robotics MBPY

Article

Maximal Singularity-Free Orientation Subregions
Associated with Initial Parallel Manipulator
Configuration

Luis Garcia ** and Alexandre Campos *

Computational Mechanics Laboratory, Universidade do Estado de Santa Catarina, Joinville-SC 89219-710, Brazil;
alexandre.campos@udesc.br

* Correspondence: luisgarciagonzalez.10@gmail.com

t These authors contributed equally to this work.

check for
Received: 16 July 2018; Accepted: 11 September 2018; Published: 18 September 2018 updates

Abstract: Reduced workspace is the main parallel robot disadvantage. It is generally due to the
robot configuration, mainly the platform orientation constraint, the present work intends to find
the maximum sphere within the orientation workspace, i.e., the singularity-free orientation regions.
These regions are related to the platform orientation through Roll-Pitch-Yaw angles. Therefore,
an optimization genetic algorithm is used to determine the initial platform orientation corresponding
to the largest sphere volume. In this algorithm, the geometrical parameters and the direct and inverse
singularities are the optimization constraints. The geometrical constraints may be studied using
vectorial analysis. The reciprocity property from screw theory is implemented to analyze the direct
and inverse kinematic. In this work it is used a methodology to verify the singularity closeness
measure associated with direct kinematic. This measure is related to the rate of work done by each
leg upon the platform twist. To determine how close is the parallel robot to a direct singularity a
index value is proposed. It is considered that the passive joints reachable regions may be limited by a
cone, whereby the cone symmetric axis is the same than the passive joint axis. In the optimization
problem, the sphere volume, i.e., the maximal angular displacement of the moving platform around
any axis is the objective function. Thus, the genetic algorithm individuals explore all feasible regions
looking for an optimal solution.

Keywords: parallel robot; workspace; singularities; optimization

1. Introduction

According to their structural topology, a parallel robot consists of two platforms (fixed and
moving), connected through serial (open-loops) kinematic chains [1]. The fixed platform is called base
and the moving platform is called platform. The parallel robot presents advantages in terms of dynamic
properties, load carrying capacity, high accuracy and stiffness, which are widely used in the industry [2].
However, the parallel robot orientation-workspace is reduced if it is compared with the serial robot
orientation workspace. This disadvantage is analyzed aiming to improve the robot orientation capacity
using the kinematics and geometrical robot parameters. Each of these parameters are related to
orientation-workspace by means of screw theory used to numerically optimize the parallel robot
orientation range. The present work intends to maximize the sphere within the orientation workspace.

For kinematic analysis, synthesis and application planning, the parallel robot workspace is an
important property. A general workspace is a six dimensional volumetric object and its characterization
is complex due to its complicated geometry. Therefore, to replace it by a convex shape, i.e., sphere could
be of great importance in kinematic optimization [3]. Different methods have been presented related
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to workspace with a sphere. In [4], a procedure to obtain the maximal area ellipse and the maximal
volume ellipsoid within the feasible workspace of the cable driven parallel robot wrench, using convex
optimization is proposed. In this procedure, the workspace boundaries equations are relaxed by means
of Weierstrass and Chebyshev approximation theorems. The wrench feasible workspace is the set
of postures of the moving platform for which the cables can balance any wrench for a given set of
wrenches. To approximate the workspace to a convex geometry (sphere) it is necessary to describe
correctly all the singularity free regions.

In [5], the parallel robot design is optimized through the workspace analysis using the tilt and
torsion angles to define the platform orientation. For that purpose, an optimization procedure to obtain
the higher workspace volume is implemented for a initial platform location. Such procedure consists
in two parts. First, the workspace volume is determined by considering the platform initial location to
the coordinates subset x, y and torsion angle ¢. Subsequently, the same analysis is done considering
the remaining coordinates subset (z, 6, ¢). In [6], a mathematical commercial software is used to get the
reachable workspace for a 3-DOF PUS&S parallel robot used in the large fuselage or wing assembly of
aircraft manufacturing. The geometrical restriction and kinematic singularities are considered using
screw theory and Tilt-and-Torsion angle method to obtain a proper design based on the workspace
representation. The Tilt-and-Torsion angle method is implemented to describe the platform orientation
and the screw theory to describe the actuated joint behaviour related to the platform motion.

