maximum compression of the tire, compensated for in the DE
controller, or a combination of both approaches. The following DE controller conditions were applied:

<Static> The estimated effective tire radius was considered to be the mean of the values for the
unloaded and fully-loaded robot. This is based on the assumption that the mean value will produce
the least overall error in the estimate.

<Pre-calibration> A pre-measured estimate of the current rear tire wheel radius in relation to the
transported load is used in the DE part of the co-model. The estimates of the effective radius
were obtained through the MATLAB bridge and directly passed from 20-sim with an accuracy
of ±0.001 m.

<Estimator> The input data obtained by the vision sensor were used to estimate the current effective
radius before entering the feeding area. This estimate was based on the distance traveled between
the updates, with an accuracy of−0.005 m.

Rather than simulating a single scenario, the test set in Table 1 evaluates the expected min-mean-max
operational values used for DSE. The DSE was used to evaluate the configuration solutions in Table 1 in
different development domains to account for the load-carrying effects. The operational values represent
the expected range of transported loads, as well as the surface of the tire and initial robot position
conditions. The initial position was of interest in this case because a human operator could place the
robot at its starting point without the necessary accuracy. The models of the tire radius on the CT side
vary between low and fully-loaded conditions. The tire surface friction is of interest here, since the
vehicle will be stopping to deploy the feeding arm before starting the feeding process.

Robotics 2015, 4 405

Table 1. Candidate solution sets used for the system evaluation and min-mean-max test set
used for the design space exploration (DSE) of the feeding robot.

System Configurations Min-Mean-Max Test Set
Rear Tire Vehicle Load Mass Tire Surface Initial Position

Radius Change State Estimate µ friction xinit, yinit, ψinit

0.001 m <Static> 1% (6 kg) 0.3 xinit = {−0.5 m, 0 m, 0.5 m}
0.02 m <Pre-calibration> 50% (300 kg) 0.5 yinit = {−0.1 m, 0 m, 0.1 m}
0.04 m <Estimator> 100% (600 kg) 0.7 ψinit = {−15◦, 0◦, 15◦}

4. Co-Modeling

The co-modeling perspective of the robot includes a contract between the DE and CT models and the
ACA specifications for a DSE using co-simulation. This contract represents the work template between
the developers, and the ACA specifications are the concrete requirements of the stakeholder.

4.1. Crescendo Contract

The Crescendo contract in Table 2 defines the parameters and variables to be exchanged during the
simulation. The shared design parameters are defined by the sdp keyword; the variables controlled by
the CT side are defined by the monitored keyword; and the variables controlled by the DE side are
defined by the controlled keyword. The parameters in the contract provide the communication variables
that both the DE and CT developers require for the development of a combined model. Compared to
reality, these variables are abstractions and only provide information for current co-model development.

Table 2. Crescendo contract.

Name Type Parameter Symbol
sdp Initial_Position array [xinit, yinit, φinit]

sdp Surface_Tyre real µ

sdp Load_Mass real mLp

sdp Tag_dist real dt

controlled Speed_out real uo

controlled Steering_Wheel_Angle real δfo
controlled Feeder_arm_pos real yarm

controlled Feeder_output real po

monitored Vision array [rs1 , θs1 , rs2 , θs2 , θse , dse]

monitored RFID array [ID,RSSI]

monitored IMU real ψ̇s

monitored Encoders_Back array [ωrrs ,ωrls]

monitored Encoder_Front real δfs

Robotics 2015, 4 406

In this co-model, the shared design parameters represent the values that developers should explore in
terms of effect. Values xinit, yinit and φinit define the starting position of the robot in the global coordinate
frame, whereas mLp and µ set the current operational parameters of the robot and its surroundings.
Furthermore, dt is the factor to be increased while still achieving the system performance goals for each
DSE candidate. The controlled variables are the input to the robot movement and the feeding arm. The
input to the robot movement is transmitted to the drive motor and front wheel steering actuator, and
the feeding arm transmits the desired arm position and current feeding output to the CT model. The
monitored variables represent the sensory inputs to the DE side: vision, RFID, IMU and encoders. In
the case of vision, the full image or laser scan is not transmitted for processing; rather, the processed
input of the detected objects (e.g., the poles in illustrated in Figure 4) are transmitted when they are in
view. When inside the feeding area, the vision system instead provides an estimate of vehicle orientation
θse and distance to the side wall dse . The IMU is also only represented by a single measurement value
ψ̇s that is rotated in the global frame, where the actual sensor might contain acceleration and rotation
sensors for all three dimensions. The RFID reader provides tag identification data (ID) and a received
signal strength indicator (RSSI) value when in range of an RFID tag.

