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Abstract: This paper presents the results of the project IMPERA (Integrated Mission
Planning for Distributed Robot Systems). The goal of IMPERA was to realize an
extraterrestrial exploration scenario using a heterogeneous multi-robot system. The main
challenge was the development of a multi-robot planning and plan execution architecture.
The robot team consists of three heterogeneous robots, which have to explore an unknown
environment and collect lunar drill samples. The team activities are described using the
language ALICA (A Language for Interactive Agents). Furthermore, we use the mission
planning system pRoPhEt MAS (Reactive Planning Engine for Multi-Agent Systems) to
provide an intuitive interface to generate team activities. Therefore, we define the basic skills
of our team with ALICA and define the desired goal states by using a logic description.
Based on the skills, pRoPhEt MAS creates a valid ALICA plan, which will be executed
by the team. The paper describes the basic components for communication, coordinated
exploration, perception and object transportation. Finally, we evaluate the planning engine
pRoPhEt MAS in the IMPERA scenario. In addition, we present further evaluation of
pRoPhEt MAS in more dynamic environments.

Keywords: multi-agent systems; teamwork; coordination; planning; cooperative
exploration; manipulation
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1. Introduction

Autonomous multi-robot systems are good candidates for extraterrestrial mission scenarios. NASA
has several missions in extraterrestrial areas. For instance, the missions Mars Exploration Rover [1] and
Mars Science Lab NASA [2] deal mainly with the exploration of the planet’s surface and the analysis of
what the surface consists of. The robots are able to take surface samples by using a drill and take them
back to a base station for later analysis. In the future, the autonomy of robots in planetary missions will
become an almost mandatory requirement. Besides, a team of heterogeneous robots can speed up the
missions enormously if different robots are optimized for certain tasks. Furthermore, a distributed team
organization is recommended to avoid a single point of failure, which might result in a failed mission.

In this paper, we present the final results of the research project Integrated Mission Planning for
Distributed Robot Systems (IMPERA). In the project, a team of heterogeneous robots had to explore
a simulated lunar environment and collect lunar soil samples. The main goal was the development
of a mission planning and execution architecture for autonomous control of a team of heterogeneous
exploration robots.

An IMPERA mission starts with a coordinated search, where the robots explore an unknown area
and try to find specific samples on the lunar surface. Additionally, the team has to transport all of the
samples to a collection point. The team is coordinated in a distributed way, which is defined by the
IMPERA project. The communication channel is assumed to be unreliable during the mission. Thus,
the robots should be able to perform their tasks autonomously without communication for certain time
intervals and to continue the coordinated behavior when the communication link is reestablished. In this
paper, a basic robot behavior is called a “skill”. All skills of the robots are defined using our coordination
language A Language for Interactive Agents (ALICA) [3]. The mission is guided by the planning system
Reactive Planning Engine for Multi-Agent Systems (pRoPhEt MAS) [4]. The control center starts the
mission interactively by defining the goal state using a logic description. From the goal specification,
pRoPhEt MAS will generate a suitable ALICA plan. The control center is able to accept, decline or even
modify this plan. If the plan fails, pRoPhEt MAS will suggest automatically a new suitable plan.

Details on the definition of robot skills and some intermediate results of IMPERA were presented in
the publication “Towards Coordinated Multirobot Missions for Lunar Sample Collection in an Unknown
Environment” [5]. The main contribution of this paper is the integration of a modular, powerful and
intuitive planning engine. Hence, we expand the formal language of ALICA and integrate a logic
description to enable planning. Furthermore, we realize a generic task allocation using utilities. Finally,
we optimize the planning step by parallel computing.

The remainder of this paper is organized as follows. In the next section, we outline briefly our robot
platform. Project requirements are presented in Section 3. Section 4 is devoted to the discussion of
related works. In Section 5, we introduce the basic software architecture. Section 6 presents the robot
communication and coordination. Furthermore, in Section 6.4, we specify the basic skills of the robots.
The planning engine pRoPhEt MAS is presented in Section 7. The evaluation of pRoPhEt MAS by
means of three different scenarios is given in Section 8. Finally, the work is concluded in Section 9.
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2. Robots

Our robot team consists of the three different robots, as shown in Figure 1.

Figure 1. The three types of robots used in Integrated Mission Planning for Distributed
Robot Systems (IMPERA). (Left) The mobile robot Stummel with a manipulator arm, 2D
LiDAR and color camera. (Middle) The Scout robot equipped with 2D LiDAR and color
camera. (Right) The mobile robot Amparo with a manipulator arm and 3D perception unit.

All three systems are based on the Pioneer 3-AT platform from Adept (http://www.mobilerobots.com).
Because no robot is equipped with a drill, we simplify the mission by assuming that the drill samples are
contained in containers distributed over the unknown environment where the team has to find and pick
up these samples.

