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Abstract: This paper develops a new robust tracking control design for n-link robot manipulators
with dynamic uncertainties, and unknown disturbances. The procedure is conducted by designing
two adaptive interval type-2 fuzzy logic systems (AIT2-FLSs) to better approximate the parametric
uncertainties on the system nominal. Then, in order to achieve the best tracking control performance
and to enhance the system robustness against approximation errors and unknown disturbances,
a new control algorithm, which uses a new synthesized AIT2 fuzzy sliding mode control (AIT2-FSMC)
law, has been proposed. To deal with the chattering phenomenon without deteriorating the system
robustness, the AIT2-FSMC has been designed so as to generate three adaptive control laws that
provide the optimal gains value of the global control law. The adaptation laws have been designed in
the sense of the Lyapunov stability theorem. Mathematical proof shows that the closed loop control
system is globally asymptotically stable. Finally, a 2-link robot manipulator is used as case study to
illustrate the effectiveness of the proposed control approach.

Keywords: nonlinear systems; robot manipulators; sliding mode control; type-2 fuzzy systems;
uncertain systems

1. Introduction

The tracking control problem of robot manipulators is a very complicated issue due to undesirable
characteristics, such as high nonlinearities, strong dynamic coupling, parameter perturbations,
un-modeled dynamics, and unknown disturbances. Therefore, to achieve the good tracking control
performance for such complex process, several researchers have developed robust control approaches,
most of which use the fuzzy logic control (FLC), sliding mode control (SMC), feedback linearization
technique, Neural Network (NN), adaptive control, and H∞ technique [1–11].

Over the past years, intelligent algorithms using fuzzy logic systems (FLSs) are increasingly
used and successfully applied in control problem of robot manipulators in the presence of dynamic
uncertainties and unknown disturbances [12–14]. However, conventional type-1 fuzzy logic system
(T1-FLS) cannot directly handle rule and measurement uncertainties because it uses T1-fuzzy sets
(T1-FSs) that are certain. Therefore, these last years, an advanced form of FLS, called type-2 FLS
(T2-FLS), has attracted considerable attention and becomes more and more imposed in designing
robust controllers for uncertain complex processes, including robot systems [15–18]. One reason is that
a T2-FS is characterized by a membership function (MF) that includes a footprint of uncertainty (FOU),
which makes it possible to handle linguistic uncertainties more effectively than T1-FS [19–21].

On the other hand, SMC is known as an efficient tool well suitable for controlling complex
uncertain processes due to its higher robustness against dynamic uncertainties and unknown
disturbances [22–24]. However, the SMC has a major drawback, which consists in using a
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discontinuous control law with large control gains that generate the chattering [25]. This phenomenon
can cause severe damage to system actuators. In order to overcome or reduce the chattering,
boundary layer method (BL), and higher order SMC approach (HO-SMC) are commonly employed by
many researchers [26–31]. However, these approaches have a drawback that limits their performance,
which consists in the fact that they still require the knowledge of the upper bounds of the uncertainties
to ensure the desired control performance. The overestimation of the control gains to cover a wide
range of uncertainties can cause the chattering and a dynamic response with overshoot, and the small
gains can deteriorate the control accuracy performance and affect the system robustness. Moreover,
BL method constrains the system trajectories not to the desired dynamics, but to their vicinities,
thus both the control accuracy and robustness are affected. The HO-SMC approach requires in general
higher order derivative of the sliding variable. The second order super-twisting SMC (SOST-SMC)
is among the most effective HO-SMC algorithms that is widely used in the literature for controlling
complex uncertain processes [4,32–35], it is developed by Levant [36] to avoid the chattering and to
ensure the finite time convergence of the system state trajectories. However, the choice of its optimal
control gains values remains a challenging matter for this kind of controllers.

In order to increase accurate tracking control performance and to guarantee the robustness of robot
manipulators against dynamic uncertainties and unknown disturbances, several approaches have been
developed. Among them, those that combine the benefits of FLS and robust control techniques, such as
SMC, H∞ Technique, NN, and adaptive control have recently been the focus of many researchers [37–
39]. In [40], a FLS and a fuzzy sliding mode controller are employed to achieve the best tracking
performance for the robot manipulators in presence of uncertainties. Most recently, in [41], the authors
used an adaptive fuzzy sliding mode controller in order to improve the precision trajectory tracking
of a designed winding hybrid-driven cable parallel manipulator subject to un-modeled dynamics
and random disturbances. In [42], in order to regulate the vertical displacement of a bioinspired
robotic dolphin, a sliding mode fuzzy control method is successfully applied. In [43], a hierarchically
improved fuzzy dynamical sliding-model control is proposed for the autonomous ground vehicle to
ensure the best path tracking performance in the presence of different payloads.

When compared to the existing works in the literature, the main contributions of the present
study are listed, as follows:

(1) a new robust algorithm is proposed for n-link robot manipulator systems to deal with the tracking
control problems, with the following considerations are taken into account:

• The dynamics of the robot manipulator systems are only partially known and present
parametric variations.

• The studied systems are subject to unknown disturbances.
• No prior knowledge of the upper bound of the parametric uncertainties, unknown dynamics,

un-modeled dynamics, and unknown disturbances that affect the studied system dynamics
is required.