In parallel robots, workspace may be limited by singular configurations, which may be inverse,
direct or combined. Inverse singularity occurs when the robot loses one or more degrees of freedom.
Direct singularity occurs when the platform gains one or more degrees of freedom, whose identification
is a complex task [1]. Combined singularities appear when the robot falls in an inverse and direct
singularity. Several methods are proposed to analyze the robot singularities simultaneously. In [7],
the linear decomposition is used to approach the architecture parameter effects on the nature of the
singularity loci. An algorithm based on analytical expression for the Jacobian matrix determinant
is implemented. This is possible using two different approaches: linear decomposition and cofactor
expansion. The first relates the architecture parameters with the robot singularities loci, while the
second approach reduces significantly the determinant computation. In [8], a method to analyze
singularities geometrically using Grassmann-Cayley algebra (GCA) is introduced. There, the actuation
forces and constraint moments are applied to the platform through their legs . Therefore, a parallel
robot is analyzed, relating leg configurations to the geometrical conditions, these conditions are
associated with the six Pliicker vectors constituting the inverse Jacobian matrix rows. Additionally,
in [9], the Grassmann—Cayley algebra analysis is implemented to obtain the geometrical conditions
of singularities using the screw theory. Then the Grassmann—Cayley algebra and the associated
superbracket decomposition are used. These methods are implemented to determine the jacobian
matrix condition, in which the screw axes for each leg are contained.

In [10], the singularity locus of a Gough-Stewart platform is analyzed through a surface over the
field of rational functions on the group of rotations. In the generic biplanar case, the parallel planes
family cut the surface in a linear pencil of conics and the rotational parametrization are uniform for all
generic orientations. They are determined from the geometrical surface properties.

The optimization algorithms implemented in these problems are mainly based on stochastic
concepts due to the parallel robot analysis complexity [11]. These algorithms follow certain
characteristics and behavior of biological, molecular, swarm of insects, and neurobiological systems.
The main advantage of these algorithms are that they do not require derivatives [12].

In [13], a 2-DOF medical parallel robot kinematics is studied to obtain the maximal workspace area
by means of genetic algorithms (GAs). The optimization algorithm explores all feasible parallel robot
configurations to find the optimal solution. In this optimization problem the kinematics singularities
are the constraints, while the geometrical parameters are the input data to calculate the optimal
singularity-free cylindrical workspace and to determine continuous singularity-free zones. In [14],
an algorithm is developed to detect the optimal singularity-free cylindrical workspace ranging from
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an initial orientation angle in platform to any prescribed orientation. In this case, the algorithm is
implemented in a 3-RPR planar robot, using robot structural parameters as constraints. The particle
Swarm Optimization (PSO) algorithm is used to determinate the closest point on the singularity surface
to the axis of the cylinder.

This paper is organized as follows: Section 2 briefly recalls the parallel robot definitions and
provides systems of equations characterizing the platform motions. These equation systems are based
on the escrew theory. The mobility contraints are introduced in Section 3 to describe the platfom
motions completely. Parallel robot contraints are divided into kinematical and geometrical. The first
are associated with platform orientation and the second to the parallel robot physical parameters.
These constraints are considered the workspace boundaries which are analyzed in Section 4 to describe
the feasible regions related to the platform orientations. Section 5 proposes an algorithm to locate
the initial platform orientation bounded by the higher sphere within the orientation workspace. Its
performance is demostrated with the Stewart-Gough (S-G) parallel robot. Section 6 summarizes the
main conclusions and suggests subjects for future works.

2. Kinematic of S-G

The spatial parallel robot used in the proposed analysis is a S-G platform with 6-DoF (see Figure 1).
The moving platform, from now on called platform, and the fixed base are connected by six extensible
(prismatic joint) and identical legs. These connectors consist of one universal and one spherical joint
at points A; and B;, respectively. Therefore each leg is a UPS (universal, prismatic and spherical)
kinematic chain, where the underline indicates the actuated joint. It should be noted that for the S-G
platform the prismatic joint is actuated.

Figure 1. Stewart-Gough Platform in MSC ADAMS/View.