Robot Stummel is equipped with a 2D LiDAR system (Hokuyo UTM-30LX, Osaka, Japan) for the
exploration task. Additionally, a 2D color camera (Point Grey Flea with a resolution of 1024× 768 pixel)
is used to locate and detect potential objects that have to be transported during the second phase of
the mission. The computation unit is an embedded Intel I7 dual core processing unit with 3.2 GHz
and wireless communication capabilities. Stummel has an integrated six-degrees-of-freedom (6-DOF)
manipulator attached onto the mobile base, developed by Kinova (Boisbriand, QC, Canada). During
the mission, Stummel has the task of generating a map of the operation area, locating and identifying
the potential positions and transporting the drill samples. Robot Scout is equipped with a 2D LiDAR
system (Hokuyo UTM-30LX, Osaka, Japan) for the exploration task. Similar to Stummel, this robot
uses a 2D color camera (Point Grey Guppy C36 with a resolution of 752 × 480 pixels, Richmond, BC,
Canada) to locate and identify potential object candidates. For computation, Scout uses an embedded
Intel I7 dual core processing unit with 2.66 GHz and wireless communication. During the mission, Scout
primarily has the task of generating a map of the operation area, as well as locating and identifying the
potential positions of the sample containers. This robot is not able to transport objects. Robot Amparo
is equipped similar to Stummel. It has additional sensors for 3D perception. The 3D LiDAR system
consists of a 2D laser range finder (Hokuyo UTM-30LX with 30-m range, Osaka, Japan) and a Direct
Perception DP-46 pan-tilt unit. Furthermore, Amparo is equipped with a stereo vision system with two
color cameras. In the IMPERA mission, Amparo has the same capabilities as Stummel, but it uses 3D
sensing to determine a more precise position of the samples. For localization and obstacle avoidance,
Amparo uses a Sick LMS-111 laser (Düsseldorf, Germany).
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The IMPERA demonstration is done in a flat area, to reduce the complexity of the project. Hence, the
2D LiDAR system of Stummel and Scout are suitable for the IMPERA scenario.

3. Requirements

The goal of project IMPERA is to realize a lunar mission scenario, simulated on Earth, using a team of
autonomous and heterogeneous robots. The requirements for IMPERA missions can be summarized as:

• multi-robot mission planning,
• unreliable communication,
• coordinated exploration and mapping,
• object perception, localization and transportation with application to a lunar mission.

A team of autonomous heterogeneous mobile robots requires a suitable and intuitive description of
team activities instead of providing only single agent programs [6]. Task allocation and coordination
should be dynamic instead of using predefined task-specific mapping to certain robots. Additionally,
the description must be compatible with planning systems. The communication bandwidth is limited
and unreliable. The team still should be able to cope with the unreliable communication. Moreover, the
team has to explore and map an unknown environment collaboratively under unreliable communication.
Finally, the team should be able to perceive drill samples, localize them in the mapped environment and
carry them to the collection point.

4. Related Work

The Mars Exploration Rovers (MER) Mission has the goal to explore the surface of the planet Mars.
The work in [7] shows an overview of the rover technology and describes the relevant mission scenarios.
The software of MER is based on the CLARAty software system. IMPERA realizes, similar to MER,
an exploration of unknown environments. However, the software system CLARAty is controlled by a
central system, while the IMPERA solution is based on decentralized control.

ALICA [3] is a language to model the activities of a team of robots similar to CLARAty. The language
is suitable for heterogeneous robots, works in dynamic environments using a low communication
bandwidth and organizes the robots in a completely decentralized way. Furthermore, ALICA features
functionality for task allocation and cooperation. Finally, ALICA is based on a formal language using a
logic that facilitates the integration of planning systems.

Brenner and Nebel introduced the language MAPL (Multiagent Planning Language) [8] for describing
a continual planning algorithm realized with MAPL. For a proof-of-concept, they evaluate MAPL in the
grid world domain. A small team consisting of four robots must find its positions on the grid. This
evaluation is done by simulation only.

Nissim et al. [9] developed a distributed planning system that uses a heuristic forward search. This
framework is evaluated in different international planning competitions. The main disadvantage is that
the communication effort increases rapidly as the number of agents increases.

Burns et al. [10] developed parallel versions of best-first search to harness modern multicore
machines. They showed that a set of previously-proposed algorithms for parallel best-first search can be
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much slower than running the well-known search algorithm A* sequentially. They presented a hashing
function for parallel retracting A* (called PRA*) that takes advantage of the locality of a search space
and gives superior performance. They also presented another algorithm, PBNF, which approximates a
best-first search ordering while trying to keep all threads busy.

5. System Architecture

Figure 2 shows an overview of the system architecture of IMPERA. On top of the framework is the
“LebtClient”, which is used to observe and control the team behavior. The control is done by defining a
goal description via the command user interface. The planning engine pRoPhEt MAS creates a plan for
the team, which will be executed. The actual status can be observed with the LebtClient.

In multi-agent systems, communication is an important prerequisite for robot cooperation. In the
IMPERA mission, the robots have to explore and map an unknown lunar environment by using a
cooperative SLAM (simultaneous localization and mapping) approach [11]. We have to guarantee that
the concurrently-created maps will be shared with all team members. However, communication is a
critical factor. The robots might lose the communication link during the exploration. Hence, we are using
DDS (Data Distribution Service) [12] to decouple the communication; DDS is deployed on all robots.

Monitoring & Command

UI

Communication

Stummel Amparo Scout

DDS/UDP
Data Distribution Service or UDP communication

LebtClient

ROS Proxy

ALICA

Planner

WorldModel

Shared-
WorldModel

ROS Proxy

ALICA

Planner

WorldModel

Shared-
WorldModel

ROS Proxy

ALICA

Planner

WorldModel

Shared-
WorldModel

Figure 2. System architecture for IMPERA.
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The robot software framework is based on the popular and widely-used ROS middleware (Robot
Operating System, http://www.ros.org/). If a robot loses the connection to its teammates, DDS will buffer
all messages, which are sent via the “ROS Proxy”. These messages will be passed on time-delayed when
the connection is reestablished. Moreover, the communication module offers to send messages via DDS
or UDP. In some cases, it is not necessary to use DDS and to store the sent data, because old information
is not useful anymore. For example, if we are interested only in the current robot positions, we do not
need to store outdated positions via DDS.