(2) Based on T2-FLS, two adaptive interval T2-FLSs (AIT2-FLSs) are designed in order to efficiently
estimate the parametric uncertainties of the system dynamics. FSs are chosen to be interval T2
(IT2), firstly, because they do not require a lot of computation, and, secondly, for their efficiency
to capture severe uncertainties.

(3) In order to handle errors approximation of parametric uncertainties and effectively reject the
effects of unknown dynamics, un-modeled dynamics, and unknown disturbances on the control
system without generating the undesired chattering, a new enhanced robust AIT2-FSMC law is
designed so as to generate three adaptive control laws in order to provide the optimal estimation
of the control law gains that effectively reject all of the undesired effects that perturb the control
system while yielding a smooth global control law. Thus, the best tracking control performance is
guaranteed. The adaptation laws of the synthesized controller parameters have been designed
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in the sense of the Lyapunov stability approach. Finally, a 2-link robot manipulator is used as a
study case to validate the effectiveness of the proposed control approach.

The rest of the paper is organized as follows. In Section 2, the problem formulation is presented.
In Section 3, we propose the controller design method for n-link uncertain robot manipulator systems.
Section 4 presents the simulation results for a robot manipulator system to illustrate the superiority of
the proposed control approach in achieving the desired performance.

2. Problem Formulation

The main objective of this study is to design an enhanced tracking control for n-link robot
manipulators in the presence of un-modelled dynamics, unknown payload dynamics, unknown friction
force, parametric variations, and other unknown perturbations. The Euler-Lagrange dynamic equation
for n-link robot manipulator systems can be written as:

J(q)
..
q + C(q,

.
q)

.
q + F(

.
q) + G(q) = u + d (1)

where q,
.
q,

..
q ∈ Rn are the vectors of joint angular position, velocity, and acceleration,

respectively; J(q) = (J0(q) + ∆J(q)) ∈ Rn×n is the bounded symmetric positive definite
inertia matrix; C(q,

.
q) =

(
C0(q,

.
q) + ∆C(q,

.
q)
)
∈ Rn is the vector of centripetal Coriolis matrix;

G(q) = (G0(q) + ∆G(q)) ∈ Rn denotes the gravity vector, with J0(q), C0(q,
.
q), and G0(q) denote the

nominal matrices, and ∆J(q), ∆C(q,
.
q) and ∆G(q) represent the parametric variations on the nominal

system; F(
.
q) ∈ Rn is the unknown friction vector; u ∈ Rn represents the vector of input torques;

d ∈ Rn is the disturbance vector including un-modelled dynamics, unknown payload dynamics, and
other unknown perturbations.

The Equation (1) can be reformulated as:

..
q = A(Q) + B(q)u + D
= A0(Q) + B0(q)u + (∆A(Q) + ∆B(q)u) + D

(2)

where A(q,
.
q) = A0(q,

.
q) + ∆A(q,

.
q) = −J−1(q)

(
C(q,

.
q)

.
q + G(q)

)
, B(q) = B0(q) + ∆B(q) = J−1(q),

and D = J−1(q)
(
d− F(

.
q)
)
, with ∆A(q,

.
q) and ∆B(q) representing the parametric uncertainties on the

system nominal, Q =
[

qT .
qT

]T
∈ R2n denotes the state vector of the system (1) assumed to be

available to measurement, and q =
[

q1 q2 . . . qn

]T
is the first element of the state vector.

For convenience, it is assumed that:
.
J(Q) − 2C(Q) is skew symmetric, J−1(Q) exists, and D

is bounded.

3. Proposed Control Approach

3.1. Introduction to Type-2 Fuzzy Logic Systems

A T2-FLS is characterized by MFs that are themselves fuzzy. Output sets of inference engine are
T2-FSs. Therefore, a reducer is required to convert them into T1-FS. The obtained type reducer set is
then defuzzified to obtain a crisp output.

An example of a T2 fuzzy MF is the Gaussian MF represented in Figure 1, with the associated
FOU being shown as a bounded blue area.

Upper MF and Lower MF are two T1 MFs. µ1 is the intersection of the crisp input x with the
lower MF, and µ2 is the intersection of x with the upper MF.
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3.1.1. Interval Type-2 Fuzzy System

For an IT2-FLS with a rule base of M rules, each having m antecedents, the jth rule can be
expressed as [44]:

Rj: if x1 is F̃1
j and x2 is F̃2

j. . . and xm is F̃m
j then y is θ̃ j (3)

where F̃j
i and θ̃ j are IT2-FSs that are characterized by the fuzzy MFs µ

F̃j
i
(xi) and µ

θ̃ j(y), respectively,

(j = 1, 2, . . . , M, i = 1, 2, . . . , m); X =
[

x1 x2 . . . xm

]
T ∈ Rm and y ∈ R are the input vector and

the output of the IT2-FLS, respectively.
For the IT2-FLS described in (3), the meet operation is implemented by the product t-norm. Thus,

the firing interval of the j-th fuzzy rule is the following IT1-FS:

Zj(X) =
[
zj

l(X), zj
r(X)

]
(4)

where zj
l(X) =

m
π

i=1
µlow

F̃j
i

(xi) and zj
r(X) =

m
π

i=1
µ

upp

F̃j
i

(xi), with µlow
F̃j

i

(xi) and µ
upp

F̃j
i

(xi) are the lower and

upper MFs of µ
F̃j

i
(xi), respectively.

