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2 Supplementary: Selection for models and their parameters 1 

2.1 Encoder 2 

2.1.1 Comparison with the different feature extractors 3 

The encoder transforms input signals into a distributed output, and the output is phase-free. An inherent 4 

characteristic of this approach is that the output with similar trait tends to group nearer to one another. Using the 5 

objective criteria  6 
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the aim of this experiment is to find a good encoder model from a list of feature extractors.    8 

The five outputs are the Raw, FFT, FFT2, CNN, and K-mean. The Raw is spatial and distributed. This 9 

output is acquired by transforming the upper-limb data with a spatial gesture encoder. The parameters of the 10 

spatial encoder were trained using contrastive divergence. The FFT and FFT2 are the 1D and 2D Fourier 11 

transformation of the upper-limb data. For both methods, the inputs are either 75 frames (15 FPS) or 25 frames 12 

(5 FPS) of data. Furthermore, only a part of the transformation was extracted. The FFT holds the amplitude of 13 

the first ten Fourier components for each feature. On the other hand, the FFT2 stores the amplitude of the first 14 

ten Fourier components in the time domain and all others in the spatial domain. In the end, both the output will 15 

have the same number of features, 180, for each time stamp. The CNN is a mean pooled network with its 16 

features trained by RBM or Autoencoder. For the paper, the 𝑇 window has 25 frames (five seconds), 𝑐 window 17 

has five frames (one second), and the number of convoluted output is 200. Lastly, the K-mean has its local 18 

features trained using fuzzy K-mean, and mean pooling is the pooling strategy. Like the CNN, the K-mean has a 19 

𝑇 window and 𝑐 window of 25 frames (five seconds) and five frames (one seconds) respectively. The number of 20 

clusters is 200.  21 

Figure 2-2 displays the distributions of different gestures styles. The first observation is that the 22 

distributions are overlapping one another (Figure 2-2). Furthermore, the Raw also produces distributions with 23 

multi-peaks within a single class. Figure 2-1 (top) shows one of the class from the Raw with multi-peaks. On the 24 

contrary, Figure 2-1 (bottom) displays that the CNN creates a distribution with a peak. Multi-peaks in a class is 25 

an undesirable distribution because it implies that there is more than one cluster for that class. The last 26 

observation is that there is coincided peak in both the Raw and CNN. For the Raw, the coincided peaks occur in 27 

both the principal components (Top of Figure 2-1). For the CNN, the coincided peaks only occur on one of the 28 

principal components (PCA1 of Figure 2-1 bottom). In short, the visual observation shows the advantage of the 29 

spatiotemporal over the spatial output.  30 
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 31 

Figure 2-1 The top figure shows the location of the coincided peaks of multiple classes and the multi-peaks for a 32 
specific class for the raw data. The bottom figure shows the histogram of CNN with the coincided peaks of two 33 

specific classes at PCA1, and the same classes being separated in PCA2. 34 

From Table 2-1, the CNN200-RBM-Mean is the selected model for the encoder. Among other neural 35 

approaches that use (2.2), the CNN200-RBM-Mean is the second best. Both CNN200-RBM-Mean and 36 

CNN200-Autoencoder-Mean have a very score of 1.770(0.001) and 1.769(0.001) respectively. The t-test gives a 37 

P-value of 0.1525, which is not significant. However, the CNN200-RBM-Mean has a lower score with (2.1). 38 

The CNN200-RBM-Mean scores about 0.776(0.001), while the CNN200-Autoencoder-Mean scores 39 

0.799(0.001). The t-test gives a P-value less than 0.0001, which is significant. In term of (2.2), the neural 40 

networks with the spatial layer scored lower compare to the neural networks without this layer. The RBM and 41 

Autoencoder without the spatial layer score 1.770(0.001) and 1.769(0.001) respectively. These values are lower 42 

than their counterparts with spatial layer, which score 1.781(0.007) and 1.775(0.000) respectively. 43 
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 44 

Figure 2-2 Distribution of classes in their new vector space: Spatial transformation and CNN. Each distribution comprises of two histograms and a 2D scatter plot. The two 45 
histograms estimate the class distribution for the data on the first and second PCA components, which the x-axis and y-axis respectively. 46 

Table 2-1 Comparison between the Raw and the various encoded features with the objective functions. The CNN and K-mean have their average distances computed from five 47 
different training data set. 48 

Objective 

Function 
Raw 

FFT 

(15/5 FPS) 

FFT2 

(15/5 FPS) 