Every participating robot uses the same software as shown in Figure 2. Every robot is able to create
plans and execute these via ALICA. All sensor information collected during the mission will be stored in
a so-called shared “WorldModel”. The world model information is shared with all teammates by using
the “ROS Proxy”. Every robot integrates this information in its local copy of the shared WorldModel.
In the IMPERA mission, the robots share the robot positions, map information, found drill samples and
invalid sample candidates. The shared WorldModel represents the basic knowledge to coordinate the
team activities.

6. Multirobot Communication and Coordination

6.1. ALICA

ALICA provides modeling features for cooperative behaviors with clear operational semantics.
Furthermore, the language can be used in highly dynamic domains [6]. Let us start to give an overview
for how multi-agent plans can be defined. The core elements of the language are:

• Basics:

– L : Language L(Pred ,Func) describes the agents’ belief with a set of predicates Pred and a
set of function symbols Func

– R : Set of roles, which the agent can take

– B : Set of atomic behaviors, which can interact with the environment

– P : Set of cooperative behavior description/plan

– P∨ : Set of alternative plans

– T : Every task describes a function in a plan

– Z : States exists in plans and represents a step in that plan

• Plan elements:

– Behaviors (atomic single-agent action programs) : Z 7→ 2B

– Plans (abstract multi-agent activity descriptions) : P 7→ 2Z

– Plantypes (sets of alternative plans defined by PlanTypes) : Z 7→ 2P∨

– Tasks (denote specific activities within plans defined by Tasks) : P 7→ 2T

– Roles (descriptions of capabilities)
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• Conditional elements:

– Pre (denotes a pre-condition of a behavior or plan defined by Pre) : P ∪ B 7→ L

– Run (denotes a runtime condition of a behavior or plan defined by Run) : P ∪ B 7→ L

– Post (denotes a post-condition of a state defined by Post) : Z 7→ L

Figure 3 illustrates an example ALICA plan using the core elements of the language for an IMPERA
mission. The goal is to achieve the world situation “On(a,g)” and “On(b,g)”. The plan shows how
to explore the environment till we find the drill samples a and b. These samples will be transported
to goal position g. The resulting plan consists of three tasks T (Explore, Transport1 and Transport2).
Every agent in the team can be assigned to one of the tasks with respect to the minimum and maximum
cardinalities 1..n. The “Mission” plan Ps contains a state machine for every agent in the team with
several states Z (yellow circle). Every state contains a plan (orange boxes), which contains a state
machine of basic behaviors B. These plans represent the skills of the agents, which will be defined in
detail later. The agents can switch states with conditional transitions.

Mission

z1

ExploreArea

Explore

1..n

z2

MoveTo(a)

z3

Transport(a,g)

reached(a)
Transport1

1..1

z4

MoveTo(b)

z5

Transport(b,g)

reached(b)
Transport2

1..1

On(a,g) and On(b,g)

Figure 3. Example A Language for Interactive Agents (ALICA) plan.

6.2. Constraint Satisfaction Problems

While modeling team activities, we would like to specify high-level behaviors, which are suitable for
a random number of agents. However, in many cases, we need a very specific behavior depending on
some variables, such as coordinates PointA, PointB and PointC of the behavior in Figure 4.
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TeamExploration

z1

ExploreArea(PointA)

Explore1

1..1

z2

ExploreArea(PointB)

Explore2

1..1

z4

ExploreArea(PointC)

Explore3

1..1

Figure 4. Example modeling problem.

Finally, we have to define points, where the robots have to drive to. In this case, we have a very
specific implementation of the plan “Team Exploration”. Hence, to provide flexibility and modeling
convenience, ALICA supports constraint satisfaction problems (CSP) defined by [3]:

Definition 6.1. A constraint is a formula φ ∈ L with free variables ~x = x1, . . . , xn, n ≥ 0. φ is said
to constrain ~x. Every xi is representing a value in a domain Di. A solution to a constraint formula
with respect to a belief base B is a substitution θ, such that ~xθ is ground, φθ is consistent with B and
~xθ ∈ D1 × . . .×Dn.

ALICA plans span an acyclic tree; therefore, the constraints have to satisfy recursiveness for all
related plans with respect to the belief base B. In our example, the belief base B consists of the facts in
the World Modeland predefined predicates.

Consider the following simple example constraints c:

(∀a, b ∈ F)MaximalDist(a, b, ε) ∨ a = b (1)

(∀a ∈ F , r ∈ A)MinimalDist(a, r, ε) (2)

The constraints state that all goal points in F should maintain a maximal distance to each other (see
Equation (1)), but the agents A should have a minimal distance to these points (see Equation (2)).

The domain-specific predicates MaximalDist and MinimalDist can be expressed as:

MaximalDistDist(a, b, d)
def
= (∃p1, p2)Pos(a, p1) ∧ Pos(b, p2)∧ (3)√

(p1.x− p2.x)2 + (p1.y − p2.y)2 > d

MinimalDist(a, b, d)
def
= (∃p1, p2)Pos(a, p1) ∧ Pos(b, p2)∧√

(p1.x− p2.x)2 + (p1.y − p2.y)2 < d (4)

The plan in Figure 4 can be simplified as shown in Figure 5.
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TeamExploration

z1

ExploreArea($x) | c

Explore

1..n

Figure 5. Example plan for constraint satisfaction problems (CSP).

The resulting plan is now very generic and is suitable for any number of robots.