4.2. Automatic Co-Model Analysis

To select the value of parameter dt for the ACA co-simulation, an output cost-function is defined. The
result of each co-simulation is evaluated based on the rate of success for placing the fodder at the correct
positions between two tags.

fdt = −b
2
suc

btot
(2)

where btot is the total number of placement positions between two RFID-tags and bsuc is the number of
successful fodder placements. The output of the cost function ensures that the largest dt with the highest
number of successful fodder placements is the minimum for the searchable range. In mathematics, by
convention, optimization problems are usually stated in terms of minimization, thus the minus sign.
ACA uses the golden section search method ([35] Chapter 7) in combination with the cost function in
Equation (2) to determine the best candidate within the design space. Golden section search assumes
that the cost function is a unimodal function, meaning that there is only a single local minimum.

Evaluation of each ACA run co-simulation is performed during the simulation or after the execution,
as in post-processing, as illustrated in Figure 5. In-run co-simulation evaluation is based on readily
available values, such as the CT-simulated robot speed and position in the global coordinate frame. The
evaluation of a running co-simulation allows for a direct exit from the execution, instead of having to
run an already failed scenario to its end.

The post-processing evaluation of an ACA co-simulation is based on the feeding output of the
robot in its surroundings relative to the stakeholder requirements. Evaluating the feeding output
requires information about the location of each food placement in the operational environment, and this
significantly increases computation. By logging the types of failures that the co-simulation encounters,
developers can order and rerun specific scenarios that are found to be relevant.

Robotics 2015, 4 407

Process
robot variables

Check speed
and collision

Calculate feeding robot
output response

Log success

Log failure

 Exit simulation

[active co-sim] [ended]

[failed]

[ok]

Figure 5. Activity diagram showing the evaluation of a co-simulation.

5. CT Modeling

The CT model describes the sensors, actuators, robot vehicle, environment and their interactions.
The actuator output affects the robot movement and output response, which in turn affects the sensory
responses. In the present study, vision and IMU sensors were modeled using known methods [36] that
are not described in this paper.

5.1. Tire Modeling for Encoder Data

The wheel encoders provide inputs to the DE controller to control the drive speed and estimation of
the current position. The data of the wheel encoders are based on rotational data obtained by a dynamic
tire model that takes into consideration the vertical, lateral and longitudinal dynamics of the tire, as
illustrated in Figure 6.

Figure 6. Forces in the longitudinal tyre model.

The tire model describes the rotational changes ω̇w and the effects of the steering along the feed area
side wall, braking and wheel surface conditions. The longitudinal tire force Fxw includes the effects of
acceleration and braking:

Jwω̇w = Tin − FxwRe (3)

Robotics 2015, 4 408

where Jw is the wheel moment of inertia, Tin is the acceleration or braking torque and Re is the effective
rolling radius (a compression of the unloaded radius RU based on the applied load FN). Radius Re is
modeled by a spring-damper system as follows:

Re = RU − FN/kw (4)

Each tire’s Re value changes dynamically depending on the load forces applied by the robot.
The kw factor represents the current tire stiffness applied in the DSE and is based on the expected
compression rate.

Both empirical and analytical models have been developed to describe the generated lateral and
longitudinal tire forces [37–40]. In the present implementation of the tire, the Fiala tire model was
used to calculate the resultant lateral and longitudinal tire forces.

5.2. Vehicle Body Dynamics

The generated tire forces interact with the robot to produce the output response in the environment.
The robot utilizes trapezoid steering, as illustrated in Figure 7a, which produces equal steering angles on
the right and left sides, making the transformation the same for both sides [41].

(a) (b)

Figure 7. Free-body diagrams of the robot. (a) Forces in the x-y plane. (b) Forces in the
y-z plane.

To take the front steer angle into consideration, the CT model rotates the front tire forces into the
coordinate system of the robot vehicle. The CT side models the dynamic yaw ψ, pitch φ, lateral u and
longitudinal v motion responses of the robot vehicle. The differential equations ([41] p.71) model the
motion of the robot body.

Roll angle θ, H , a and b were treated as constant in each simulation, because the expected changes
were assumed to be negligible and therefore only updated for each DSE case. The current total mass of
the robot and load M was used to calculate the current values of a and b, which define the CGposition:

Robotics 2015, 4 409

M = Mvehicle +MlmaxmLp (5)

a = au + ηxMlmaxmLp (6)

where au and bu are respectively the longitudinal distances of the front and rear wheels of the unloaded
robot from its CG, and ηx is a constant, because the change in the CG was assumed to be linear within
the load limits [0,Mlmax]. Likewise, M , a, b and the tire spring values were used to calculate ψ and H ,
with HU corresponding to the unloaded CG height.

