
1 Supplementary: The components and effects for an CATR’s framework  

Table 1.1 The components and their attributes with descriptions and examples (bold* are the preferred types) 

Component Attribute Description Example 

Input interface Master-slave The operator manipulates a primary system. The 
system will acquire the information and send them 
to a remote and identical system. It then executes 
the similar motion. 

For MeBot [1], the operator had a pair of three DOF manipulators. He could 
express his desired gestures on his manipulators, and the remote system 
would imitate the motion. 

Natural 
interface* 

The operator can express his nonverbal cues by 
acting them naturally. The system will acquire the 
information and send them to the remote system. 
The remote system then executes the motion given 
the information.  

For Hasegawa [2], a KINECT sensor acquired the operator’s poses 
information. The system sent that information the remote-system. The 
remote system would imitate the operator by moving its joints base on the 
pose information. 

Traditional input 
devices 

Operator needs to use traditional input devices to 
operate the various nonverbal cues. 

In a traditional telepresence robot, the operator needed to select the intended 
gestures from the keyboard. For instance, each key or a combination of keys 
could represent a distinct gesture.  

Representation Auto* or Manual 

 

Auto represents a set of features that are extracted 
by an unsupervised algorithm. 

For Lau’s model [3], a probabilistic model, dynamic Bayesian network, was 
trained to model a segment of an input sequence. The parameters or 
probability distributions were the features for this model.   

 Manual represents a set of features that are selected 
by a human.  

In Park’s work [4], the study used 13 distinct gestures, and they included lift-
right, lift-left, and lift both. 

 Distributed* or 
local 

 

Distributed is a set of features that represent the 
underlying structure of the information. 

For Hartmann’s model [5], Hartmann identified six distributed parameters for 
each prototypical gesture. The parameters included spatial extent, temporal 
extent, fluidity, and more. The six parameters redefined the prototypical 
gestures, and they are not mutually exclusive to one another. 

  Local are a set of features that are mutually 
exclusive to one another.  

For Park’s work [4], the 13 distinct gestures were mutually exclusive from one 
another. Lift-right and lift-left could not occur at the same time. If the 
operator lifted both his arms, then lift-both would be selected.    

 

 

 



Continue from previous table 

Component Attribute Description Example 

Representation 
(continue) 

Spatial or 
spatiotemporal* 

Spatial features do not capture any temporal 
information  

For MeBot [1], the transmitted data is the joints information, which does not 
contain any temporal information. 

  Spatiotemporal features encompass the temporal 
information. 

For Park’s model [4], a gesture recognition module would classify the 
operator’s motion to a predefined action class, e.g. lift-right. 

Encoding  Auto* An automated system encodes the intended 
information before the information is transmitted.  

For Lau’s model [3], the probabilistic model automatically generated a 
distributed output given a sequential input. 

 Direct The system directly transmitted intended 
information to the remote system without any 
transformation. 

For MeBot [1] and Hasegawa [2], both the systems directly transmitted the 
joints information to the remote system without transformation.  

 Manual The operator must manually encode the intended 
information.  

For Hartmann’s model [5], the operator must select the value for the six 
distributed parameters and a prototypical gesture for every intended gesture. 

Decoding Auto* A remote automated system decodes the encoded 
information before the remote system can execute 
the command. 

For Park’s model [4], a motion generator decodes the encoded data. In this 
case, the motion generator had a set of predefine motions, and it would 
execute one of the motions depend on the encoded data. 

 Direct The remote system can directly execute the 

received information without any transformation. 

For MeBot [1] and Hasegawa [2], both remote systems executed their motion 

based on the received joints information. 

Associating Auto* For multimodal situation, the system automatically 
maps the relationship between different modalities. 

Not available in the existing interfaces 

 Manual For multimodal situation, the operator will map or 
indicate the relationships between different 
modalities.  

For Neff’s model [6], a human coder annotated and aligned the gestures 
behavior and speech structure to create the rules for the system database.   

 None The system deals with each modality 
independently. 

For instance, MeBot [1] has multimodal like neck, arms, video, and audio. 
However, each modality worked independently from one another. 