Let 01, 0,, 03 be the fixed coordinate systems which are located at centroid 0 on the base, at the
centroid P, on the platform and at the ith point A;, in each limb, respectively. In the coordinate system
03, the z; axis is located in direction from A; to B; , the y;-axis is parallel to the cross product of two
unit vectors along the z; and z axes, the x;-axis is defined by the right-hand rule.

Universal joints at point A; and spherical joints at point B; lie on the plane x —y and u — v
respectively. Due to this, it is possible to define two position vectors, the first vector a; describes the
Ai position on the fixed base frame 0;, while the second vector 2b; describes the B; position on the
platform frame, which may be described as:

Rcos(6;) rcos(6; + 6p)
a; = |Rsin(0;)| 2 b; = |rsin(0; +6p)|; i =1to3, 1)
0 0

where ) = 60 and the vector p = [X, Y, Z] describes the platform location in the fixed base frame
(see Figure 2). It is composed by X, Y and Z, which are the centroid coordinates related to the base.
For mapping between x — y — z and u — v — w frames, the platform orientation is described by means
of the RPY angles.
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$1,r

Figure 2. Stewart-gough Platform ith leg configuration.

2.1. Screw and Reciprocal Screw

It is possible to express the rigid body infinitesimal displacement as a translation and a rotation
around a unique axis. This combined motion is called screw displacement [15]. The screw theory is a
mathematical tool commonly implemented in the parallel robot analysis. The latter may be applied
to indicate the position and orientation of a spatial body, it may conveniently be represented by two
three-dimensional vectors [16]:

[V2)%

$ = )

So><§—|—/\§

The unit vector § is along the screw axis and sy is the position vector between the origin point
on the frame and any point on the screw axis. sy X s may be defined as the geometric moment of the
screw axis about the origin reference frame. The pitch A is the relation between the linear and angular
displacement, A = d/0. Therefore, for a prismatic joint A = oo and for a revolute joint A = 0 [17]. Thus,
for the manipulator shown in Figure 1 the unitary screw associated with the actuated joint in each

kinematic chain is a unit screw with co-pitch (A = o0), it is wrriten as $ =

0; s ’ The screw direction
may be expressed as a vectorial operation:

p+bi—a;

s=r 0
[|AB]|

®)

where b; = 'R; 2b; and a; denote the spherical and universal joint positions with respect to the fixed
frame in the ith leg. The vector p was previously explained and ||AB;|| is the leg length,

[|AB;|| = |p + bj — ail. 4)

Thus, for the parallel manipulator i-th leg scheme shown in Figure 2, the relationship between
joint screw axes and platform screws may be extended as [18]:

$P = 9'(1,1-)@1,1' + 9.(2,1')$2,i + d(S,i)$3,i + 6(4,i)$4,i + G(S,i)$5,i + 9(6,i)$6,i' (5)

There is a screw that only performs work on the actuated joint (prismatic joint), which is called
reciprocal [19]. For the i-th kinematic chain show in Figure 2 the reciprocal screw ($,) passes through
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the universl joint center and the spherical joint center [20]. Thus, the unit reciprocal direction may be
described by Equation (3), i.e., s, = s,

. >
= . 6
b=, T ©®)
2.2. Screw-Based Jacobian
Premultiplying Equation (5) by the reciprocal screw $
$Zi$p = $Zi$3,id(3,i)r (7)
where
§7:% =1 ®)
and the unitary screw transpose is
$Z:i = |50 X Sr Sr )
Extending the analysis to the other legs and writing in matrix form
5r0,1 X Sr,1 Sra d(B,l)
$p=III| : (10)
5/0,6 X Sr,6  Sr6 d(3,6)
or
]x’$p| = ]L]'d' (11)

Jg and ], are the Jacobians related to inverse and direct kinematics, respectively. Thus, the
velocities present in the platform and the actuated joints are related by a unified Jacobian defined as

J =y [21].
3. Constraints Formulation

In the proposed analysis the constraints are composed by kinematical (parallel robot singularities)
and geometrical restrictions. The first are the particular platform locations where the PMs may gain,
direct singularities, or lose, inverse singularities, degrees of freedom. Thus, the singularity analysis
determines the conditions under which singularities occur and how to avoid them [22]. The second,
geometrical constraints, are due to the parallel robot structural nature . The PMs mobility may be
limited by constraints associated with the physical robot parameters.