3.1.2. Type Reduction for Interval Type-2 Fuzzy Sets

The output of the inference engine must be reduced to a T1-FS before defuzzification. The type
reduction using the center of sets (COS) method is adopted in this study for the IT2-FSs and it is given
by [45]:

Ycos

(
θ1, θ2, . . . , θM, Z1, Z2, . . . , ZM

)
=
∫
y1

∫
y2

. . .
∫

yM

∫
z1

∫
z2

. . .
∫

zM

M
∑

j=1
zj

M
∑

j=1
yjzj

(5)

where Ycos is an IT1-FS defined by two end points yl(X) and yr(X); yj ∈ θ j =
[
θ

j
l , θ

j
r

]
with θ jis the

centroid of the associated IT2 fuzzy consequent set θ̃ j; and, zj ∈ Zj(X) =
[
zj

l(X), zj
r(X)

]
.

The defuzzified crisp out by using the center of gravity is then obtained, as follows:

y =
yl + yr

2
(6)

where yl and yr can be expressed as:
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yl = min
Zj

M
∑

j=1
θ

j
l zj

M
∑

j=1
zj

= θT
l ξl

yr = Max
Zj

M
∑

j=1
θ

j
rzj

M
∑

j=1
zj

= θT
r ξr

(7)

where ξl =
[

ξ1
l ξ2

l . . . ξM
l

]
T and ξr =

[
ξ1

r ξ2
r . . . ξM

r

]
T are two vectors of fuzzy basis

functions, such that: ξ
j
l =

zj

M
∑

j=1
zj

and ξ
j
r =

zj

M
∑

j=1
zj

, with (zj, zj)∈ Zj(X); θl =
[

θ1
l θ2

l . . . θM
l

]
T and

θr =
[

θ1
r θ2

r . . . θM
r

]
T are the adjustable parameter vectors.

In this study, zj and zj are determined while using the iterative algorithm that was developed by
Mendel and Karnik [46]. Therefore, yl and yr can be easily computed.

3.2. Control Law Design

In order to ensure that the state q of the system (1) effectively tracks a desired reference qr in the
presence of dynamic uncertainties and unknown disturbances without generating the chattering, a
new robust AIT2-FSMC law is proposed.

3.2.1. Sliding Mode Control Law

The main objective of SMC is to force the system dynamics to reach and then remain on the sliding
surface s(Q, t) = 0, with 0 ∈ Rn denotes the null vector.

Define the tracking error e = qr − q. Then, in order to ensure that the tracking error converges
asymptotically to zero when the sliding surface s(Q, t) = 0 is established, we adopted in this study the
following sliding surface defined by Slotine for a jth order system as [47]:

s(Q, t) =
(

∂
∂t + λ

)(p−1)
e

=
p−1
∑

j=0

(p−1)!
j!(p−j−1)!

(
∂
∂t

)(p−j−1)
λje

= [s1s2 . . . sn ]
T ∈ Rn

(8)

where λ = diag(λi)1≤i≤n ∈ R(n×n) is a diagonal matrix, with λi is the positive slope of the sliding
surface si; p denotes the system order. In this study, for the system (1), we have p = 2. Therefore:

s(Q, t) =
.
e + λe (9)

The time derivative of the above equation can be given, for the system (2), as:

.
s(Q, t) =

..
qr − (A0(Q) + B0(q)u)− (∆A(Q) + ∆B(q)u)− D + λ

.
e (10)

In this paper, the IT2-FLS (6) is used to approximate the uncertainties ∆A(Q) and ∆B(q). Therefore,
∆A(Q) and ∆B(q) are substituted by their AIT2-FLSs, respectively:

∆Â(i) = ξT
a (i)θa(i)

∆B̂(i, j) = ξT
b (i, j)θb(i, j)

,
i = 1, . . . , n
j = 1, . . . , n

(11)
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where ξT
a (i) = 1

2

(
ξa(i)

T
l + ξa(i)

T
r

)
and ξT

b (i, j) = 1
2

(
ξb(i, j)T

l + ξb(i, j)T
r

)
, with

ξa(i)l =
[

ξa(i)
1
l ξa(i)

2
l . . . ξa(i)

M
l

]
T , ξa(i)r =

[
ξa(i)

1
r ξa(i)

2
r . . . ξa(i)

M
r

]T
,

ξb(i, j)l =
[

ξb(i, j)1
l ξb(i, j)2

l . . . ξb(i, j)M
l

]T
, and ξb(i, j)r =

[
ξb(i, j)1

r ξb(i, j)2
r . . . ξb(i, j)M

r

]
T

are the vectors of fuzzy basis functions as they were described in (7);

θa(i) =
[

θ1
a(i) θ2

a(i) . . . θM
a (i)

]T
and θb(i, j) =

[
θ1

b(i, j) θ2
b(i, j) . . . θM

b (i, j)
]

T are
the parameter vectors free to be designed by adaptive law; and, M is the number of rules.

The system (11) can be rewritten as:

∆Â =
[

∆Â(1) ∆Â(2) . . . ∆Â(n)
]

T = ξT
a θa

∆B̂ =


∆B̂(1, 1) ∆B̂(1, 2) . . . ∆B̂(1, n)
∆B̂(2, 1) ∆B̂(2, 2) . . . ∆B̂(1, 1)

...
...