CNN200-RBM-

Mean 

CNN200-RBM-

Mean-Spatial 

CNN200-

Autoencoder-

Mean 

CNN200-

Autoencoder-

Mean-Spatial 

Fuzzy-K-mean 

(2.1) 1.578 1.307 / 1.394 1.387 / 1.396 0.776(0.001) 0.782(0.000) 0.799(0.001) 0.799(0.001) 1.430(0.022) 

(2.2) -- -- -- 1.770(0.001) 1.781(0.007) 1.769(0.001) 1.775 (0.000) -- 
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2.1.2 Selection of the parameters 49 

There are many hyperparameters for a CNN model. The hyperparameters include number of the neuron, 50 

type of the neuron (e.g. rectified or binary neuron), sparsity, dropout, pooling function, and many more. Due to 51 

many parameters, this experiment only shows the results for some selected parameters. The aim of the analysis 52 

is to find the best configuration across three factors, and they are the number of the neurons, decay rate constant, 53 

and types of decay.  54 

The descriptions of the three factors are as follows. The number of the neurons is the number of convoluted 55 

or spatiotemporal features. A higher number of neurons increases the performance, but it will overfit towards 56 

the training data. Hence, regulator, sparsity, and dropout are some of the tools to generalize the model. As 57 

mentioned, the regulator is one of the tools to generalize the model. The regulator periodically decays the weight 58 

by a decay rate, and this prevents any feature from dominating. The L1-norm and L2-norm are the two different 59 

ways of regulating the weights. They have their own properties. The L2-norm produces more distributed 60 

features, while L1-norm produces a sparser weight. 61 

Table 2-2 Test result using (2.2) for CNN-mean with rectified dropout neuron and Adadelta learning rate. The rows 62 
represent the number of neurons, and the columns store two different parameters: the type of decay and the decay 63 

rate. 64 

  Regulator Parameters 

  L1-norm L2-norm 

  1e-5 1e-4 1e-5 1e-4 

N
u

m
b

er
 o

f 

N
eu

ro
n

s 

50 1.808(0.001) 1.815(0.001) 1.810(0.001) 1.810(0.000) 

100 1.783(0.002) 1.788(0.003) 1.785(0.001) 1.785(0.001) 

200 1.770(0.001) 1.779(0.001) 1.771(0.002) 1.772(0.002) 

      

From the Table 2-2, the best performance comes from a CNN with 200 neurons, 1e-5 decay rate, and L1-65 

norm. A higher number of neurons improves the performance of the model. The L2-norm produces consistent 66 

results given the two decay rates; on the contrary, the L1-norm results have a higher difference between the two 67 

decay rates. However, the L1-norm yields a better performance against the L2-norm when the decay rate is 1e-5 68 

at all number of neurons. As a result, CNN with 200 neurons, 1e-5 decay rate, and L1-norm is the chosen CNN 69 

for the future experiment.  70 
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2.2 Decoder 71 

2.2.1 Comparison of the LSTM with the different feature extractors 72 

One of the goals of this experiment is to check whether the result at Section 2.1.1 is corrected. The next 73 

goal is to examine the decoder performance as a gesture generator. From Table 2-3, the CNN-RBM-Mean gives 74 

the best result for the LSTM, which matches the encoder results. With a mean score of 0.257 for DTWMSE, the 75 

CNN-RBM-Mean has a higher performance of 17.628% when compared with the Fuzzy-K-mean, which is in 76 

second place. In term of the MSE score, the CNN-RBM-Mean also has the lowest score. However, there is an 77 

inequality between the MSE and DTWMSE. This difference implies that the synthesize gestures spatially match 78 

the actual gestures. However, the cycle time might be off by a maximum of five frames, which correspond to the 79 

DTW local constraint 𝑤. 80 

Table 2-3 Comparison between different encoded features with gate size of 300 and L2-norm. MSE is the mean 81 
square error of the reconstructed signals with respect to the actual signals, while the DTWMSE is the mean square 82 

error of the realigned reconstructed signals with respect to the actual signals. 83 

 

  
FFT FFT2 

CNN-RBM-

Mean 
Fuzzy-K-mean 

BPTT Ratio 0.3 0.3 0.2 0.3 

Lambda 1e-6 5e-6 5e-6 1e-6 

MSE 0.547(0.004) 0.629(0.002) 0.473(0.004) 0.528(0.003) 

DTWMSE 0.342(0.002) 0.401(0.004) 0.257(0.004) 0.312(0.002) 

     