3.1. Kinematic Singularities Analysis

Acording to [22] there are three types of kinematic singularities, each with a different physical
interpretation. If the matrix J; is singular, the singularity is inverse. If the matrix J; is singular,
the singularity is direct. In addition, if two matrices J; and ], become singular, the singularity is mixed.

3.1.1. Inverse Singularity

The inverse kinematic singularity type is caused due the leg serial nature. It may occur at a
workspace boundary or on internal boundaries within the workspace regions [23]. This singularity
occurs when the determinant of ], goes to zero [24].

Det(J;) = 0. (12)
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It means that there is a zero platform twist for non zero actuated joint velocities [25]. In other
words, for a given non-null velocity, the platform remains immobile, i.e., § represents the non empty
null space of the singular matrix J; [26]. For the present study case the parallel robot is inverse
singularity free due to the fact that J; matrix is an identity matrix, see Equation (10). Hence the robot
mobility is only constrained by the direct singularity and the geometrical constraints.

3.1.2. Direct Singularity

Direct singularity is more complex than inverse singularity because it appears inside the
workspace. In this case, the platform is not controllable, which means that the parallel robot may
gain one or more degrees of freedom. The parallel robot is in direct singularity when the matrix is
singular, i.e.,

Det(J;) =0, (13)

where the platform twist is the non empty null space. That is, even if the actuated joints are locked the
platform may move in some directions [1] . It means that the parallel robot cannot withstand forces in
some directions [25]. The direct singularity occurs only in parallel robots and it is difficult to define.
Aiming at identifying the direct singularity, Voglewede [27] proposes a methodology called power
measure, or work measure, using the screw theory. This technique measures the closeness of direct
singularities by means of an optimization problem. This problem consideres the objective function as

F- 5 (35,09)" a9
i=1

where $, is a wrench acting upon the platform, $ is the platform twist and 7 is the total number of
limbs. The Equation (14) is interpreted as the sum of the square work done by each leg upon the
platform motion. Hence, Equation (14) may be rewritten as

Wy

W,
=W owo oowi |, (15)

Wh

with
(W] = Jx[8] (16)
Thus, F may be written in the quadratic form [28]

F=$"]{]:$=$"Gs, (17)

where $7 is the twist transpose, described as $7 = [PQRLMN], where [PQRLMN] are the pliicker
coordinates and G is the graminiam matrix given by

G=Y %, % (18)
i=1

The optimization problem constraint is the invariant norm which takes the frame-invariant screw
portion magnitude [27]. It is defined as

151

vV w
V&TD¥ (19)
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where

D =

lis x3) O xa| (20)
03 x3) 0pxs

For a pure translation case (i.e., w = 0). the invariant norm is

18] = vo-o (1)

considering Equations (17) and (19). The optimization problem to measure closeness to direct
singularity may be expressed as

min  F($) = $7G$
M(X) = $ (22)
h($) = $TD$—1=0.

This constrained problem may be transformed into an unconstrained problem by
means of a Lagrange function (L), introducing one Lagrange multiplier for each constraint.
Hence, the optimization problem may be expressed as

Igi/\n L($,A). (23)

where the Lagrange function L is described as
L=3$"G$+A($TD$ —1). (24)
Differentiating the Lagrange function respect to A

dL($,A)

o =$TD$—-1=0, (25)

and differentiating the Lagrange function with respect to $ and using the fact that D and G are
symmetrical yields

dL($, M)

2%
Note that 0L($,A)/0dA is the optimization constraint exposed in Equation (22) while for
dL($,1)/0$, the matrix expression in the parenthesis has to be singular for a non-trivial solution.

= (G—AD)$ =0. (26)

In other words
det((G— AD)) = 0. 27)

The Equation (27) is the corresponding eigenvalue problem that may be rewritten as
det(¢1 — G™1D), (28)

where [(4,¢) is a identity matrix and § = 1/ is the eigenvalue of [G~1D]. Thus, the minimal function
value is related to the minimal eigenvalue [27]. It may be proven rewriting Equation (25) as

G$ =AD$ (29)
Substituting Equation (29) into the objective function (F) and using the constraint

F=$"7G$=7$"D$ = A (30)
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Thus the minimization problem may be written as

ng;l,i/\n L($/ /\) = Amin- (31)

3.2. Geometrical Constraint

The geometrical constraints occur due to collision between kinematic chains or due to violation of
joint limits, which are specific for each joint according to its range of motion. These restriction types
generally may be expressed explicitly.

