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Abstract: A large group of small, limited endurance autonomous vehicles working cooperatively
may be more effective in target search and track operations when compared with a long endurance
vehicle. For a persistent search and track task, a need exists for coordination algorithms that account
for limited agent endurance. This paper presents a multi-agent persistent search and track algorithm
incorporating endurance constraints in a high-level algorithm that deploys and recovers vehicles
from a stationary base station. Agents are assigned to search, track, return, and deploy modes using
on-board sensor and battery measurements. Simulations and experiments show the relationship
between the number of agents, battery capacity, search performance, and target tracking performance.
The measures used to quantify these relationships include spatiotemporal coverage, target tracking
effectiveness, and the usage of available aircraft. Hardware experiments demonstrate the effectiveness
of the approach.

Keywords: persistent surveillance; autonomous vehicles; multi-vehicle

1. Introduction

Unmanned aerial vehicles (UAVs) can accomplish a wide range of critical tasks in both civil and
military applications. Works published in [1–4], among many others, demonstrate UAV advances that
have continued to amass rapidly since the turn of the century. Miniaturization and mass production
have enabled the use of multiple small aircraft to accomplish missions that were previously only
possible with large, expensive vehicles [5]. Small UAVs have a short mission life due to limited
on-board power, thus diminishing their utility to accomplish a sustained task. This paper presents
a persistent retrieve, recharge, and redeploy algorithm that enables a group of small quadrotors to
search and track moving targets in a defined space.

Considering the limitations of current battery technology, increased endurance of a group of
autonomous agents must rely on some form of coordinated recharging. An integrated robotic systems
approach that automates the retrieval, recharge, and redeployment process may satisfy this need.
The recharging process must sustain multiple agents beyond the flight endurance of a single agent.
For a group of agents to accomplish a prescribed task, recharging must be coordinated with long-term
task execution. By incorporating an automated replenishment procedure, a group of agents can
persistently complete an assigned task. This paper presents a replenishment procedure that sends
agents with a low battery to a recharging station; agents that are fully charged are launched when
necessary, and the group continues accomplishing the mission. This concept increases the overall
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endurance of the group’s data acquisition capabilities (video, acoustics, spectral, etc.), and the area
of operation.

The existing literature related to UAV technology and its applications is extensive. We focus here
on works addressing persistent multi-vehicle systems and multi-agent search and track algorithms.
The authors in [2] created a system of four aerial agents capable of executing a sustained task.
Their replenishment system is an automated battery hot-swap that mechanically changes depleted
batteries to refuel aerial assets. In this work, we consider a larger group of smaller UAVs that are
captured for recharging rather than swapping batteries. To do so, we employed methods from [5]
which enable the control of coordinated maneuvers for up to 50 Crazyflie 2.0 quadrotors.

Several works have also demonstrated autonomous replenishment methods: [6] used induction
coils on a landing platform; [2] utilized a custom-designed battery swapping mechanism interfaced
with a landing structure; and [7] proposed the use of a robotic arm to capture and place agents
into a recharging structure to reduce the environmental uncertainty associated with precise landing.
Like [2,6,7], we assume that any replenishment method is accomplished at a known, stationary home
base location. In related work, [8] presented an autonomous system of delivery robots that provide
charged batteries to robots completing an assigned task.

A significant number of works have investigated multi-vehicle search and track applications
while assuming unlimited vehicle endurance [9–12]. In [9], the authors implemented a recursive
Bayesian estimator to detect and track targets by continuously updating a likelihood measurement of
target presence. The authors of [12] used a similar detection and tracking technique to switch vehicle
behaviors according to motion governing states of matter. Vehicles searching for targets move rapidly,
a gaseous state; vehicles detecting targets slow down as they approach the target location, a liquid
state; and vehicles hovering at target locations have very little motion, a solid state. This paper builds
upon these search and track methods by accounting for limited vehicle endurance.

The central focus of this work is to achieve a reliable algorithm to direct multiple vehicles
for a coordinated task for an extended period of time, i.e., longer than a single battery cycle.
The concepts presented in this work are intentionally generalized to allow application to a variety of
multi-agent systems. Integration of multiple agents into a cooperative task requires the continuous
monitoring and analysis of battery status, task assignment, trajectory assignment, trajectory evolution,
and collected data.