6.3. Utility Function

ALICA supports a default task assignment using a priority list. Therefore, we have to define an
ordered list for how the tasks should be allocated. However, this approach does not work for generating
new tasks at runtime. Hence, ALICA uses utility functions to define specific task assignments [3]. Utility
functions will capture the applicability of a plan in a certain situation and determine a task allocation.
ALICA imposes a structure on utility functions, which allows one to evaluate these tasks.

A utility function depends on the current situation captured by a domain-specific part, and the current
role assignment, captured by a domain-independent function.

Definition 6.2. The function pri(p) determines the preferences of all acting agents in task τ , and plan p:

pri(p)(B) =


−1 if B ` (∃a, τ, r)φ[a, p, τ, r]∧

Pref(r, τ) < 0

1
|A|

∑
B`φ[a,p,τ,r] Pref(r, τ) otherwise

(5)

where φ[a, p, τ, r] = HasRole(a, r) ∧ (∃z) In(a, p, τ, z).

The function pri(p) represents the sum of all preferences of all agents which are allocated in their
corresponding task. This result will be normalised by the factor 1

|A| . Negative preferences express an
inability to do something.

Definition 6.3 (Utility Function). The utility U(p)(B) of a plan p and the belief base B is defined by:

U(p)(B) =


−1 if pri(B) < 0

w0 pri(B) +
∑

1≤i≤nwi fi(B) if B |= TeamIn(p)

0 otherwise

(6)

A utility function is a weighted sum of several functions pri, f1, . . . , fn over belief sets. The weights wi
are constants defined by

∑n
i=0wi = 1 and (∀i)0 ≤ wi ≤ 1. The functions fi : 2L 7→ [0..1] represent

domain-specific information.
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6.4. Skills

This section describes all skills used in IMPERA. At first, we define the role-task priorities as shown
in Figure 6 that are needed by ALICA. In our mission scenario, we have three different types of roles
based on our three different robots. The top-level task is named “Default”. Every robot has the same
priority to enter in this task. All robots can move to new tasks, as shown by the edges. However, the tasks
“Explore”, “MoveTo”, “Pickup” and “Putdown” have different priorities towards the roles. Amparo is
not allowed to explore, because it is too heavy. Scout is the quickest robot; hence, it has the highest
priority for “Explore”. We are allowed to send all robots to a certain position defined in the role-task
priority “MoveTo”. Scout is not able to “Pickup” and “Putdown”. Furthermore, Amparo has a higher
priority to manipulate objects, because its 3D-perception is more precise.

Default

Explore MoveTo Pickup Putdown

Stummel 1.0
Amparo 1.0

Scout 1.0

Stummel 0.8
Amparo -1.0

Scout 1.0

Stummel 1.0
Amparo 1.0

Scout 1.0

Stummel 0.8
Amparo 1.0

Scout -1.0

Stummel 0.8
Amparo 1.0

Scout -1.0

Figure 6. IMPERA role-task priorities.

6.4.1. Multirobot Exploration

At the beginning of our mission scenario, the robots have to explore an unknown environment.
One popular approach is to use an occupancy grid map representation, which is explored using frontier
cells [13]. Unknown cells are searched in the local neighborhood of known cells. The map is constructed
by the distance scan of the Hokuyo Laserscanner. Algorithm 1 describes how the robots evaluate frontier
cells [14].
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Algorithm 1 Calculation of Information Gain with the Boundary Relation
Input: Occupancy Grid Map m, Frontier Cells fcells
Output: Information gain and boundary relation for every cell in fcells

1 foreach Frontier cell f ∈ fcells do
// Use wave front propagation to determine information about

the unexplored region next to f. Information determined are

the size and whether the region is next to the map boundary

or not.

2 cellnb ← Get unexplored neighboring cell off
// Start wave front (which is set up to travel across

unexplored cells) in cellnb
3 while wave front propagation do
4 A ← Remember set of all traveled cells
5 Fobserved ← Remember set of cells that are frontier cells
6 MB ← Remember set of cells that are next to the map boundary

7 InfoGainf ← |A| // Calculate information gain for f

8 if |MB| > 0 // Calculate boundary relation for f

9 then
10 bBoundaryRelationf ← TRUE

11 else
12 bBoundaryRelationf ← FALSE

// Store result for frontier cells observed while propagation

13 foreach obs ∈ Fobserved do
14 InfoGainobs ← InfoGainf
15 BoundaryRelationobs ← BoundaryRelationf
16 Remove obs fromfcells // Avoid recalculation

17 return InfoGain, BoundaryRelation // Return results for all frontier cells

18

The algorithm starts by using a wave front propagation for every frontier cell f . For every propagation,
we remember all traveled cells, observed frontier cells and cells near the map boundary. Condition wave
front propagationis true if unexplored cells exist. The information gain of the frontier cells depends
on the traveled cellnb while a robot discovers a frontier cell f . The cells that are close to the map
border will be marked. Afterwards, the algorithm removes observed cells from the frontier cell list.
Finally, the algorithm returns a sorted list of frontier cells regarding the information gain charged with
boundary relations.

Based on the sorted frontier cells, we start to define the ALICA skill “Explore” shown in Figure 7.
The plan has two tasks. Initially, the team has no map. Hence, one robot starts to create the first map
with “GetMap”. After this task is done, all robots localize themselves in this map and start to explore
the environment using the frontier cells.
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Explore

z1

GetMap()

Leader

1..1

z3

LocalizeInMap()

z3

MoveToPosition(fcell)|c)

Verify2DObject()

Explorer

1..n

Figure 7. Exploration skill model in an ALICA plan.