2.2.2 Selection of the parameters and the effects of high neuron size 84 

This section has two results, and they show the effect of various factors affecting the decoder training 85 

strategy. Figure 2-3 displays the DTWMSE results from four factors, which give 24 decoder parameters. The 86 

factors are the connecting internal state 𝒚̃𝑡, the size of the gate 𝑁𝑔𝑎𝑡𝑒 , weight decay constant 𝜆, and type of 87 

backpropagation 𝛾. The connecting internal state is the set of internal state pass to the next time step as input. 88 

The size of the gate governs the number of elements in all the gate and cell. The weight decay constant regulates 89 

the model by periodically reducing the weight. Lastly, the type of back propagation alternates the training 90 

strategies from truncated BPTT to ratio BPTT. Table 2-4 gives the relationship between the parameter size and 91 

the DTWMSE result. There are three columns in the table. Each column has the parameter size from each 92 

weight, not including bias. The parameter size is calculated by multiplying the input to output, where the input 93 

includes the five earlier upper-limb states, the encoded data, and earlier LSTM internal state. Each column also 94 

holds the total parameter size and its difference in comparison to the last configuration. Lastly, it also has the 95 

DTWMSE result and its changes in relation to the last column. 96 

From Figure 2-3, the best configuration is (2, 2, 2, 2) where 𝒚̃𝑡 = 𝒚𝑐𝑒𝑙𝑙,𝑡, 𝑁𝑔𝑎𝑡𝑒 = 300, 𝜆 = 5𝑒−6, and 𝛾 =97 

0.2. The connecting internal state 𝒚̃𝑡 ∈ {∅, 𝒚𝑐𝑒𝑙𝑙,𝑡}  plays a crucial role in bringing down the median and ranges. 98 

Based on the t-test result on the internal state, the P-value is >0.0000, which is significant. Given 𝒚̃𝑡 = 𝒚𝑐𝑒𝑙𝑙,𝑡, 99 

the size of the gate 𝑁𝑔𝑎𝑡𝑒  gives an added push downwards. However, this effect is not as significant when 𝒚̃𝑡 =100 

∅. The P-value on the size of gate given  𝒚̃𝑡 = 𝒚𝑐𝑒𝑙𝑙,𝑡 is >0.0000, which is significant. On the other hand, the P-101 

value is 0.0242 when the t-test only based on the size of the gate. As of remaining factors, there is no 102 

consistency significance between their values.   103 

Increasing parameters improves the performance of the model is a well-known concept. However, 104 

increasing the size of the parameter might not be effective to improve the performance, and Table 2-4 verified 105 

the statement. Using 𝒚̃𝑡 = ∅ and 𝑁𝑔𝑎𝑡𝑒 = 300 as the benchmark, the performance increases by 7.24% and the 106 

size of parameter grows by 11.94% when there is more input 𝒚̃𝑡 = 𝒚𝑐𝑒𝑙𝑙,𝑡 and the gate size 𝑁𝑔𝑎𝑡𝑒 = 200. It is 107 

equivalent to 1.629% increase of the parameter size to gain 1% of accuracy. However, the performance 108 
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deteriorates when 𝒚̃𝑡 = 𝒚𝑐𝑒𝑙𝑙,𝑡 and 𝑁𝑔𝑎𝑡𝑒 = 300. The efficiency decreases to 8.951% of parameter expansion to 109 

yield 1% of accuracy. There is an increase in parameter expansion by 5.494 times to yields the same result. 110 

Hence, the above experiments stop investigating on adding more input or increasing the gate size because higher 111 

parameter size will affect the computation time during runtime.   112 

2.3 Associator 113 

2.3.1 Selection of the parameters 114 

The aim of the trial is to find the best configuration the associator, and there is a total of three factors. The 115 

factors are vigilance thresholds 𝜌, pruning threshold 𝜏, and learning rate 𝜂. Firstly, the vigilance threshold is the 116 

parameter to toggle between fast and slow learning. For this paper, there are two of them, and they are for the 117 

gesture and facial modalities. The range of this thresholds is from 0.7 to 0.9 with an interval of 0.1. Next, the 118 

pruning threshold is to remove any outlier rules, which is below a particular frequency. It was set at no pruning, 119 