. . .
...

∆B̂(n, 1) ∆B̂(n, 2) . . . ∆B̂(n, n)

 = ξT
b θb

(12)

where ξT
a =



ξT
a (1) 0 0 . . . 0
0 ξT

a (2) 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 . . . 0 ξT
a (n)


and θa =


θa(1)
θa(2)

...
θa(n)

;

ξT
b =


ξT

b (1) 0 0 . . . 0
0 ξT

b (2) 0 . . . 0
0 0 . 0 0
...

...
...

. . .
...

0 0 . . . 0 ξT
b (n)

 and θb =


θb(1)
θb(2)

...
θb(n)

, with

ξb(i) =
[

ξT
b (i, 1) ξT

b (i, 2) . . . ξT
b (i, n)

]T
and θb(i) =



θb(i, 1) 0 0 . . . 0
0 θb(i, 2) 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 . . . 0 θb(i, n)


.

Define the optimal parameters of ∆Â(Q) and ∆B̂(q):

θ∗a = argmin
θa

(
sup

Q
‖∆Â− ∆A‖

)

θ∗b = argmin
θb

(
sup

q
‖∆B̂− ∆B‖

) (13)

The minimum approximation error of ∆A(Q) and ∆B(q) is then given by:

ε = ∆A∗(Q)− ∆A(Q) + (∆B∗(q)− ∆B(q))u (14)

where ∆A∗(Q) = ξT
a θ∗a and ∆B∗(q) = ξT

b θ∗b are the optimal approximation of ∆A(Q) and
∆B(q), respectively.

In order to ensure the desired control performance, a new control law is designed, as follows:
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u =
[

u1 u2 . . . un

]T
=
(

B0(q) + ∆B̂(q)
)−1( ..

qr −
(

A0(Q) + ∆Â(Q)
)
+ λ

.
e− usl

)
= ueq −

(
B0(q) + ∆B̂(q)

)−1usl

(15)

where ueq =
(

B0(q) + ∆B̂(q)
)−1( ..

qr −
(

A0(Q) + ∆Â(Q)
)
+ λ

.
e
)
.

The fuzzy equivalent control ueq describes the sliding mode of the system dynamics, it
drives the system trajectories to the desired dynamics and it is obtained when

.
s = 0. However,

dynamic uncertainties and unknown disturbances may cause a deterioration of the sliding mode. To
overcome this problem, usl is introduced, and it describes the reaching phase of the system dynamics
towards the sliding surface s = 0. Thus, the new reaching control law is designed, as follows:

usl = −αs(Q, t)− k
tr∫

0

sign(s(Q, t)) dt − µω(s(Q, t)) (16)

where ω(s(Q, t)) =
[

ω1(s1) ω2(s2) . . . ωn(sn)
]

T ∈ Rn such that ωi(si) ={
si + εisign(si) si ∈ Ω

sign(si)

log2|si |
si /∈ Ω , with Ω = { si| |si| ≥ Ni

2 , 0 < Ni ≤ 1}, and εi = 1
log2

(
Ni
2

) − Ni
2 in

order to ensure a continuous signal in |si| = Ni
2 ; α = diag(αi)1≤i≤n, µ = diag(µi)1≤i≤n and

k = diag(ki)1≤i≤n are diagonal matrices of the positive reaching control gains αi, µi and ki, respectively,

i = 1, . . . , n;
tr∫
0

sign(s(Q, t)) dt =

[
tr
1∫

0
sign(s1) dt

tr
2∫

0
sign(s2) dt . . .

tr
n∫

0
sign(sn) dt

]T

,

with tr =
[

tr
1 tr

2 . . . tr
n

]
T such that tr

i =

{
t |si| > ϑi

tϑi |si| ≤ ϑi
denotes the reaching time to a

neighborhood ϑi of the sliding surface si = 0.
The adaptive laws for the synthesized AIT2-FLSs are designed, as follows:

.
θa = −γaξas
.

Φb = −γbudξbs
(17)

where Φb = θb In, with In =
[

1 1 . . . 1
]

T ∈ Rn; ud =



I1
d 0 0 . . . 0
0 I2

d 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 . . . 0 In
d


, with I1

d = I2
d =

. . . = In
d = Id such as Id =



u1 I 0 0 . . . 0
0 u2 I 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 . . . 0 un I


, I ∈ RM×M denotes the identity matrix; γa

and γb are positive constants.