The constraint c is to coordinate the frontier cell selection:

(∀f1, f2 ∈ F)MaximalDist(f1, f2, ε) ∨ a = b (7)

(∀f ∈ F , r ∈ A)MinimalDist(f, r, ε) (8)

The goal of the constraint c is to find for every robot the minimal distance to travel, but the distance
of the frontier cells should be maximal. Further, the robot will check the environment for drill samples
while driving. This plan will be described later. However, for the skill “Explore”, we need a basic
navigation skill. This is realized with the plan “MoveToPosition” shown in Figure 8. The robot should
drive to a goal point. If the robot gets stuck in a corner, it will drive into free space.

MoveToPosition

z1

DriveToPoint(x)

z2

Stuck()

MoveTo

1..1

z3

CheckFreeSpace()

z4

DriveToFreeSpace()

Figure 8. Realization of the MoveToPosition skill.

6.4.2. Sample Container Detection Using Semantic Perception

The perception of the drill sample has to be robust in the face of noisy sensor data. Based on the
perceived information, the robot should be able to grasp the drill sample containers. The identification
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of the drill sample is solved by a combination of feature extraction and spatial reasoning [15]. The
perception pipeline is shown in Figure 9. Amparo creates a 3D point cloud using the stereo vision
system. The ground plane extraction from the point cloud is solved by a RanSaC (random sample
consensus)-based segmentation approach, as described by Schnabel et al. [16]. After the ground plane
extraction, the rest of the point cloud will be clustered. Points with a minimal distance are added into
one cluster. Every cluster is checked if a drill sample model fits. In the next step, the features of the
drill sample and of the plane are passed to the FuzzyDL[17]. Beforehand, the FuzzyDL gets a fuzzy
description of the drill sample properties, like radius, height and orientation. Based on this description,
FuzzyDL gives an estimate for drill candidates. The key feature of this approach is that we can describe
random objects using basic geometries combined with rough semantic relations. Hence, we can easily
add new objects.

Perception pipeline

Point Cloud Generation

Plane Extraction

Clustering

Model Checking

Plane Feature
Extraction

Spatial Feature
Extraction

Generation of Fuzzy
Relationships

Generation of
Fuzzy Scores

Figure 9. Perception pipeline.

The corresponding plan is shown in Figure 10 and calls the previously-described perception pipeline.
An example of different drill samples that can be distinguished is shown in Figure 11.

Verify3DObject

z1

PerceptionPipeline()

Verify3D

1..1

Figure 10. Semantic perception plan.
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Figure 11. Different drill samples.

6.4.3. Sample Container Detection Using Directed Vision

Stummel and Scout have a directed camera. Both robots are able to verify drill samples. Normally, the
robots should perform a drill, pick it up and take it back to the base station. We simplify the skill by only
detecting the drill samples. We assume the drilling has already been done. Based on the distance scan,
taken by the Hokuyo Laserscanner, we search a circular shape with the radius of our predefined drill
samples. The laser scanner is able to detect circular-shaped objects for longer distances. Furthermore,
we crop the position of the drill sample candidate in the image. For the candidate image, we perform
a blob detection [18] and search for a defined green and red color. The blob detection is done to verify
the object and works only for shorter distances. The different predefined samples are encoded by the
upper, middle and lower section of the drill samples. The upper and lower sections of the sample can
be green or red. The middle section can be black or white. Hence, we are able to encode six different
samples. An example image is shown in Figure 12. In the example, we can see one drill sample with the
overlaid area.

Figure 12. Different drill samples.
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The corresponding ALICA plan is shown in Figure 13.

Verify2DObject

z1

CheckDistanceScan()

z2

BlobDetection()

Verify2D

1..1

Figure 13. Realization of the plan Verify2DObject.

6.4.4. Manipulation

The manipulation task can be done by Stummel and Amparo. For this, both robots are equipped with
a Jaco arm. The manipulation framework is shown in Figure 14. Basically, ALICA can access the arm
via the manipulation controller. This controller contains three packages. openRAVE is used to verify the
motion planning based on the robot model description. This package will check if the arm has collisions
with any joints for forward and inverse kinematics. The execution of the manipulation process is done by
the ROS packages Arm Navigation and OMPL (Open Motion Planning). Furthermore, the manipulation
controller has access to the WorldModel. If the sensor data change during the execution, the controller
is able to react to the environment changes.

Manipulation Framework

openRAVE ROS Perception

Manipulator Controller
Interface to manipulate

Kinematic Plugin

Kinematic Reachability

Inverse Kinematic
Reachability

Motion Planning

Arm Navigation

OMPL

WorldModel

Figure 14. Manipulation framework.
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The skills “Pickup” and “Putdown” are shown in Figures 15 and 16. Before we pickup an object,
we have to align precisely with the object. Afterwards, we are able to grasp the object. After
finishing MoveArmToTransport, we validate the force of the fingers. If grasping fails, we will retry
the procedure. In the IMPERA scenario, it is assumed that no sample will be inaccessible because of
surrounding obstacles.

PickupObject

z1

AlignToObject(x)

z2

InitArm()

Putdown

1..1

z3

OpenFinger()

z4

MoveArmToPosition(x)

z5

CloseFinger()

z6

MoveArmToTransport()

Figure 15. Realization of the Pickup skill.

PutdownObject

z1

AlignToPosition(x)

z2

MoveArmToPosition(x)

Pickup

1..1

z3

OpenFinger()

z4

MoveArmToTransport()

Figure 16. Realization of the Putdown skill.
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7. Planning

7.1. ALICA Expansions

The language ALICA supports the description of multi-agent plans that can be executed by a team
of cooperative robots. This requires that the joint plan has to model every imaginable world state or,
otherwise, the team cannot act in unanticipated situations that may happen in our IMPERA mission
scenario. Hence, ALICA requires expansions for integrating a planner.