3.2.1. Prismatic Joint

In this case the limitations are given by the joint sliding range (see Figure 3). The minimum length
of i-th link is denoted by p;;;i, and the maximum length by pi;4x.

imasx

Figure 3. Prismatic Joint Mobility.

3.2.2. Spherical Joint

Spherical joint limitations may be represented through a cone which define the joint mobility or
its range of motion (see Figure 4). In this case, the cone angle  is the maximum misalignment angle of
the joint (assumed to be less than 90°) and i is the unit vector along the axis of symmetry [29].

Figure 4. Spherical Joint Mobility.

3.2.3. Kinematic Chain Collision

The kinematic chain collision may be described as an intersection between two lines. It is
important to notice that, the distance between these lines is given by their common normal line
magnitude. Assume that the axes of two cylindrical segments (usual link geometry) A;B; and A; 1B, 1
with radius R; and Rjt1 do not collide, if their common normal line norm follow this condition [30]:

dZSt(A]B], Aj+1Bj+1) 2 R] + Rj+1 (32)

4. Workspace Analysis

In this section the 6 UPS orientation workspace is presented considering the kinematic and
the geometric constraints mentioned above. In the proposed analysis the base radius (r = 1m),
the platform radius (R = 0.5m) and a platform initial orientation (¢ = 0,9 = 0,1 = 0) are regarded.
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The analysis is reduced to the achievable orientations in the plane yx due to the complex geometry of
the orientation workspace.

4.1. Direct Singularity

An algorithm in MATLAB is applied aiming at measuring the robot direct singularity closeness A.
So, the algorithm calculates the wrench value for each instantaneous PM position. Hesselbach et al. [31]
determines that the direct singularity takes place when /A falls under 0.03 . Thus, the constraint
equation for the direct kinematic singularity may be written as:

V/Amin > 0.03. (33)

4.2. Geometrical Constraints

The mechanical constraints considered in this analysis are: (a) prismatic joint limit, (b) kinematic
chain interference.

Pmin < lpi < Omax, (34)
di; > D, (35)

where [,; is the motion range for the ith prismatic joint shown in Figure 2. pmin = 0.7 and
pmax = 1.4229 are the minimum and maximum lengths of actuated joints. d;; is the distance between
the i-th link and the j-th link (i # j). D = 0.03 is the diameter of each link.

As the first study case, a fixed platform position p = [0 0 0.5]m is considered in Figure 5 is
shown the direct kinematic index value associated with each platform orientation (0, 9, /), where the
infeasible regions are related to the blue regions while the remains regions are regarded feasibles, i.e.,
the index value is higher that 0.03. Several existing feasible regions where the platform may move
as shown in Figure 5, which means that travel between regions in the same plane is possible if an
appropriate platform path or platform configuration is established. It is important to note that the
term “platform configuration” is related to the different orientations that the platform achieves within
the orientation workspace.

In addition to that direct singularity index, other indices that associate the geometrical constraints
with the orientation workspace boundaries are established: prismatic joint (A;), legs collision(A.) and
passive joints(Ay).

The prismatic joint index represents the higher proximity percentage from the sliding link effector
positions to the physical joint limits. Where 100% means that the the joint reached its physical limit.
This measure restricts the parallel robot orientation workspace approximately 70% in relation to the
direct kinematic index, in the case of plane analysis to a central feasible region as shown in Figure 6.
where the infeasible reigions are yellow, while the remains regions are regarded feasibles.

The leg collision index indicates how close the limbs are to impact with each other. This collision
is considered when the index value is 100%. For the planar study shown in Figure 7 the higher index
is 50%, it means that there are no limitations related to the collision index. In this case the collision
index is limited by the prismatic joint indice and the direct kinematic index. Therefore the orientation
workspace in the plane i = 0.0 is initially restricted by these constraints. The collision analysis is
always considered because the workspace could be limited in other planes or in the space, e.g., in the
plane ¥ = 0.3 index value increase to 98% as shown Figure 8.