With this in mind, the goal of this work is as follows: derive an autonomous multi-vehicle control
algorithm coordinating vehicle motion to persistently search for and track targets in a defined area
subject to the endurance constraints of individual agents. The contribution of this paper is an algorithm
that can (1) control multiple UAVs to search trajectories in a given space, (2) plan around the limited
flight time of each vehicle in the search planning process, (3) track targets that are found on search
trajectories, and (4) persistently monitor the specified domain. The algorithm must account for the
appearance, motion, and disappearance of multiple targets in the search space. When tracking, UAVs
maintain position over a target as it moves about the search domain. When the battery level of a
vehicle drops below the predetermined threshold, the agent must return to charge. Remaining agents
must account for the loss and gain of agents as they exit and re-enter the search environment.

The remainder of the paper is organized as follows. Section 2 presents the persistent multi-agent
search and track algorithm; Section 3 presents simulated and experimental results; and Section 4
provides closing remarks and offers directions for future work. The small-scale experimental system
results in this paper serve as proof of concept of the algorithm’s viability in operational environments.

2. Approach

The proposed algorithm consists of a high-level, heuristic decision-making process that assigns
agents to different operational modes. This section presents the algorithms comprising each mode
of operation, along with the sensing and monitoring algorithms that regulate switching between
operational modes. Figure 1 offers a visual representation of the control algorithm modes and their
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corresponding triggering events. The algorithm is composed of four operational modes, including
search, track, return to base, and charging/offline. Each block represents a different operational mode,
with the arrows denoting events that trigger a mode transition. The remainder of Section 2 is organized
according to each of these modes. The general operational cycle starts with the agent launching into
search mode, shifting to track mode if the agent finds a target, returning to home base to recharge
when the battery level is below threshold levels, and ending with a recharging phase.

Figure 1. A visual representation of the control algorithm modes and their corresponding
triggering events; labeled arrows represent transitions between operational modes and the associated
triggering events.

The search and track task modes are inextricably linked. Search mode consists of a trajectory
prescribed to each agent and is the default mode when a vehicle is launched. Track mode is triggered
by a detection event prompting a UAV to follow the identified target. Return mode is triggered when
an agent’s battery drops below a designated threshold. In return mode, the agent guides itself to the
base station to recharge. Recharge mode accounts for the recharging period, wherein the agent is
offline and no navigational or sensing computation is needed. This mode is triggered by a docking
event with the recharging station following a delay associated with the time required to capture an
agent. When a charging vehicle’s battery level exceeds a specified threshold, it is marked as available,
and the cycle can repeat. Note that available agents can continue to charge until they are needed.
The launch and retrieve delays are motivated by the autonomous recharging system presented in [6,13].
Our work assumes that vehicles default to search mode immediately following launch. This is a
possible limitation that is the topic of ongoing research.

2.1. Mode: Search

The search task requires agents to cooperatively monitor the defined region in space and
time. This paper uses smooth space-filling curves to explore defined subregions of the domain.
Each curve defines a desired search trajectory that is used to calculate a prescribed vehicle speed and
direction along the curve. This section derives the desired search trajectories for each vehicle using a
differentiable piecewise function of time. A large body of research exists on optimal search trajectories
for multiple agents using different mathematical strategies [9,10]. Without loss of generality, this work
relies on simple space-filling curves.

Each agent’s trajectory defines a desired position, velocity, acceleration, and yaw angle with
respect to time. Trajectory generation is divided into the following steps: (1) define a numbered
set of positions in the search space, (2) calculate a differentiable piecewise polynomial that connects
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the positions, (3) parameterize the piecewise polynomial with respect to the path frame variables,
and (4) relate the path frame coordinate to time using a scaling relationship that ensures that agents
travel at a constant, desired speed.

2.1.1. Search Path Generation

Given a bounded subregion within the search domain, an ordered set of three-dimensional points
in space can be used to define the desired points on a search agent’s path. This section details the
methods to define the ordered set of points and the continuous piecewise polynomial that defines
the path. Defining the ordered set of points relies on two key assumptions: (1) each vehicle has a
sensing field-of-view described by a cone oriented downward relative the UAV’s coordinate frame;
and (2) each vehicle maintains approximately level flight such that the sensing cone’s projection onto
the ground is a circle of radius r for a fixed altitude h. Under these assumptions, the grid of points
is separated by 2r to avoid overlap in coverage. Using these points, the path is composed of an
alternating series of straight segments and coordinated turns with a radius equal to the sensor radius.
To prevent searching outside the prescribed space, subregions are offset using the simulated sensor
radius. The resultant points consist of an [X, Y, Z] position and are numbered by order of visitation.
The UAV path [X(s), Y(s), Z(s)] is defined as a function of the continuous domain s ∈ [1, n] given
a set of n points such that X(1) is the first X coordinate in the ordered set, X(2) is the second, etc.
Gaps between integer values of s are defined using first-order polynomials for straight sections and
fifth-order polynomials for the curved sections. Figure 2 visualizes a rectangular search domain where
the numbers near each point define the point’s designation in the path frame variable s. Curved sections
are uniquely defined using constraints on the position and tangent at the start, apex, and endpoint.