ProblemElement : O 7→ 2P

UpdateTime : O 7→ R

AlternativePlan : O 7→ P
WaitPlan : O 7→ P

World : O 7→ Pre

Goal : O 7→ Post

A ProblemElement defines a set of plans P . These plans represent our basic skills. The
UpdateTimerepresents the soft real time boundary for the planner. pRoPhEt MAS, at a frequency of the
UpdateTime, will check if there exists already some possible skills and may update the actual plan. This
feature realizes an anytime planning because the planner will offer an intermediate plan by evaluating
the heuristic of the search space. Until the first intermediate plan is available, the team executes the
WaitPlan. This can be used for positioning or setup for the planning problem. If the planner fails,
the team will execute the AlternativePlan as a fallback plan. Finally, the planning problem contains a
world and goal description. Furthermore, ALICA uses conditions that were manually coded beforehand.
The world situation “World” will update automatically at runtime considering the world model
information. However, “World” can be defined specifically to solve planning problems in offline mode
or can be set interactively.

Let us explain how to use planning problems O. Figure 17 shows an example problem for IMPERA.
At the beginning, it is possible to start and stop the team’s behavior. This plan illustrates that the
team of agents has to explore an unknown environment. We explicitly model a plan to solve this
problem. The problem “GetObjects” is defined as the planning problem, which may contain basic skills
like “MoveToObject”, “Pickup” and “Putdown”; therefore, the engine tries to find a plan at runtime.
pRoPhEt MAS (Reactive Planning Engine for Multi-Agent Systems) updates the plans depending
on the “UpdateTime”. The integrated planning engine searches a valid sequence of skills of the
“ProblemElement”, which satisfies the goal. Every root plan must span an acyclic “plan tree” like in
Figure 17. In every situation, we can define a planning problem instead of a static plan.
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Figure 17. Example plan for IMPERA.

7.2. Planning Engine

The planning framework pRoPhEt MAS [4] is shown in Figure 18. World and ALICA Engine are
the basic components of the framework. The WorldModel contains the information about the robots’
environment. In addition, pRoPhEt MAS represents this information in first-order logic. ALICA selects
a suitable plan from the PlanBase, which is modeled by the developer. The ALICA-Engine reacts to
environment changes and actively selects new plans. If a planning problem O is defined, the engine will
use a planning system for creating a suitable plan. The plan generation is handled by a central leader to
reduce the amount of communication. The leader is elected by the team implicitly, while sharing team
information periodically via the ISharing component. Currently, the robot with the lowest ID becomes
the leader. The leader starts the computation to solve the planning problem considering WorldModel.
If the leader gets the first results from the planning system, it will share them with its team members
after the plan has been validated by the Validation component. If the team receives new plan updates, the
task allocation may need to change. However, ALICA is able to handle switching tasks by its dynamic
task allocation. pRoPhEt MAS observes the execution process. If the steps of the planning system do
not fulfill the goal, the plan will fail. Every robot will move to the WaitPlan. Finally, the leader restarts
the planning process.
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Figure 18. Planning framework consisting of ALICA for describing team activities
expanded by a planning engine.

In order to decrease the search time and save memory for the planning process, the leader is able to
distribute seeds of the search space to teammates using the “PlannerBase”. If an agent receives a seed,
it will start the search and send the solution back to the leader. If the leader receives the first result, he
will share this solution with all other members, which will stop the search. The underlying engine to
optimize the search is named MAGiC (multi-agent planning using grid computing concepts) [19]. The
strategy for how the leader shares the seeds can be defined by using the WorldModel. For example, if a
robot has low battery capacity, it can be excluded from the parallel planning process. Besides, ALICA
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sends periodically team messages to observe which robot is reachable. If a robot is no longer reachable,
MAGiC will redistribute the seed.

The architecture of pRoPhEt MAS is highly modular. It is possible for IPlanner to integrate every
PDDL-based planner [20]. Furthermore, it is possible to define planning problems in every desired state,
so we can choose a specific planning system suitable for the specific planning problem.

7.3. Task Creation

pRoPhEt MAS will create single agent plans. Thus, the search spaceof the problem will be reduced
enormously. We divide the problem into two subproblems, i.e., search a single agent plan and find
a parallelization of this single agent plan. The algorithm for parallelizing the actions is shown in
Algorithms 2 and 3. The algorithm tries to add every action a to a new task, if the precondition (pre) of
the action a in a new task Tnew holds, which the team has to execute. If an action cannot be executed in a
new task Tnew, it relies on the task before Tlast. Therefore, the algorithm adds this action to the last task.

Algorithm 2 Parallelize a Single Agent Plan
Input: Action a
Output: Tasklist T

1 forall the a ∈ A do
2 AddToTask(a)

3 return T // Return Tasklist

4

Algorithm 3 Add Action for a Suitable Task
Input: Action a
Output: Tasklist T

1 if T = ∅ then
2 T0 ← {a}
3 T ← T ∪ T0
4 else
5 Tnew ← {a}
6 if pre(a, Tnew) then
7 T ← T ∪ Tnew

8 else
9 Tlast ← Tlast ∪ {a}

If pRoPhEt MAS has determined all tasks, we have to define the role-task mapping for the new tasks.
It is important to execute these tasks sequentially for the worst case, if the team consists of only one
robot. Hence, we define the following role-task mapping.