The orientation workspace shown in Figure 9 exhibits different feasible regions (in green) in
which the parallel robot operates without violating the kinematics and prismatics joint constraints,
see Figure 10. To achieve major rotations in some specific directions, the platform may be within one
of these green regions.
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Figure 5. Orientation workspace associated with direct kinematic index v/ Amin.
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Figure 6. Orientation workspace associated with prismatic joint index.
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Figure 7. Orientation workspace associated with legs collision.
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Figure 8. Orientation workspace associated with legs collision ¢ = 0.3.
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Figure 9. Orientation workspace without passive joint analysis.
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#(rad)

-2 2
J(rad) 3 3 (rad)

Figure 10. Three-dimensional orientation workspace without passive joint analysis.

The passive joint index is related to the non-actuated joint motion study, which presents physical
restricted motion similar to the actuated joints (prismatics). In the S-G platform case, it refers to allowed
movement in universal and spherical joints. The workspace related to passive joints is presented in
Figure 11. Taking the passive joint analysis into account the orientation workspace is reduced to a
unique feasible region (see Figure 12). In this case  value is based on the Bonev researches [29].

/\y

1- 100
0.8 90
06 - 80
04 70
02 60
50

0.2 40
-0.4 30
0.6 20
10

0.8 1

9 (rad)

-0.8

-1 08  -06 04 02 0 0.2 0.4 0.6
J(rad)

Figure 11. Orientation Workspace Associated to Passive Joint index with § < 50°.
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J(rad) ’ 3
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-3 Y(rad)
Figure 12. Three-Dimensional Orientation Workspace with passive Joints Analysis.

5. Workspace Optimization

In the present study, the workspace optimization aims at identifying the higher singularity free
sphere also called the optimal sphere, which represents the reachable orientations by the platform
in the three-dimensional space. However, due to the orientation workspace geometry, this task is
complex. Thus, to find the optimal sphere, a genetic algorithm is implemented. Those algorithms
are a robust type of evolutionary algorithms, which explore all the space avoiding fall in local
minimums (see Figure 16). The optimization analysis takes into account the kinematic and geometric
robot constraints.

5.1. Genetic Algorithm (GA)

Genetic algorithms are an increasingly popular method of optimization being applied to many
fields, motivated by the “survival of the fittest” concept and the Darwin’s theory of natural selection.
Therefore, these algorithms use analogous processes as biological evolution to promote the best
genes of a population. In the GA search process, only the function values are used to make
progress toward a problem solution. The problem function differentiability is never required for
the algorithm calculations. Therefore, it may be applied to all kinds of problems: discrete, continuous,
and non-differentiable. For this reason the GAs are widely used in different practical engineering
problems [32]. The algorithm starts by generating an initial population of random candidate solutions.
Each individual in the population is then awarded a score based on its performance. For this purpose,
the candidates are represented by binary strings and the GA population size is fixed [33]. The basic
elements of natural genetics are reproduction, crossover and mutation, which are used in the genetic
search procedure [12]. The optimization algorithm flowchart is shown Figure 13.

5.1.1. Reproduction

Reproduction operation is also called the selection operation because it selects good strings from
the current population to form a mating pool. This operation is the first operation applied to the GAs
population [12]. The reproduction operator is biased toward picking above-average strings of the
current design set (population). Thus, multiple copies of better strings are inserted in the mating pool
based on a probabilistic procedure. Usually, a string is selected from the mating pool with a probability
proportional to its fitness, i.e., those with higher fitness should have a greater chance of selection [34].
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Figure 13. Genetic algorithm flowchart.

no

5.1.2. Crossover

Crossover is an operation that introduces variation into a population. It creates a new string
by exchanging information among strings of the mating pool [12]. Thus, for the crossover operation
two individual strings are selected, which are known as the parent string. These strings are picked
at random from that mating pool generated by reproduction. Then, an information string portion is
exchanged between the parents resulting in child strings [34]. To preserve some good strings for the
next generation, a crossover probability, p,, is used. Thus only 100p, of the strings in the mating pool
will be used and 100(1 — p.) percent of the strings will be retained.