5.3. RFID Tag Reader

An RFID reader has a zone in three-dimensional space (the detection zone) in which a specific type
of tag is detectable [42]. To model the detection zone, an ellipsoid with its center at (xdz, ydz, zdz) and a
semi-principal axis of length (r1, r2, r3) was used to compare the RFID tag positions (xtg, ytg, ztg), which
were rotated into the coordinate frame of the reader to determine whether the tag was within range. An
RFID reader is able to read a tag if the following Equation (7) is satisfied.(

(xrf − xtg)2

r21
+

(yrf − ytg)2

r22
+

(zrf − ztg)2

r23

)
≤ 1 (7)

The actual distance drf is calculated using the global coordinates of the RFID reader (xrf , yrf , zrf)

and the RFID tag.

drf =
√

(xrf − xtg)2 + (yrf − ytg)2 + (zrf − ztg)2 (8)

The mathematical relationship between the RSSI value and actual distance drf is as follows:

RSSI(drf) =


Krf

drf
if Krf

drf
≥ RSSImin

RSSImin if Krf

drf
< RSSImin

(9)

where RSSImin is the minimum value that the reader outputs to the DE side and Krf is a constant in the
piece-wise function.

5.4. CT Setup

The CT parameters of the co-simulations for the intended DSE are documented in Table 3.
In the co-simulation, the CT side utilized a variable step-size ordinary differential equation (ODE)

solver based on the Dormand–Prince method, a member of the Runge–Kutta family of ODE solvers.
The ODE solver runs with a maximum step size of 1 kHz.

Robotics 2015, 4 410

Table 3. Continuous time (CT) parameters used for the co-simulations.

Sub-System Parameter Values
Environment dl = 20 m, dw = 1.5 m, di = 1.34 m,

dx = 1 m, dy = 0.2 m
Vehicle body L = 2.1 m, aU = 1.2 m, bU = 0.9 m, HU = 0.55 m, Ta = 0.65 m, Tc = 0.74 m,

Ha = 1.2 m, Mvehicle = 800 kg, Mlmax = 600 kg, ηx = 5.83 · 10−4 m
kg

,
ηy = 1.33 · 10−4 m

kg
, RU = 0.3 m, kw,0.04 = 127, 250N

m
,

kw,0.02 = 254, 500N
m

, kw,0.001 = 3, 100, 000N
m

Sensors RSSImin = 4, Krf = 0.12 m, r1 = 0.16 m, r2 = r3 = 0.12 m
Encoder resolution = 13 bit, rmax = 5 m, rmin = 0.01 m, rσ = 0.005 m
|θmax| = π

2
, θσ = 0.5◦

6. DE Modeling

6.1. Control

The robot controller consists of a steering controller that can follow a pre-determined path, and the
feeding system is intended to place food at pre-selected positions. The steering controller steers the robot
along the predetermined path, which is defined as a sequence of waypoints, utilizing the modal mode
concept illustrated in Figure 8. The current modal controller mode is dependent on movement inside or
outside the feeding area. The current waypoint determines the current mode and when the feeding arm
is deployed.

Figure 8. Block diagram of the modal steering controller.

The feedforward response is based on the kinematic bicycle model where L is the length of the
wheelbase and the estimated drive speed ube by the rear wheels of the robot. The drive speed of the robot
at time interval k is calculated as:

ubek =
Ree (ωrls + ωrrs)

2
(10)

where ωrls and ωrrs are the sensory inputs of the left and right wheel encoders, respectively.
When the robot is moving into and out of the feeding area, the estimated heading error ψe is the

chosen steering concept. Inside the mink farm house, the robot needs to move along the cages in straight

Robotics 2015, 4 411

lines and to ensure that the feeding arms are held straight over the cages. Correct operation is ensured
by maintaining a fixed distance from and orientation to the sides of the mink cages. The control law
employed by [43,44], which is given by Equation (11), was chosen for inside operation. The robot
rotational angle speed ψ̇des was set to be proportional to the errors in distance de and orientation θe:

rdes =

[
K11 0

0 K22

][
de

θe

]
(11)

The controller parameter is tuned by the Ziegler–Nichols closed loop method. The parameter K22 is
determined first and tuned to diminish the angle error θe. The procedure is then repeated for the K11

parameter for the distance error de. When the robot moves outside the feeding area, the heading error
φe in relation to the predetermined path of the robot is selected as the steering concept. A classic PD
controller is used to steer the robot outside the mink farm houses, based on the method described in [41].