Figure 2. A visualization of the piecewise polynomials that connect desired search trajectory points.

The fifth-order polynomials for X(s) and Y(s) are defined by

X(s) = cx,1s5 + cx,2s4 + cx,3s3 + cx,4s2 + cx,5s + cx,6 (1)

Y(s) = cy,1s5 + cy,2s4 + cy,3s3 + cy,4s2 + cy,5s + cy,6 (2)

Z(s) = h∗, (3)

where the constants cxy,1 through cxy,6 for X(s) and Y(s) are calculated using the method described
in [7]. Straight segments are first order, with only two endpoint constraints. Coefficients of these
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polynomials are calculated similarly [7]. Note that Z(s) is set to a constant height h∗ without loss
of generality. Setting the desired height allows for altitude collision avoidance by placing agents in
different modes at different heights to minimize the chances of collision.

2.1.2. Temporal Execution of Polynomial Trajectory

Given the paths defined as a function of the path frame coordinate s, the vehicle trajectory is
prescribed by establishing the time-dependent function s(t) to impose a constant speed along the path.
Using this definition, velocity is

Ẋ =
∂X
∂s

ṡ (4)

Ẏ =
∂Y
∂s

ṡ (5)

Ż = 0, (6)

since Z(s) is constant and speed is

v(t) ,
√

Ẋ2 + Ẏ2 + Ż2 = ṡ

√
∂X
∂s

+
∂Y
∂s

. (7)

Given a fixed desired speed v∗, setting v(t) = v∗ gives a differential equation governing evolution
of s(t)

ṡ =
v∗√

∂X
∂s

+
∂Y
∂s

. (8)

Subsequent derivatives of Equations (4) and (8) provide the acceleration along the path, but they are
omitted for brevity.

2.1.3. Trajectory Implementation

Each agent trajectory is implemented using the piecewise polynomials that characterize the
position rT , velocity ṙT , acceleration r̈T , and yaw ψT . The desired trajectory vectors in terms of s(t) and
associated derivatives are defined by

rT =

X(s(t))
Y(s(t))

h∗

 (9)

ṙT =


∂X
∂s

ṡ(t)
∂Y
∂s

ṡ(t)

0

 (10)

r̈T =


∂2X
∂s2 ṡ(t)2 +

∂X
∂s

s̈(t)

∂2Y
∂s2 ṡ(t)2 +

∂Y
∂s

s̈(t)

0

 (11)

ψT = tan−1
(

ṙTY

ṙTX

)
(12)

ṡ =
v∗√

∂X
∂s

+
∂Y
∂s

. (13)
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Figure 2 shows an example of the resultant pattern in a rectangular search space using
Equations (9)–(13), where the green line is the desired path and the red and blue lines illustrate
the search boundary offsets.

Fully defined trajectories are tracked using the quadrotor trajectory controller derived in [14].
The controller calculates the error between the desired position and orientation and returns motor
thrusts to achieve the desired path. The controller allows for the assignment of the desired position,
velocity, acceleration, and yaw angle, all of which are translated into control inputs. We rely on this
control for the launch and return phases of the trajectory by similarly defining straight line trajectories
to the respective desired endpoints.

2.1.4. Multi-Vehicle Planning

In order to best allocate the agents to the search region, the algorithm must assign each agent
to a unique search area. Here, we present a partitioning algorithm used to define search regions for
each agent. We partition the search space using the nominal flight speed v∗, flight endurance tend,
and sensing radius r at altitude h. Over the course of a battery life cycle, an individual vehicle can
search, at most, Amax = 2rv∗tend square units. Allowing additional battery usage for return and a
general safety factor, we uniformly partition the space into regions of area Apart = σAmax, where
σ ∈ (0, 1) designates the safety factor. For simplicity, the results in this work assume the partitions are
constant throughout the mission. Ongoing work seeks to dynamically repartition the space to focus on
undersampled regions.