Theorem 1. For the corollled system (1) with the AIT2-FLSs (11) and adaptive laws (17), the control law defined
in (15) is globally asymptotically stable in closed loop system with the tracking error converges asymptotically to
zero despite dynamic uncertainties and unknown disturbances.
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Proof. In order to ensure the desired dynamics and guarantee the stability of the closed loop control
system, the following Lyapunov function is adopted:

v =
1
2

sTs +
1

2γa
θ̃T

a θ̃a +
1

2γb
Φ̃

T
b Φ̃b (18)

where θ̃a = θa − θ∗a and Φ̃b = θ̃b In, with θ̃b = θb − θ∗b .
The time derivative of (18) is:

.
v = sT .

s +
1

γa

.
θ

T
a θ̃a +

1
γb

.
Φ

T
b Φ̃b (19)

Substitute
.
s defined in (10) into (19), gives:

.
v = sT[ ..

qr − (A0(Q) + B0(q)u)
]
− sT[(∆A(Q) + ∆B(q)u) + D− λ

.
e
]
+

1
γa

.
θ

T
a θ̃a +

1
γb

.
Φ

T
b Φ̃b (20)

From (15), we get:

..
qr =

(
A0(Q) + ∆Â(Q)

)
+
(

B0(q) + ∆B̂(q)
)
u + usl − λ

.
e (21)

Substituting (21) into (20) gives:

.
v = sT[(∆Â(Q)− ∆A(Q)

)
+
(
∆B̂(q)− ∆B(q)

)
u + (usl − D)

]
+ 1

γa

.
θ

T
a θ̃a +

1
γb

.
Φ

T
b Φ̃b

= sT[(∆Â(Q)− ∆A∗(Q)
)
+ (∆A∗(Q)− ∆A(Q)) +

(
∆B̂(q)− ∆B∗(q)

)
u + (∆B∗(q)− ∆B(q))u + (usl − D)

]
+

1
γa

.
θ

T
a θ̃a +

1
γb

.
Φ

T
b Φ̃b

= sT
[
ξT

a θ̃a + ξT
b θ̃bu + usl − ϕ

]
+ 1

γa

.
θ

T
a θ̃a +

1
γb

.
Φ

T
b Φ̃b

(22)

where ϕ = D− ε =
[

ϕ1 ϕ2 . . . ϕn

]
T is assumed to be bounded (|ϕi| ≤ φi, φi ≥ 0, i = 1, . . . , n).

We have θ̃bu = udΦ̃b. Then, substitute θ̃bu by udΦ̃b into (22), gives:

.
v = sT

(
ξT

a θ̃a + ξT
b udΦ̃b + usl − ϕ

)
+ 1

γa

.
θ

T
a θ̃a +

1
γb

.
Φ

T
b Φ̃b

=

(
sTξT

a + 1
γa

.
θ

T
a

)
θ̃a +

(
sTξT

b ud +
1

γb

.
Φ

T
b

)
Φ̃b + sT(usl − ϕ)

(23)

Substitute
.
θa and

.
Φb defined in (17) into (23), then we have:

.
v = sT(usl − ϕ) (24)

Substituting usl by its expression gives:

.
v = −sT

αs(Q, t) + k
tr∫

0

sign(s(Q, t)) dt + µω(s(Q, t))

− sT ϕ (25)

The above equation becomes negative if the following condition is verified:

− sT

αs(Q, t) + k
tr∫

0

sign(s(Q, t)) dt + µω(s(Q, t))

 ≤ sT ϕ (26)

The condition (26) is guaranteed if:

αi|si|+ kitr
i + µi|ωi| ≥ φi, i = 1, . . . , n (27)
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An adequate choice of the reaching control gains ki, αi, and µi makes it possible that the condition
(27) can be guaranteed. Hence, the function (19) becomes negative. �

In practice, and because the upper bounds φi of ϕi are unknown, it becomes very difficult to obtain
the optimal reaching control gains ki, αi, and µi that ensure the rejection of ϕi without deteriorating
the system robustness or generating the undesired chattering. Indeed, the large gains can cover a
wide range of uncertainties. However, they can cause the chattering and a dynamic response with
overshoot. On the other hand, the small gains can deteriorate the system robustness and affect the
tracking control accuracy. In this paper, for handling this problem, a new AIT2-FLS is designed to
better estimate the gains (ki, αi, and µi) of the control law usl that provide the best tracking control
performance of (1) by guaranteeing the condition (27) without generating the chattering.

3.2.2. Adaptive Interval Type-2 Fuzzy Sliding Mode Control Law

Based on the IT2-FLS (6), and with the sliding surface s(Q, t) as input vector, the terms uα = −αs,

uk = −k
tr∫
0

sign(s)dt and uµ = −µω of the control law defined in (16) are substituted by their AIT2-FLSs,

respectively:
ûα(i) = ξT

α (i)θα(i)si

ûk(i) = ξT
k (i)θk(i)t

r
i

ûµ(i) =


(

ξT
µ (i)θµ(i)

)
(|si|+ εi), si ∈ Ω

ξT
µ (i)θµ(i)

log2|si |
, si /∈ Ω

, i = 1, . . . , n (28)

where θα(i) =
[

θ1
α(i) θ2

α(i) . . . θM
α (i)

]
T , θk(i) =

[
θ1

k (i) θ2
k (i) . . . θM

k (i)
]

T , and θµ(i) =[
θ1

µ(i) θ2
µ(i) . . . θM

µ (i)
]

T are the parameter vectors free to be designed by adaptive law;

ξk(i) = 1
2
(
ξk(i)l + ξk(i)r

)
=
[

ξ1
k(i) ξ2

k(i) . . . ξM
k (i)

]
T , and ξµ(i) = 1

2

(
ξµ(i)l + ξµ(i)r

)
=[

ξ1
µ(i) ξ2

µ(i) . . . ξM
µ (i)

]
T are the vectors of fuzzy basis functions, as they were described in (7).