When the robot moves into the feeding area, it stops to deploy the feeding arm system to the
preselected position by updating yarm. Robot movement cannot continue before the feeding arm system
has been completely moved in or out when the robot is entering or exiting a mink farm house. The robot
has a feed map in the form of a sequence of amounts and positions of fodder to place. The feeding arm
system starts the feeding process using the output po when the next position in the map is reached.

6.2. Sensor Fusion

The idea of sensor fusion is that more accurate estimates of a physical phenomenon can be obtained
by combining different sensor data sources [45]. The combined sensor data can better accommodate
uncertainty and noise in measurements [46]. The sensor fusion solution adopted in this study uses
an extended Kalman filter (EKF) [36] to estimate the current position of the robot. The process is
represented by the following velocity motion model:

f(x̂k−1, µk, 0) =

xkyk
ψk

 =

xk−1

yk−1

ψk−1

+


− uek
ψ̇sk

(
sin(ψk−1)− sin(ψk−1 + ψ̇skTk)

)
uek
ψ̇sk

(
cos(ψk−1)− cos(ψk−1 + ψ̇skTk)

)
ψ̇skTk

 (12)

The process input µk at interval k in time is used to predict the next state and is based on the monitored
variables φ̇s, variables ωrrs and ωrls obtained from the Crescendo contract. The value determined from
ψ̇s is passed directly to the EKF and represents the current ψk. ωrrs and ωrls represent the back wheel
encoder measurements used to estimate the current robot speed:

uek =
Ree (ωrls + ωrrs)

2

(√
1 +

4L2(ωrls − ωrrs)2
T 2
c (ωrls + ωrrs)

2

)
(13)

where Ree is the estimated effective tire radius used by the DE side and L and Tc are respectively the
length and width of the robot wheelbase. The square root part of Equation (13) is used to transpose the
measurements to the chosen localization reference point.

The EKF utilizes an event-based correction stage that is dependent on the inputs from the vision
system and RFID. The vision system provides updates when the door poles of the entrance and exit are

Robotics 2015, 4 412

in view and compares them against a pole landmark map. The chosen landmark coordinates (mx,j,my,j)

are converted into polar coordinates (r, θ) to allow for direct comparison with the sensor input:

hvisionout(xk,j, 0) =

[
rk,j

θk,j

]
=

[√
(mx,j − xk)2 + (my,j − yk)2

arctan2(my,j − yk,mx,j − xk)− ψk

]
(14)

where (mx,j ,my,j) is the position of the door pole in the local map and (xk,yk,ψk) is the estimated position
of the robot.

When the robot is moving inside the feeding area, the vision input can be used to update the vehicle
orientation and distance to the side wall [47].

hvisionin
(xk,j, 0) =

[
dm

θm

]
=

[
Amyk+Bmxk+Cm√

A2
m+B2

m

arctan2(Am, Bm)− ψk

]
(15)

where Am, Bm and Cm are the parameters for the general form of the line equation representing the
mapped position of the side wall. The sensory update does not provide the robot with information about
its current position along the side wall, and therefore, position correction is needed.

The positions of the RFID tags can also be seen as points along the side wall (mx,i,my,i). When the
RFID tag reader first detects the tag, we can use this to provide a position estimate (∆xe,i,∆ye,i) relative
to this tag by combining the detection event with input from the vision sensor. In these co-modeling
scenarios, we assume it to be at the center of the detection zone (i.e., at zero), making the relative
position measurement output correspond to the intersection point between the line (side wall) and ellipse
(detection zone). The landmark related to the RFID tag is then:

hrfid(xk,j, 0) =

[
∆xk,i

∆yk,i

]
=

[
mx,icos(−ψk)−my,isin(−ψk)− xk
mx,isin(−ψk) +my,icos(−ψk)− yk

]
(16)

The Jacobian matrices utilized in the EKF localization method are not presented in this paper, but can
be calculated based on Equations (12) and (14)–(16).

7. Results

The result of the ACA is illustrated in Figure 9 using boxplots. In each boxplot, the central line
marks the median; the edges of the box are the 25th and 75th percentiles; and the whiskers mark the
two most extreme data points. A total of 12,028 co-simulations was run, for the 2187 scenarios in
the min-mean-max test set from Table 1. Each system configuration boxplot represents the determined
maximum RFID dt distance values for each scenario.

Robotics 2015, 4 413

Figure 9. Result of the automated co-model analysis (ACA) run for the feeding farming
co-model in terms of determined dt, for the nine different system configurations in Table 1.