Ti = 1− i

n
(9)
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We prioritize the task from T0 . . . Tn. However, we have to integrate the role priority of the
planning problem entry point. Thus, Ti will be normalized for every role with pi. Finally, pRoPhEt
MAS has to set the correct cardinalities for each task. We concatenate different skills with different
cardinalities. The minimal cardinalities can be guaranteed if we set the minimum cardinality to
max(SkillMinCardinaltyi). The maximum cardinalities can be guaranteed if we set the maximum
cardinality to min(SkillMaxCardinaltyi).

7.4. Utility Function

The generic task allocation of ALICA is not suitable, because it uses a priority list, and in the IMPERA
scenarios, we are not able to define this list beforehand. Hence, we have to define a generic utility
function that fits for every generated plan regarding the robot preferences. Based on the utility definition
of Section 6.3, we define three different summands, where x is the number of agents that found a suitable
task and n defines the total number of tasks.

wt =
x

n
(10)

wp =
x

(n+ 1)2
(11)

ws =
x

(n+ 1)3
(12)

wt defines the weight of how many tasks are allocated correctly. It is possible that x = n agents find a
suitable task. Hence, the maximum weight is one. As the second weight, we include the task preferences
defined in Section 6.4. If we find an allocation where all robots find the best fitting task, but no robot
is allowed to work regarding the precondition, we will prefer an allocation where at least one robot is
able to work regarding wt. The same fact holds for the last weight ws, which defines a similarity value.
The robots can oscillate between tasks if the utility changes slightly. ws supports changing only if the
utility differs at least by 1

(n+1)3
to prevent oscillating tasks. However, we prefer to allocate tasks based

on priorities using wp rather than a similar allocation ws.

8. Evaluation

In the following section, we evaluate our design for three different scenarios:

1. The planning problem in project IMPERA, which is quite simple, but offers an appropriate proof
of concept.

2. For more dynamic environments, we evaluate pRoPhEt MAS with another team of robots.
3. Finally, we evaluate the parallel computation of a planning problem in the rover domain.

8.1. Scenario 1: IMPERA Mission

The goal was to explore an unknown environment. Afterwards, the controller should select which
interesting object should be brought back by the team. In Section 6.4, we presented all necessary
skills for this scenario. The formal description of the skills containing the conditions is defined by
the following pseudocode:



Robotics 2015, 4 456

( : a c t i o n E x p l o r e
: p a r a m e t e r s ( )
: p r e c o n d i t i o n

( not e x p l o r e d )
: e f f e c t

( e x p l o r e d )

( : a c t i o n P ickup
: p a r a m e t e r s ( ? r ? x )
: p r e c o n d i t i o n

( and ( onground ? x )
( handempty ( ? r ) ) )

: e f f e c t
( and ( and ( not ( onground ? x ) )
( not ( handempty ( ? r ) ) ) )
( h o l d i n g ? r ? x ) ) )

( : a c t i o n Putdown
: p a r a m e t e r s ( ? r ? x )
: p r e c o n d i t i o n

( h o l d i n g ? r ? x )
: e f f e c t

( and ( not ( h o l d i n g ? r ? x ) )
( and ( onground ? x )
( handempty ( ? r ) ) ) ) )

( : a c t i o n MoveTo
: p a r a m e t e r s ( ? r ? x )
: p r e c o n d i t i o n

( not ( on ? r ? x ) )
: e f f e c t

( on ? r ? x ) )

)

The role-task priorities shown in Figure 6 in Section 6.4 illustrate that we do not necessarily need
all three robots to finalize the mission. Hence, we simulate several robot crashes during the mission. If
Scout crashes, ALICA will assign Stummel to explore the environment. If Amparo crashes, Stummel
will automatically be assigned to its task, but the plan will fail, if Amparo fails after grasping the object.
A snapshot of the final IMPERA demonstration is shown in Figure 19.
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The planning engine pRoPhEt MAS realizes a proof of concept in IMPERA, but cannot be evaluated
properly, because the planning problem was too simple. Hence, we evaluate pRoPhEt MAS in
further scenarios.

Figure 19. IMPERA demo scenario.

8.2. Scenario 2: Dynamic Domain

The evaluation focuses on a scenario from the blocks world domain, since the blocks world offers
a suitable test bed where the state space increases very quickly. The situation of the scenario is shown
in Figure 20, where the robots can execute four skills, “Pickup”, “Putdown”, “Unstack” and “Stack”.
The blocks on the left represent the current situation, which is defined in a planning problem as World.
The blocks on the right represent the situation the team has to reach, which is defined in a planning
problem as Goal. In WaitPlan, every agent drives to a free position, so as not to disturb other tasks.
AlternativePlan is not defined, so we assume a suitable plan can be found.
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Figure 20. Scenario description.
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We execute the scenario on real robots. The team consists of up to five Surveyor SRV1 robots
(http://www.surveyor.com). Every robot is equipped with a marker. This marker is used to localize every
agent with the localization of the “Robocup Small Size League” [21]. The localization is a vision-based
system and uses one or two overhead cameras to calibrate the markers. In addition, every stack is
detected by a marker. To reduce the overhead for grasping, we project the stacks to 2D; if a robot needs
to manipulate stacks, it will push the blocks across the ground, as shown in Figure 21.

Figure 21. (Left) The Surveyor SRV with marker; (Right) Image from the localization
where a robot is pushing a box.