The system (28) can be rewritten as:

ûα =
[

ûα(1) ûα(2) . . . ûα(n)
]

T = ξT
α θαs

ûk =
[

ûk(1) ûk(2) . . . ûk(n)
]

T = ξT
k θktr

ûµ =
[

ûµ(1) ûµ(2) . . . ûµ(n)
]

T = ξT
µ θµv

(29)

where

ξT
α =



ξT
α (1) 0 0 . . . 0
0 ξT

α (2) 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 0 . . . ξT
α (n)


, ξT

k =



ξT
k (1) 0 0 . . . 0
0 ξT

k (2) 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 0 . . . ξT
k (n)



ξT
µ =



ξT
µ (1) 0 0 . . . 0
0 ξT

µ (2) 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 0 . . . ξT
µ (n)


, θα =



θα(1) 0 0 . . . 0
0 θα(2) 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 0 . . . θα(n)
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θk =



θk(1) 0 0 . . . 0
0 θk(2) 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 0 . . . θk(n)


, θµ =



θµ(1) 0 0 . . . 0
0 θµ(2) 0 . . . 0

0 0 . . . .
...

...
...

...
. . . 0

0 0 0 . . . θµ(n)


v =

[
v1 v2 . . . vn

]
T such that vi =

{
(|si|+ εi), si ∈ Ω

1
log2|si |

, si /∈ Ω , i = 1, . . . , n.

Define the optimal parameters of the AIT2-FLSs ûα, ûk, and ûµ:

θ∗α = argmin
θα

(
sup

s
‖ûα − uα‖

)
θ∗k = argmin

θk

(
sup

s
‖ûk − uk‖

)
θ∗µ = argmin

θµ

(
sup

s
‖ûµ − uµ‖

) (30)

The global AIT2-FSMC law of the proposed control approach is designed as:

u =
[

u1 u2 . . . un

]
T

=
(

B0(q) + ∆B̂(q)
)−1( ..

qr −
(

A0(Q) + ∆Â(Q)
)
+ λ

.
e− ûsl

) (31)

where ûsl = ûα + ûk + ûµThe adaptive laws for the synthesized AIT2-FLSs defined in (29) are designed,
as follows: .

Φα = −γαsdξαs
.

Φk = −γktr
dξks

.
Φµ = −γµWdξµs

(32)

where sd =


s1 I 0 0 . . . 0
0 s2 I 0 0 0
0 0 · . . . . . .
...

...
...

. . . 0
0 0 0 . . . sn I

, tr
d =


tr
1 I 0 0 . . . 0
0 tr

2 I 0 0 0
0 0 · . . . . . .
...

...
...

. . . 0
0 0 0 . . . tr

n I

, and Wd =


v1 I 0 0 . . . 0

0 v2 I 0 0 0
0 0 · . . . . . .
...

...
...

. . . 0
0 0 0 . . . vn I

; Φ̃α = θ̃α In, Φ̃k = θ̃k In and Φ̃µ = θ̃µ In such as θ̃α = θα − θ∗α , θ̃k = θk − θ∗k

and θ̃µ = θµ − θ∗µ; γα, γk and γµ are positive constants.

Theorem 2. For the n-link robot manipulator system (1), with AIT2-FLSs defined in (11) and (29), and adaptive
laws expressed by (17) and (32), the proposed AIT2-FSMC law (31) is smooth and globally asymptotically stable
in closed loop system with the tracking error converge asymptotically to zero despite dynamic uncertainties and
unknown disturbances.

Proof. Consider the following augmented Lyapunov function:

v =
1
2

sTs +
1

2γa
θ̃T

a θ̃a +
1

2γb
Φ̃

T
b Φ̃b +

1
2γα

Φ̃
T
α Φ̃α +

1
2γk

Φ̃
T
k Φ̃k +

1
2γµ

Φ̃
T
µ Φ̃µ (33)
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According to (24) and (31), the time derivative of (33) gives:

.
v = sT(ûsl − ϕ) +

1
γα

.
Φ

T
α Φ̃α +

1
γk

.
Φ

T
k Φ̃k +

1
γµ

.
Φ

T
µ Φ̃µ (34)

Let û∗α = ξT
α θ∗αs = −α∗s, û∗k = ξT

k θ∗k tr = −k∗
tr∫
0

sign(s)dt and û∗µ = ξT
µ θ∗µv = −µ∗ω denote,

respectively, the optimal control laws of uα = −αs, uk = −k
tr∫
0

sign(s)dt and uµ = −µω that ensure

the best tracking control performance of the robot manipulator (1) by providing the optimal gains
α∗ = diag

(
α∗i
)
, µ∗ = diag

(
µ∗i
)
, and k∗ = diag

(
k∗i
)
, i = 1, . . . , n of usl , which allows for effectively

rejecting the effect of ϕ without generating the undesired chattering.
Considering (27), and as the adaptive gains α∗, µ∗ and k∗ are, respectively, the optimal estimation

of α, µ, and k. Thus, the following condition is verified:

α∗i |si|+ k∗i tr
i + µ∗i |ωi| ≥ φi, i = 1, . . . , n (35)

By introducing the optimal control law u∗sl = u∗α + u∗k + u∗µ into (34), it gives:

.
v = sT((ûsl − u∗sl) + (u∗sl − ϕ)