7.1. Selected Individual Results

Further information about the individual co-simulations can be gained by visualizing the response in
terms of mink fodder placement. In Figures 10–12, a select number of runs from the DSE performed are
illustrated, representing both successful and failed scenarios. Only a section of the feeding area is shown
to allow individual fodder placements to be seen.

Figure 10 illustrates some of the early co-simulation runs that were made before the final model was
developed. Lessons learned from these failed co-simulations were used to improve the DE controller
operating the robotic vehicle.

A successful and a failed co-simulation scenario are shown in Figure 11, to illustrate the different
types of outcome from the DSE. The white rectangles on the side wall represent the placement of the
RFID tags, illustrating their impact on the mink fodder placement.

Robotics 2015, 4 414

(a) (b)

Figure 10. Failed co-simulation runs from the development process of the co-model.
(a) Collision of the feeding arm with support beam. (b) Misplacement of fodder
whenentering.

(a) (b)

Figure 11. Selected visualisation examples of the co-simulations made using DSE.
(a) Misplacement of mink fodder. (b) Successful placement of mink fodder.

Co-simulations can also differ for the same system configuration, but still provide acceptable
outcomes. Figure 12 illustrates the influence that the transported load has on the placement of the mink
fodder inside the feeding area.

(a) (b)

Figure 12. The selected example DSE results illustrates the variation of the system
configuration: vehicle state estimate = <Static> and rear tyre radius change of 0.04 m.
(a) Fodder placement with a 1% load mass. (b) Fodder placement with a 100% load mass.

Robotics 2015, 4 415

8. Discussion

The results provide an overview of the candidate system configurations based on the estimated RFID
tag distance. Developers can use the candidate overview to select configurations for testing on the an
actual platform. The intention here is to provide the stakeholders in the project with an overview of the
different candidate solutions.

From the box plots, it can be seen that the <Pre-calibration> method provides the best overall results
for all tire solutions. This is to be expected since the value Ree used matches reality with a high degree
of accuracy. The candidate with the best results in terms of largest overall dt for all co-simulation
cases is not necessarily the one that will be chosen for implementation on the actual robot. Factors,
such as material, development, implementation and maintenance costs, affect the final configuration
selection. The 0.001-m tire compression solution requires adjustment by an operator before start-up.
The pre-calibrated solution must be updated periodically to account for changes in the robot setup. The
vision solution is calibrated for a specific set of farm configurations and requires adjustments for new
conditions. Nevertheless, this overview provides a means of evaluating the external costs with respect to
the expected distance between the RFID tag and affords a more educated configuration selection.

Based on the co-simulation result, approximately 300 h are required to perform the analysis on the
actual platform, excluding the time spent fixing the starting position and that taken up by mistakes during
the test. Note that the co-model can be reused to explore other aspects of this robotic system. One could,
for example, extend the co-model with another feeding arm to provide feeding capabilities on both sides
and redo a similar design analysis. The time saved by the co-modeling and ACA could be invested in
other areas of the project. The overview obtained by ACA does not guarantee optimal solutions, but it
does facilitate the analysis of multiple candidate solutions.

The results from the individual co-simulations run can be used to judge the overall fodder placement.
Individual result evaluation was the approach that was taken when the co-model was developed as
illustrated in Figure 10, to improve on the DE controller design. The possibility exists to re-evaluate
individual failed candidate solutions, to determine if the new improvements that the developers come up
with would yield a better result. Here, co-simulation would allow the developers to rapidly evaluate these
new candidate solutions under the same min-mean-max test set, to compare against Figure 9. Based on
the lessons learned from developing the described co-model, we see co-modeling and co-simulation, as
well as suited development tools for future robotics projects.

A similar analysis could also be completely performed using MATLAB/Simulink, Gazebo or a
comparable tool. We expect the result of the simulations using one of these tools to match if the co-model
described in this paper in Sections 5 and 6 were implemented. However, developers would need to
understand and work collaboratively using a single tool, without the advantages of co-modeling and
co-simulation using multiple domain-specific tools. In this article, we have illustrated that co-modeling
and co-simulation provide the ability to analyze multi-disciplinary design problem, using tools from
individual disciplines.

Robotics 2015, 4 416

9. Concluding Remarks

The development of a robotic system that conforms to the overall system requirements is essential. In
this paper, we described the concept of co-modeling and co-simulation as an approach to robot design.
We also showed how co-simulation using DSE affords a cross-disciplinary overview of design candidates
for a proposed robot. This was exemplified by the case study of a load-carrying robot for dispensing
fodder. The cross-disciplinary DSE was used to determine the maximum distance between the RFID
tags for each design candidate. An alternative trial-and-error approach to determine the best design
candidate would normally require 300 h.