In the first experiment, we use five robots and an UpdateTime of one second. Next, to realize a
dynamic environment, we use different agents as opponents. They are able to select a random skill, if no
other robot is blocking this stack at this point. The results are shown in Figure 22. Without opponents,
the total execution time decreases with the number of agents. The robots have to drive slower for a
precise position, because of sensor noise. Furthermore, the execution time is higher, since the obstacle
avoidance takes more time. With opponents, the time increases, because pRoPhEt MAS has to plan
again. However, the selected actions of the opponents are random. Therefore, sometimes, they even help
to reach the goal. At the end of the scenario, the opponents often were not able to act, because the stack
was blocked by an agent.
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Figure 22. Execution time of the SRV1 surveyor.

8.3. Scenario 3: Parallel Planning Problem

We used NASA’s Mars Rover domain to evaluate MAGiC [19]. This problem is used as a benchmark
for the International Planning Competition (IPC-2002). Rovers have to collect soil and rock samples and
bring them back to the lander. This problem is quite similar to the IMPERA domain, where a team of
robots has to explore an unknown environment to find objects and carry them back to a certain location.

The evaluation of the IPC problems is shown in Table 1. For all planning problems, we ran a modified
fast downward planner (FDP) [22], which divides the search space into the number of agents in the team.
Moreover, we add the results of multi-agent forward search (MAFS) [9] into the table. All lines with
minus were not evaluated by MAFS. Both use eager best-first search and an alternation open list with
one queue for each of the two heuristic functions ff [23] and context-enhanced additive heuristic[9].
Experiments were run on an Intel i7-2630QM CPU 2.00 GHz processor; the time limit was set to 30
minutes; and memory usage was limited to 4 GB. For all problems, the fast downward planner is 24.7%
faster than MAFS on average, but MAFS got on average 9.2% better resulting costs. The costs represent
the quality of the found plan. Every action in a plan generates a unit cost. pRoPhEt MAS divides the
seeds over all team members, as shown in Figure 23.

The leader needs to distribute the problem to all n agents. These agents return the result. Finally, the
central agent distributes the final solution. The upper communication bound for n agents is limited to
3 ∗ (n − 1). On average, FDP requires 98.2% fewer messages than MAFS for the evaluated problems
“Rovers5” to “Rovers17”.

Overall, the evaluations demonstrate a simple strategy to optimize the planning time using parallel
computation, compared to Nissim [9]. Algorithms for parallel computation similar to Burns et al. [10]
are able to further improve the planning time. However, to achieve planning with parallel computing,
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the communication overhead increases substantially. Our focus is to communicate as little as possible to
cope with unreliable communications and to save battery capacity.

Table 1. The table contains an evaluation for NASA’s Mars Rover domain of multi-agent
forward search (MAFS) and fast downward planner (FDP). Solution cost (steps), running
time (in s) and the number of sent messages are shown.

Problem
# Costs Runtime Messages

Agents MAFS FDP MAFS FDP MAFS FDP

Rovers1 1 - 10 - 0.046 - 0
Rovers2 1 - 8 - 0.037 - 0
Rovers3 2 - 13 - 0.05 - 3
Rovers4 2 - 10 - 0.054 - 3
Rovers5 2 22 22 0.13 0.069 84 3
Rovers6 2 37 38 0.07 0.074 27 3
Rovers7 3 18 18 0.07 0.076 225 6
Rovers8 4 26 28 0.2 0.143 937 6
Rovers9 4 38 34 0.82 0.206 380 6

Rovers10 4 38 36 0.41 0.251 271 6
Rovers11 4 37 38 0.34 0.382 299 6
Rovers12 4 21 22 0.09 0.05 435 6
Rovers13 4 49 46 0.15 0.272 472 6
Rovers14 4 31 32 0.42 0.208 310 6
Rovers15 4 46 44 0.33 0.306 252 6
Rovers16 4 - 43 - 0.374 - 6
Rovers17 6 52 52 0.57 0.3 628 15
Rovers18 6 - 48 - 1.36 - 15
Rovers19 6 - 74 - 16.099 - 15
Rovers20 8 - 87 - 9.673 - 21
Rovers21 6 - 68 - 5.887 - 15
Rovers22 6 - 69 - 15.93 - 15
Rovers23 8 - 80 - 16.493 - 21
Rovers24 8 - 122 - 214.782 - 21
Rovers25 10 - 31 - 2.418 - 27
Rovers26 10 - 62 - 5.682 - 27
Rovers27 10 - 103 - 73.524 - 27
Rovers28 10 - 78 - 28.361 - 27
Rovers29 10 - 60 - 22.616 - 27
Rovers30 10 - 115 - 113.091 - 27
Rovers31 12 - 140 - 1168.313 - 33
Rovers32 12 - 0 - 0 - 33
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Figure 23. Share seeds to accelerate search.

9. Conclusions and Future Work

In our research project IMPERA, we solved a problem similar to the Mars Exploration Rover of
NASA. However, our focus is on the coordinated teamwork of autonomous robots. The robot team has
to collaboratively explore an unknown lunar environment and collect lunar drill samples.

In this paper, first, we gave an overview of the IMPERA system architecture. ALICA enables one to
organize the robots in a completely decentralized way. Then, we described all necessary robot skills for
the IMPERA scenario. Key components of our solution are the plan description language ALICA, which
is used to define the team behavior, and the planning system pRoPhEt MAS, which extends ALICA to
realize a mission planning system. As proof of concept, we evaluated the planning system in three
different scenarios. pRoPhEt MAS aims at dynamic multi-robot environments. We have shown that
pRoPhEt MAS effectively supports parallel planning in the rover domain.

Our next steps will concentrate on a plan repair mechanism. Currently, we re-plan if the team is
no longer able to reach the goal. Obviously, planning and re-planning increases the communication
load substantially. Thus, an improvement would be to evaluate and tune the coordination overhead for
re-planning, similar to [24], considering the communication load.
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