0.04, and 0.05. Lastly, the learning rate is the amount of plasticity in the knowledge during slow learning. It is 120 

set at adaptive, 0.05, 0.1, and 0.2. In short, the aim of the experiment is to find the best parameters that give a 121 

good accuracy with the least amount of weights. 122 

There are a few observations from this experiment. First, the pruning function reduces a large amount of 123 

weight. From Table 2-6, the pruning function reduces the total number of weight from >40 to <10. However, the 124 

amount of weight does not diminish as much with the increase of the pruning threshold. Secondly, there might 125 

have a crossover interaction between learning and pruning threshold. From Table 2-5, no pruning threshold and 126 

adaptive learning rate yield 0.092 for DTWMSE. The DTWMSE is 0.106 when the learning rate 𝜂 = 0.2. The 127 

trend was not significant when the pruning threshold 𝜏  = 0.01, and the trend was opposite when the pruning 128 

threshold 𝜏  = 0.05. Lastly, the best parameters are adaptive learning rate, pruning threshold at 0.04, face 129 

vigilance threshold is 0.9, and gesture vigilance threshold is 0.7. The parameters with the second best DTWMSE 130 

was selected because its number of weight is seven times lesser than the best DTWMSE. 131 

 132 
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 133 

Figure 2-3 The DTWMSE results gathered from a permutation of the four factors with three replicas. 134 

Table 2-4 The relationship between the parameter size respects with to the DTWMSE result 135 

 
𝒚̃𝑡 = 𝒚𝑐𝑒𝑙𝑙,𝑡 and 

𝑁𝑔𝑎𝑡𝑒 = 300 
Size of 𝑾𝒊 

𝒚̃𝑡 = 𝒚𝑐𝑒𝑙𝑙,𝑡 and 

𝑁𝑔𝑎𝑡𝑒 = 200 
Size of 𝑾𝒊 

𝒚̃𝑡 = ∅ and 𝑁𝑔𝑎𝑡𝑒 =
300 

Size of 𝑾𝒊 

𝑾𝑖𝑛,𝑔𝑖𝑛𝑔𝑓𝑜𝑟𝑔𝑜𝑢𝑡
 (90+200+300) * 300 177,000 (90+200+200) * 200 98,000 (90+200) * 300 87,000 

𝑾𝑜𝑢𝑡 300 * 18 5,400 200 * 18 3,600 300 * 18 5,400 

Total Parameters  713,400  395,600  353,400 

Ratio  ↑ 101.87%   ↑ 11.94%  - 

DTWMSE  0.257(0.003)  0.269(0.006)  0.290(0.008) 

Ratio  ↑ 11.38%   ↑ 7.24%  - 
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Table 2-5 The median and standard deviation of the best DTWMSE results with respect to its learning rates 136 
and pruning threshold given the vigilance thresholds at Table 2-7. The rows of tables represent the learning 137 

rates, and the columns of the tables denote the different pruning thresholds 138 

 𝜏  = 0.00 𝜏  = 0.04 𝜏  = 0.05 

𝜂(𝜑𝐽) 0.092(0.051) 1 0.096(0.048) 2 0.109(0.046) 

𝜂 = 0.05 0.103(0.058) 0.101 (0.049) 0.106(0.042) 

𝜂 = 0.1 0.102 (0.053) 0.103(0.046) 0.103(0.046) 

𝜂 = 0.2 0.106(0.053) 0.101(0.047) 0.099(0.036) 

    

Table 2-6 Total number of weights after pruning with respects to the DTWMSE result in Table 2-5 139 

 𝜏  = 0.00 𝜏  = 0.04 𝜏  = 0.05 

𝜂(𝜑𝐽) 49(10.2881) 7(1.3211) 6(1.5395) 

𝜂 = 0.05 223(34.0363) 6(1.8141) 5(1.5725) 

𝜂 = 0.1 221(34.2489) 5(1.385) 5(1.1015) 

𝜂 = 0.2 56(12.1873) 5(1.5507) 4(1.461) 

    

Table 2-7 The vigilance thresholds with the best DTW_RMS result at a specific learning rate and pruning 140 
threshold.  141 

 𝜏  = 0.00 𝜏  = 0.04 𝜏  = 0.05 

 𝜌(𝑓∗) 𝜌(𝑔𝑢𝑠𝑒𝑟) 𝜌(𝑓∗) 𝜌(𝑔𝑢𝑠𝑒𝑟) 𝜌(𝑓∗) 𝜌(𝑔𝑢𝑠𝑒𝑟) 

𝜂(𝜑𝐽) 0.7 0.8 0.9 0.7 0.8 0.7 

𝜂 = 0.05 0.9 0.9 0.8 0.7 0.7 0.7 

𝜂 = 0.1 0.8 0.9 0.7 0.7 0.7 0.7 

𝜂 = 0.2 0.7 0.8 0.9 0.7 0.9 0.7 

    

 142 