The co-modeling and co-simulation of the feeding robot was used to illustrate tool-decoupled
development involving dynamic modeling, control and signal processing. Overture, 20-sim and
MATLAB were all used to create a complete co-model of the robot in the proposed design approach,
thereby allowing multi-disciplinary developers to utilize tools specific to their respective disciplines. The
effects of the carried load, surface conditions and safety considerations were considered in evaluating
the different candidate designs in this study. It is our belief that the combination of co-modeling and
co-simulation with DSE can be used as a part of the development to analyze and compare design
candidates in different domains.

Acknowledgments

The financial support of this study given by the Danish Ministry of Food, Agriculture and Fisheries
is gratefully acknowledged. The work presented here is partially supported by the INTO-CPS project
funded by the European Commission’s Horizon 2020 program under Grant Agreement Number 664047.
Thanks also go to Conpleks Innovation for their collaboration on the mink feeding case study. We also
acknowledge Morten Larsen for giving invaluable feedback on drafts of this paper.

Author Contributions

All authors made substantial contribution to this research. P.G.L. and R.N.J. supervised the research.
M.P.C. developed the co-model, performed the design space exploration, analysed the results. M.P.C.
and R.N.J. devised the min-mean-max test set for the design space exploration. P.G.L. and M.P.C. wrote
the manuscript. All authors discussed and commented on the manuscript at all stages, interpreted the
results, agreed about the conclusions, and further research directions.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Sørensen, C.; Jørgensen, R.; Maagaard, J.; Bertelsen, K.; Dalgaard, L.; Nørremark, M.
Conceptual and user-centric design guidelines for a plant nursing robot. Biosyst. Eng. 2010,
105, 119–129.

Robotics 2015, 4 417

2. Harris, A.; Conrad, J.M. Survey of popular robotics simulators, frameworks, and toolkits. In
Proceedings of the 2011 IEEE Southeastcon, Nashville, TN, USA, 17–20 March 2011; IEEE:
New York, NY, USA, 2011; pp. 243–249.

3. Staranowicz, A.; Mariottini, G.L. A survey and comparison of commercial and open-source
robotic simulator software. In Proceedings of the 4th International Conference on Pervasive
Technologies Related to Assistive Environments—PETRA ’11, Crete, Greece, 25–27 May 2011;
pp. 121–128.

4. Longo, D.; Muscato, G. Design and Simulation of Two Robotic Systems for Automatic Artichoke
Harvesting. Robotics 2013, 2, 217–230.

5. Murata, S.; Yoshida, E.; Tomita, K.; Kurokawa, H.; Kamimura, A.; Kokaji, S. Hardware design
of modular robotic system. In Proceedings of the 2000 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), Takamatsu, Japan,
31 October–5 November 2000; Volume 3, pp. 2210–2217.

6. Baheti, R.; Gill, H. Cyber-Physical Systems. In The Impact of Control Technology; Samad, T.,
Annaswamy, A., Eds.; IEEE Control Society: New York, NY, USA, 2011; pp. 161–166.

7. Pannaga, N.; Ganesh, N.; Gupta, R. Mechatronics—An Introduction to Mechatronics. Int. J. Eng.
2013, 2, 128–134.

8. Piece, K.; Fitzgerald, J.; Gamble, C.; Ni, Y.; Broenink, J.F. Collaborative Modeling
and Simulation—Guidelines for Engineering Using the DESTECS Tools and Methods;
Technical Report, The DESTECS Project (INFSO-ICT-248134); Available online: http:
//destecs.org/images/stories/Project/Deliverables/D23MethodologicalGuidelines3.pdf (accessed
on 24 September 2015).

9. Fitzgerald, J.; Larsen, P.G.; Verhoef, M. Collaborative Design for Embedded
Systems—Co-Modeling and Co-Simulation; Springer: Berlin, Germany, 2014.

10. DESTECS (Design Support and Tooling for Embedded Control Software) homepage.
Available online: http://destecs.org/ (accessed on 23 September 2015).

11. Pierce, K.G.; Gamble, C.J.; Ni, Y.; Broenink, J.F. Collaborative Modeling and Co-Simulation
with DESTECS: A Pilot Study. In Proceedings of the 3rd IEEE Track on Collaborative Modeling
and Simulation, in WETICE 2012, Toulouse, France, 25–27 June 2012; IEEE-CS: New York,
NY, USA, 2012.

12. Abel, A.; Blochwitz, T.; Eichberger, A.; Hamann, P.; Rein, U. Functional Mock-up Interface
in Mechatronic Gearshift Simulation for Commercial Vehicles. In Proceedings of the 9th
International Modelica Conference, Munich, Germany, 3–5 September 2012.