 

 

 

 

 

 

 

 

 



Table 1.2 The effects and its attributes with descriptions and examples (bold* are the preferred types) 

Effect Attribute Description Example 

Expressivity High* A high degree of diversity within a modality. For Hartmann’s model [5], the operator had six distributed parameters to 
create a personal gesture for each prototypical gesture. 

 Low A low degree of variation within a modality. For Park’s model [4] , it had 13 gestures only. It was not appropriate to be an 
operator interface for telepresence robot because the remote system should 
express personal gestures and not generic gestures.   

Cognitive load High The system requires a high amount of cognitive 
load to execute the nonverbal cues. 

For instance, Hartmann’s model [5] required the operator to select a 
prototypical gesture and fill in the intensity, [-1, 1], for the six distributed 
parameters during the encoding process.  

 Low* The system requires a low amount of cognitive 
load to execute the nonverbal cues. 

In Lau’s model [3], the operator just needed to express his intended gestures, 
and the system would automatically handle the rest of the processes.  

 Low (require 
remapping) 

The system requires a low amount of cognitive 
load, but the system still consume some degree of 
operator’s cognitive load for remapping. 

For MeBot [1], the operator must remap his intended gestures onto a primary 
system before he could execute his action. This process might filter the 
unconscious gestures. 

Decoupling No The system will continue to send the nonverbal 
information even when the nonverbal information 
might be undesirable  

For Hasegawa’s bot [2], the remote system would execute any gestures the 
operator’s gestures. Undesirable gestures, e.g. typing on the keyboard, might 
not be congruent to the going conversation. 

 Yes (idle) The system can stop any undesirable nonverbal 
information from transmitting, but the system will 
be in an idling state 

For MeBot [1], the operator could stop his gesturing by not moving the 
primary system. At this point, the operator could continue with his remote-
task, but the remote system would be in an idling state. 

 Yes* 
(associate) 

The system can stop transmitting any undesirable 
nonverbal signal. It also can conceal the missing 
signal with a coherence signal.  

For Neff [6], the system could automatically generate the intended gestures 
that were congruent with the structure of the speech. 

Obstacle 
avoidance 

Deliberative*  A deliberative planner generates motion and keeps 
its overall intentions. It tends to be slower when 
compares with a reactive planner. 

For Lau’s model [3], the output could be a variance of the input, which 
preserved the overall shape of the input.  

 Reactive* A reactive planner is a reflexive behavior system 
that responds to the real-time external stimulus.  

The MeBot [1] had range sensors for obstacle avoidance. It directly 
transmitted the joints information, so it could only spontaneously avoid the 
obstacle when the range sensors detected the obstacle. 

    



Reference 

[1] S. O. Adalgeirsson and C. Breazeal, “MeBot : A robotic platform for socially embodied 

telepresence,” in ACM/IEEE International Conference on Human-Robot Interaction, 2010, pp. 

15–22. 

[2] K. Hasegawa and Y. Nakauchi, “Preliminary Evaluation of a Telepresence Robot Conveying 

Pre-motions for Avoiding Speech Collisions,” in HAI-Conference.net, 2013, pp. 5–8. 

[3] M. Lau, Z. Bar-Joseph, and J. Kuffner, “Modeling spatial and temporal variation in motion 

data,” ACM Transactions on Graphics, vol. 28, no. 5, p. 171, Dec. 2009. 

[4] H. Park, E. Kim, S. Jang, and S. Park, “HMM-based gesture recognition for robot control,” in 

Iberian Conference on Pattern Recognition and Image Analysis, 2005, pp. 607–614. 

[5] B. Hartmann, M. Mancini, and C. Pelachaud, “Implementing expressive gesture synthesis for 

embodied conversational agents,” in Gesture in human-Computer Interaction and Simulation, 

2006, pp. 188–199. 

[6] M. Neff, M. Kipp, I. Albrecht, and H. Seidel, “Gesture modeling and animation based on a 

probabilistic re-creation of speaker style,” ACM Transactions on Graphics, vol. 27, no. 1, Mar. 

2008. 

 