)
+ 1

γα

.
Φ

T
α Φ̃α +

1
γk

.
Φ

T
k Φ̃k +

1
γµ

.
Φ

T
µ Φ̃µ

= sT
(

ξT
α θ̃αs + ξT

k θ̃ktr + ξT
µ θ̃µv

)
+ sT(u∗sl − ϕ

)
+ 1

γα

.
Φ

T
α Φ̃α +

1
γk

.
Φ

T
k Φ̃k +

1
γµ

.
Φ

T
µ Φ̃µ

(36)

Substituting ûsl and u∗sl by their expression into (36), and taking into account that θ̃αs = sdΦ̃α,
θ̃ktr = tr

dΦ̃k and θ̃µv = WdΦ̃µ, then we have:

.
v = sT

(
ξT

α θ̃αs + ξT
k θ̃ktr + ξT

µ θ̃µv
)
+ sT(u∗sl − ϕ

)
+ 1

γα

.
Φ

T
α Φ̃α +

1
γk

.
Φ

T
k Φ̃k +

1
γµ

.
Φ

T
µ Φ̃µ

= sT
(

ξT
α sdΦ̃α + ξT

k tr
dΦ̃k + ξT

µ WdΦ̃µ

)
+ sT(u∗sl − ϕ

)
+ 1

γα

.
Φ

T
α Φ̃α +

1
γk

.
Φ

T
k Φ̃k +

1
γµ

.
Φ

T
µ Φ̃µ

= sTξT
α sdΦ̃α +

1
γα

.
Φ

T
α Φ̃α + sTξT

k tr
dΦ̃k +

1
γk

.
Φ

T
k Φ̃k + sTξT

µ WdΦ̃µ + 1
γµ

.
Φ

T
µ Φ̃µ + sT(u∗sl − ϕ

)
=

(
sTξT

α sd +
1

γα

.
Φ

T
α

)
Φ̃α +

(
sTξT

k tr
d +

1
γk

.
Φ

T
k

)
Φ̃k +

(
sTξT

µ Wd +
1

γµ

.
Φ

T
µ

)
Φ̃µ + sT(u∗sl − ϕ

)
(37)

Substituting
.

Φα,
.

Φk and
.

Φµ by their expressions gives:

.
v = sT(u∗sl − ϕ) (38)

Substituting u∗sl by its expression into (38), then we have:

.
v = sT(−α∗s− k∗trsign(s)− µ∗vsign(s)− ϕ) (39)

According to (35), the above equation is negative. Thus, the desired tracking control performance
of the proposed approach is guaranteed. �

The proposed control approach is depicted in the Figure 2 below.
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4. Simulation Results

For simplicity, consider a 2-link robot manipulator, as shown in Figure 3, to validate the developed
approach of control.

Let l1 = l2 = 0.5 m be arm lengths, m1 = 2 kg and m2 = 1 kg the masses at the end of each joint
axe, g = 9.8(m/s2) the gravity acceleration, and q =

[
q1 q2

]
T the joint angular position vector.

The robot manipulator is described by the following equation:

..
q = A0(Q) + B0(q)u + D (40)
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where A0(Q) = −J−1(q)
(
C(Q)

.
q + G(q)

)
, B0(q) = J−1(q) and D = J−1(q)

(
d− F(

.
q)
)

with, the inertia

matrix J(q) =

[
(m1 + m2)l2

1 m2l1l2(sin(q1) sin(q2) + (cos(q1) cos(q2))

m2l1l2(sin(q1) sin(q2) + (cos(q1) cos(q2)) m2 l2
2

]
,

the centripetal Coriolis matrix C = m2l1l2(cos(q1) sin(q2)− sin(q1) cos(q2))

[
0 − .

q2
− .

q1 0

]
, the

gravity vector G =
[
−(m1 + m1)l1g sin(q1) −m2l2g sin(q2)

]
T , the joint torque input vector

u =
[

u1 u2

]
T , the state vector Q =

[
qT .

qT
]

T ∈ R4, the disturbance vector d =

[
d1

d2

]
∈ R2,

including un-modeled dynamics, unknown payload dynamics, and other unknown perturbations;

and, the unknown friction vector F(
.
q) =

[
F1(

.
q1)

F2(
.
q2)

]
∈ R2.

Assume that the robot manipulator system (40) presents time-varying uncertainties on the mass of
joints, as follows: dm(kg) =

[
dm1 dm2

]
T =

[
0.2 sin(2t) 0.4 sin(2t)

]
T . Therefore, the dynamic

Equation (40) can be rewritten as:

..
q = (A0(Q) + ∆A(Q)) + (B0(q) + ∆B(q))u + D (41)

where A0(Q) and B0(q) represent the nominal dynamics; ∆A(Q) and ∆B(q) represent the parametric
variations on the nominal system caused by dm; and, D = (J(q) + ∆J(q))−1(d− F(

.
q)
)
.