13. INTO-CPS (Integrated Tool Chain for Model-based Design of Cyber-Physical Systems)
homepage. Available online: http://into-cps.au.dk/ (accessed on 23 September 2015).

14. Fitzgerald, J.; Gamble, C.; Larsen, P.G.; Pierce, K.; Woodcock, J. Cyber-Physical Systems
design: Formal Foundations, Methods and Integrated Tool Chains. In Proceedings of the
FormaliSE: FME Workshop on Formal Methods in Software Engineering, ICSE 2015, Florence,
Italy, 18 May 2015.

15. Tan, C.; Kan, Z.; Zeng, M.; Li, J.B. RFID technology used in cow-feeding robots. J. Agric.
Mech. Res. 2007, 2, 169–171.

http://destecs.org/images/stories/Project/Deliverables/D23MethodologicalGuidelines3.pdf
http://destecs.org/images/stories/Project/Deliverables/D23MethodologicalGuidelines3.pdf
http://destecs.org/
http://into-cps.au.dk/

Robotics 2015, 4 418

16. Jørgensen, R.N.; Sørensen, C.G.; Jensen, H.F.; Andersen, B.H.; Kristensen, E.F.; Jensen, K.;
Maagaard, J.; Persson, A. FeederAnt2—An autonomous mobile unit feeding outdoor pigs. In
Proceedings of the ASABE Annual International Meeting, Minneapolis, MN, USA, 17–20 June
2007.

17. Nicolescu, G.; Boucheneb, H.; Gheorghe, L.; Bouchhima, F. Methodology for Efficient Design
of Continuous/Discrete-Events Co-Simulation Tools. In Proceedings of the 2007 Western
Multiconference on Computer Simulation WMC 2007, San Diego, CA, USA, 14–17 January
2007; Anderson, J., Huntsinger, R., Eds.; SCS: San Diego, CA, USA, 2007.

18. Broenink, J.F.; Larsen, P.G.; Verhoef, M.; Kleijn, C.; Jovanovic, D.; Pierce, K. Design
Support and Tooling for Dependable Embedded Control Software. In Proceedings of the
Serene 2010 International Workshop on Software Engineering for Resilient Systems, London,
UK, 13–16 April 2010; ACM: New York, NY, USA, 2010; pp. 77–82.

19. The Crescendo tool homepage. Available online: http://crescendotool.org/. (accessed on 20
September 2015).

20. Larsen, P.G.; Battle, N.; Ferreira, M.; Fitzgerald, J.; Lausdahl, K.; Verhoef, M. The Overture
Initiative—Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 2010, 35, 1–6.

21. Bjørner, D.; Jones, C. The Vienna Development Method: The Meta-Language; Lecture Notes in
Computer Science; Springer-Verlag: Berlin, Germany, 1978; Volume 61.

22. Fitzgerald, J.S.; Larsen, P.G.; Verhoef, M. Vienna Development Method. In Wiley Encyclopedia
of Computer Science and Engineering; Wah, B., Ed.; John Wiley & Sons, Inc.: New York, NY,
USA, 2008.

23. Kleijn, C. Modeling and Simulation of Fluid Power Systems with 20-sim. Int. J. Fluid Power
2006, 7, 1–6.

24. Verhoef, M.; Larsen, P.G.; Hooman, J. Modeling and Validating Distributed Embedded
Real-Time Systems with VDM++. In FM 2006: Formal Methods; Lecture Notes in Computer
Science 4085; Misra, J., Nipkow, T., Sekerinski, E., Eds.; Springer-Verlag: Berlin, Germany;
Heidelberg, Germany, 2006; pp. 147–162.

25. Coleman, J.W.; Lausdahl, K.G.; Larsen, P.G. D3.4b—Co-simulation Semantics;
Technical Report, The DESTECS Project (CNECT-ICT-248134); Available online: http:
//destecs.org/images/stories/Project/Deliverables/D34bCoSimulationSemantics.pdf (accessed on
24 September 2015).

26. Kim, J.; Kim, Y.; Kim, S. An accurate localization for mobile robot using extended Kalman filter
and sensor fusion. In Proceedings of the 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June
2008; pp. 2928–2933.

27. Raol, J.R. Multi-Sensor Data Fusion with MATLAB, 1st ed.; CRC Press: Boca Raton, FL, USA,
2009; p. 568.

28. Guivant, J.; Nebot, E.; Whyte, H.D. Simultaneous Localization and Map Building Using Natural
features in Outdoor Environments. Intell. Auton. Syst. 2000, 6, 581–586.

http://crescendotool.org/.
http://destecs.org/images/stories/Project/Deliverables/D34bCoSimulationSemantics.pdf
http://destecs.org/images/stories/Project/Deliverables/D34bCoSimulationSemantics.pdf

Robotics 2015, 4 419

29. Wulf, O.; Nuchter, A.; Hertzberg, J.; Wagner, B. Ground truth evaluation of large urban 6D
SLAM. In Proceedings of 2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 650–657.