5.1.3. Mutation

Mutation introduces traits not in the original population, modifying a certain percentage of the
bits in the list of chromosomes. So it keeps the GA from converging too fast before sampling the
entire variable space. Therefore, the mutation operation allows the search outside the current region of
variable space [35]. In practice, a mutation is applied to the new strings with a specific small mutation
probability, pm. This operation modifies the binary digit 1 to 0 and vice versa.

5.1.4. Objective Function

The objective function, also called the fitness function, is related to the parameter to be maximized.
In the present optimization analysis the parameter is the sphere radius, which is dependent on the
sphere origin location. Therefore, to determine the optimal solution, the GA algorithm explore different
origin positions into the orientation workspace i.e the origin sphere locations. However, for each origin
position an optimal radius () exists. In view of this, the optimization analysis is split in two parts.
In the first part the maximal radius is determined by means of golden search procedure. While in the
second part, the optimal sphere origin is identified by GAs. Thus, the fitness function is given by:

f(0x1,0x2,0x3) = abs(min(R(0x1,0x2,0x3,7))). (36)

On the right side of Equation (36) the sphere radius () is a variable and sphere origin coordinates
(0x1,0x2,043) are fixed values. Thus, the function R(r) determines the feasible (r) values associated
with a specific sphere origin, whose value could range from 0 to —r in the span 0 < r < 71, as shown
in Figure 14.



Robotics 2018, 7, 57 15 of 19
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04 4

05} 4
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r(rad)

Figure 14. R(x) Funcntion value with 0,1 =0, 04y = 0, 0,3 = 0 for a G-S platform.

5.2. Optimization

The optimization problem is described as:
maximize £(0y)

subject to : B < 50°
v Amin > 0.03. (37)
Pmin < lpi < Prmax
>0y <7

where 0y; =| 041, 042, 043 |, the optimization contraints are associated with the kinematic and
geometrical parallel robot charateristics mentioned below.

The objetive function convergence is shown in Figure 15. This function is associated with the best
individual value of each generation. Due to the random GAs nature there is no specific rule to select
the optimization algorithm operation parameters. Thus, they are selected based on previous attempts
to find an optimal solution. The GA parameters are shown in Table 1.

Table 1. Genetic Algorithm Operation Parameters.

Population: 80
Generations: 100
Crossover (Pc): 30
Mutation (Pm): 10
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Figure 15. Objective function convergence.

The GA individuals explore all the space detecting feasible regions while the golden search
modifies the sphere size. The individual convergences is shown in Figure 16. For this case the optimal
solution is located at point (—33,11,28)10 — 4. The maximal sphere within the orientation workspace
is shown in Figure 17 and its radius is R = 0.646rad. It means that the platform could reach these
orientations 6y, < 0.646rad without falling into singularities.

#(rad)

Figure 16. GAs individuals searching an optimal solution.
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o(rad)

Figure 17. Maximal sphere within orientation workspace.

6. Conclusions

The main contribution of this work is to develop an optimization algorithm to establish the initial
platform orientations, where the platform achieves a higher rotation in all directions. By taking into
account the physical and kinematical constraints it is possible to know the workspace boundaries
and its geometry. Due to the workspace complex geometry, the maximal platform orientations are
approximated to a simplified geometry, i.e., sphere, where its origin is the initial platform orientation
and the radius is the higher rotation magnitude that may be achieved in any direction. In the practice,
this sphere may be named safety workspace.

In the workspace, different available regions may exist associated with the parallel robot
kinematics and geometric characteristics where the platform may reach higher rotations as shown
in Figures 9 and 10. These rotations are reduced due to passive joints mobility range. However,
this disadvantage could be treated with a passive joint optimization, where the passive joint axis angle
B is the parameter to be optimized.

A method for solving the mobility problems for general parallel robot architecture based on screw
theory analysis is provided. This method takes into account the Jacobian matrices and the actuator
contributions on the platform motion. Furthermore, parallel robot physical constraints as geometrical
limits are considered.

Author Contributions: L.G. develop an optimization algorithm to determine the maximal free-constraint sphere
within the parallel robot workspace, which may be considered the safety region and A.C. supervised the
investigation methodology.
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