Figure 3 illustrates a simple partition showing four equal quadrants. The results of Sections 2.1.2
and 2.1.3 subsequently enable trajectory generation within each quadrant. The dashed lines in each
quadrant indicate the desired trajectory, whereas the solid lines show the simulated trajectories of the
quadrotors using the trajectory tracking controller [14].

Figure 3. The search space is partitioned into four quadrants of equal area, each searched by a
different agent.

2.2. Mode: Track

Target detection is the triggering event that transitions an agent from search to tracking mode, and
it is accomplished using a likelihood ratio tracker [12]. This section provides a summery of the sensor
measurement assimilation procedures used to indicate detection events. We assume a generic conical
sensor projection onto a two-dimensional plane resulting in a circular or elliptical footprint. A conical
projection approximates devices such as thermometers, infrared sensors, or radiation detectors without
loss of generality. The conical sensor field of view (FOV) is projected onto the ground plane of the
search space, returning simulated scalar measurements within the area of intersection of the cone and
the plane.

The detection step leverages likelihood ratio tracking techniques for the detection and tracking
components of the control algorithm. Work published in [10,12,15] detail the use of likelihood ratio
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tracking (LRT) to detect targets; we provide a summary here for brevity. This detection technique
associates sensor measurements with a probability of target presence and creates a ratio of likelihood
of target presence to likelihood of target absence [12,15]. When the ratio exceeds a predetermined
threshold value, a detection occurs. Specific details regarding derivation and implementation of the
algorithm are provided in [12,15].

When the likelihood ratio tracker detects a target, the vehicle switches from search to track.
In track mode, we assume the vehicle estimates the position and velocity of the target in its field of
view. The estimated target position and velocity are used in the trajectory controller [14] such that the
quadrotor follows the target as it moves through the domain.

2.2.1. Target Motion Model

We assume targets move randomly through the search space. The model includes constraints to
give the targets a realistic motion pattern, as they are constrained to reasonable heading shifts and
speed changes; therefore, they cannot instantaneously reverse their speed or heading. Targets update
their heading and speed at random time intervals such that they travel along a piecewise continuous
path of straight line segments. Targets’ speeds are bounded between 0.1 and 1.2 m/s, and each target’s
heading is bounded within ±π/4 rad of its heading from the previous segment.

2.3. Mode: Return

To extend the operations of the multi-vehicle team beyond the battery life of a single vehicle, the
algorithm must incorporate return to base and recharging requirements. The return mode uses the
piecewise polynomial approach discussed in Section 2.1. Once set to this mode, the algorithm takes the
current X, Y, Z location of the agent and the known home base point and calculates a straight line path
between the two. The return path vector is defined by mx,y = Hx,y − bx,y, where bx,y is the start point,
the current location of the agent, and Hx,y is the endpoint, the known home base location, of the return
path. The return path is defined by X(s) = mxs + bx, Y(s) = mys + by, and Z(s) = hreturn, for some
altitude hreturn deconflicted with the search altitude. The X and Y components of the trajectory are
evaluated using the same method described in Sections 2.1.2 and 2.1.3. Altitude, Z, remains constant.
Once the agent reaches the base station, it is switched into recharging mode. The transition to recharge
is dependent on the recharging mechanism implemented.

2.4. Mode: Recharge

After a vehicle returns to base, it enters recharge mode. During this time, the agent is marked
offline and charges until it has a full battery. The battery charge and discharge behavior are based on
the nominal flight characteristics of the CrazyFlie2.0 [16] quadrotor. Through experiments, we verified
a mean flight duration of 7 min and a mean recharge time of 20 min.