30. Lin, H.H.; Tsai, C.C.; Chang, H.Y. Global Posture Estimation of a Tour-Guide Robot Using
REID and Laser Scanning Measurements. In Proceedings of the 33rd Annual Conference of the
IEEE Industrial Electronics Society, 2007; Taipei, Taiwan, 5–8 November 2007; pp. 483–488.

31. Choi, B.S.; Lee, J.J. Mobile Robot Localization in Indoor Environment. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, St. Louis, MO,
USA, 10–15 October 2009; pp. 2039–2044.

32. Zhou, J.; Shi, J. A comprehensive multi-factor analysis on RFID localization capability.
Adv. Eng. Inf. 2011, 25, 32–40.

33. Marín, L.; Vallés, M.; Soriano, A.; Valera, A.; Albertos, P. Multi sensor fusion framework
for indoor-outdoor localization of limited resource mobile robots. Sensors (Basel, Switzerland)
2013, 13, 14133–14160.

34. International Organization for Standardization (ISO). Robots for Industrial Environments—Safety
Requirements—Part 1: Robot; Technical Report, The International Organization for
Standardization and the International Electrotechnical Commission: London, UK, 2013.

35. Chong, E.K.; Zak, S.H. An Introduction to Optimization, 3rd ed.; John Wiley & Sons: New York,
NY, USA, 2008; p. 608.

36. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, MA, USA, 2005.
37. Dugoff, H.; Fancher, P.S.; Segel, L. Tire Performance Characteristics Affecting Vehicle Response

to Steering and Braking Control Inputs; Technical Report: Highway Safety Research Institute,
University of Michigan, Ann Arbo, MI, USA,1969.

38. Bakker, E.; Pacejka, H.B.; Lidner, L. A New Tire Model with an Application in Vehicle
Dynamics Studies. SAE Techni. Pap. 1989, doi: 10.4271/890087.

39. Pacejka, H.B.; Bakker, E. Shear Force Development by Pneumatic Tyres in Steady State
Conditions: A Review of Modeling Aspects. Veh. Syst. Dyn. 1991, 20, 121–175.

40. Pacejka, H.B.; Bakker, E. The magic formula tire model. Veh. Syst. Dyn. 1992, 21, 1–18.
41. Bevly, D.M. GNSS for Vehicle Control, 1st ed.; Artech House: Norwood, MA, USA, 2009;

p. 247.
42. Marrocco, G.; di Giampaolo, E.; Aliberti, R. Estimation of UHF RFID Reading Regions in Real

Environments. IEEE Antennas Propagat. Mag. 2009, 51, 44–57.
43. Nagasaka, Y.; Umeda, N.; Kanetai, Y.; Taniwaki, K.; Sasaki, Y. Autonomous guidance for

rice transplanting using global positioning and gyroscopes. Comput. Electron. Agric. 2004,
43, 223–234.

44. Noguchi, N.; Ishii, K.; Terao, H. Development of an Agricultural Mobile Robot using a
Geomagnetic Direction Sensor and Image Sensors. J. Agric. Eng. Res. 1997, 67, 1–15.

45. Hall, D.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6–23.
46. Thrun, S. Is robotics going statistics? The field of probabilistic robotics. Commun. ACM 2001,

1, 1–8.

Robotics 2015, 4 420

47. Hansen, S.; Bayramoglu, E.; Andersen, J.C.; Ravn, O.; Andersen, N.; Poulsen, N.K. Orchard
navigation using derivative free Kalman filtering. In Proceedings of the American Control
Conference (ACC), San Francisco, CA, USA, 29 June–1 July 2011; IEEE: Newe York, NY,
USA, 2011; pp. 4679–4684.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Co-Modeling Technologies
	Crescendo Technology
	MATLAB Extension

	System Boundary Definition
	Problem Area Definition
	System Configuration and Performance Demands
	Modeling Cases

	Co-Modeling
	Crescendo Contract
	Automatic Co-Model Analysis

	CT Modeling
	Tire Modeling for Encoder Data
	Vehicle Body Dynamics
	RFID Tag Reader
	CT Setup

	DE Modeling
	Control
	Sensor Fusion

	Results
	Selected Individual Results

	Discussion
	Concluding Remarks