Un-modeled dynamics, unknown payload dynamics, unknown friction force, parametric
variations, and other unknown perturbations are represented as:

D = (J(q) + ∆J(q))−1

[
0.2 sin(

.
q1) + 0.8 sin(2t) + 0.4q1 + 0.2sign(

.
q1)

0.2 sin(
.
q2) + 0.8 sin(2t) + 0.4q2 + 0.2sign(

.
q2)

]
(42)

where ∆J(q) represents the parametric variations on the inertia matrix J(q).
Set the initial joint angular position vector q(rad) =

[
1.2 0.4

]
T ; the control objective is to

maintain the system to track the desired trajectory qd =
[

q1d q2d

]
T =

[
sin(t) cos(t)

]
T .

Set the sliding surfaces s1 =
.
e1 +λ1e1 and s2 =

.
e2 +λ2e2, where e1 = q1d− q1 and e2 = q2d− q2are

the tracking errors.
Assume that q1, q2,

.
q1, and

.
q2 belong to

[
−π

2
π
2

]
.

The proposed AIT2-FSMC law is designed as

u =

[
u1

u2

]
=
(

B0(q) + ∆B̂(q)
)−1( ..

qd −
(

A0(Q) + ∆Â(Q)
)
+ λ

.
e− ûsl

)
(43)

where the AIT2-FLS ∆Â(Q) has four inputs q1, q2,
.
q1, and

.
q2, and each of them is defined by three

MFs, as represented in Figure 4. The AIT2-FLS ∆B̂(q) has two inputs q1 and q2, and each of them is
defined by three MFs, as depicted in Figure 5. Likewise, for the AIT2-FLS ûsl = ûα + ûk + ûµ, three
MFs are designed for each of its inputs s1 and s2, as depicted in Figure 6.

To show the effectiveness of the proposed approach of control, a comparison was made with
the adaptive fuzzy SOST-SMC algorithm (AFSOST-SMC) that uses AT1-FLSs ∆A(Q) and ∆B(q) to
approximate ∆A(Q) and ∆B(q), and it uses a SOST-SMC law to handle the approximation errors and
unknown disturbances.
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Figure 4. Interval type-2 fuzzy sets used by the AIT2-FLS ∆Â(Q).
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Figure 5. Interval type-2 fuzzy sets used by the AIT2-FLS ∆B̂(q).

The global control law of the AFSOST-SMC approach is given as:

V =

[
V1

V2

]
=
(

B0(q) + ∆B(q)
)−1( ..

qd −
(

A0(Q) + ∆A(Q)
)
+ λ

.
e− uv

)
(44)
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where, uv = −
[

α1 0
0 α2

]
t∫

0
sign(s1)dt

t∫
0

sign(s2)dt

−
[

β1 0
0 β2

][
|s1|0.5

|s2|0.5

]
; α1, α2, β1, β2 are the gains of

the control law uv.
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For the constant parameters of the two approaches of control, we take the following values,
as shown in the Table 1 below:
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Table 1. Constant parameters of both control approaches.

Parameters AIT2-FSMC AFSOST-SMC

λ1 6 6
λ2 14 14
α1 - 5
α2 - 2
β1 - 10
β2 - 12
γa 800 20
γb 0.001 0.001
γα 110 -
γk 880 -
γµ 24 -
N1 0.1 -
N2 0.1 -

The simulation results are depicted in Figures 9–18. They illustrate the comparison between the
two control methods, namely the proposed AIT2-FSMC and AFSOST-SMC.

Figures 9 and 10, they show the evolution of the tracking errors. Figures 11 and 12, they depict
the robot manipulator angular positions q1 and q2 trajectories, and their desired references qd1 and qd2,
respectively. Figures 13 and 14 they represent the control laws of both control approaches.

The comparison between the AIT2-FSMC and AFSOST-SMC methods shows that the AIT2-FSMC
provides better tracking control performance with a smooth control law. This is thinks to the fact
that the AIT2-FSMC, firstly, it provides better approximations of the uncertainties ∆A(Q) and ∆B(q),
and secondly, it rejects the effect of un-modeled dynamics, approximation errors, and other unknown
disturbances more efficiently than the AFSOST-SMC.

Figures 15 and 16 below show that the tracking accuracy of the AFSOST-SMC approach is
improved when we increase the gains α1, α2, β1, and β2 of the control law uv. However, this implies
control inputs with chattering, as shown in Figures 17 and 18. Even with this improvement in accuracy,
which generates the chattering in the AFSOST-SMC method, it is concluded that the AIT2-FSMC
approach still shows a better tracking accuracy with smooth control inputs.
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5. Conclusions

In this paper, we presented a new enhanced tracking control design for n-link robot manipulators
in the presence of un-modelled dynamics, unknown payload dynamics, unknown friction force,
parametric variations, and other unknown perturbations. Firstly, two AIT2-FLSs are designed to
better approximate the parametric uncertainties, then secondly, a new control algorithm, which uses a
new designed AIT2-FSMC law, is introduced in order to handle approximation errors and unknown
disturbances that affect the robot manipulator systems. In order to overcome the chattering without
deteriorating the system robustness, the AIT2-FSMC generates three adaptive control laws to guarantee
the best estimation of the optimal smooth control law that ensures the best tracking control performance,
despite the uncertainties and disturbances. The closed loop control system is globally asymptotically
stable and mathematically proven. The simulation example confirms the effectiveness of the developed
control approach in achieving the desired objectives. In the future, we intend to extend the study to
cover a wide range of nonlinear systems, such as underactuated nonlinear systems and non affine
nonlinear systems.
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