Battery models are generally nonlinear and can be unique to the individual battery chemistry and
capacity. Additionally, factors such as charge cycles, voltage draw, and ambient temperature can have
a significant impact on the effective battery capacity and discharge rate. Since the goal of the present
work is to schedule recharge and redeployment of a group of agents, the most important characteristic
of the battery behavior to capture is the flight time and recharge time. To these ends, we implemented
a simple battery discharge model that assumes that the charge decreases linearly over time while the
vehicle is in flight. The battery model used in the simulations is

B(t) =

{
B0 − κt, Discharge Mode
B0 + βt, Recharge Mode,

(14)

where B(t) ∈ [0, 100] is the battery level (in percent remaining). B0 is the battery state at the time of
transition, and κ > β such that the battery discharges faster than it recharges. One can manipulate the
discharge and recharge time by modifying κ and β. The parameters of the discharge model are chosen
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conservatively such that the battery is at 25% capacity after 7 min of flight. The charge model is also
linear with time, and the parameters are chosen such that a vehicle can charge from 0% to 100% in
20 min. A full agent cycle is defined as 7 min of flight time followed by 15 min of recharge time, an
approximately 1:3 flight-to-recharge ratio. While a 1:3 flight to recharge ratio is slightly unrealistic for
a small UAV platform, this ratio can be attained by larger UAVs with higher capacity batteries and
chargers. It should be noted that the algorithm presented here is agnostic to the specifics of the battery
charge and discharge models, although the simulation results should be interpreted with that in mind.

2.5. Multi-Vehicle Coordination

The primary goal of this algorithm is to coordinate multiple vehicles in a search and track task.
We approach this problem by assigning states to each agent describing their role in the group. The
assigned states for each agent include a vehicle identifier, its search cell, its mode current designation,
its elapsed time in the latest search or track mode, and its battery level. The algorithm determines the
search assignment and mode transitions based on the evolution of these states in time.

The general priority of mode assignment is to ensure a deployed agent has sufficient battery to
search, track detected targets, and return. The goal of the search assignment is to assign available
vehicles to cover all search cells to agents. This objective is achieved using a heuristic decision-making
model. The strategy rules are as follows. Agents are deployed only into search mode. After deployment,
the vehicles only communicate with the base if a target is found or if returning to charge. As such, the
home base tracks the sequence of search zone deployments and assigns newly deployed agents to the
highest priority zones. The highest priority zones are determined based on the previous deployments,
time in search/track mode, and information received as vehicles return. Search cells are tracked and
assigned to a single search agent, since they are created for the intention of a single agent to cover
the entire area effectively. No agent tracking a target will be set to a mode other than return, and we
assume that agents communicate sensor readings to their neighbors to prevent two vehicles from
tracking a single target. The search, return, and track modes are altitude deconflicted by allocating
vertical sections of airspace to each mode and a priori assigning an altitude to each agent operating in
that mode.

3. Results

In order to validate the the performance of the algorithm, a series of simulations and hardware
experiments were conducted. Section 3.1 describes the metrics used to assess the algorithm’s
effectiveness in coordinating the multi-vehicle system for searching and tracking targets in the
space and the overall usage of available vehicle assets. Section 3.2 summarizes results from over
70 simulations of the persistent multi-vehicle search and track algorithm to analyze the relationships
between the number of agents, targets, and domain size. Section 3.3 summarizes the results of
hardware experiments using crazyflie quadrotors and ground vehicles.

3.1. Coverage, Tracking, and Vehicle Usage Performance Metrics

In order to evaluate the performance of the multi-vehicle search and track algorithm, we utilized
three metrics. The first metric measures the coverage of the search area in space and time. In the ideal
case, the entire search area would be covered for the entire duration of the task; this would constitute
100% coverage. In light of the reality of the coverage problem, the goal is to maximize the detection
of targets by maximizing the coverage over the duration of the task. We divided the search region
into equal-sized quadrants and assigned a scalar value Ci(t) to the ith cell to measure coverage. The
coverage value decays linearly when a sensor field of view does not cover it, while it is maximal when
covered by a vehicle such that

Ci(t) =

{
Cmax − γt C ≮ 0 Out of FOV
Cmax In FOV,

(15)
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where γ is the linear decay constant corresponding to the temporal scale of measurement validity, and
Cmax = 1 without loss of generality. We define the mean coverage as the average coverage value over
the entire domain.

The second metric measures tracking performance as the number of targets tracked given the
number of total targets in the scenario. The final metric used to determine algorithm performance is
vehicle usage. Vehicle usage measures the number of agents deployed relative to the number of total
agents in the group.

3.2. Simulation Results

Here, we present the results of simulations with varying quantities of agents and targets. We
varied the number of agents between 4 and 12 and varied the number of targets between 1 and 3.
Each simulation assumed a 1 h search and track mission. Figure 4 is a visualization of an example
simulation operating with 12 total agents searching for 3 random targets. The black numbers indicate
search agents, with light gray denoting sensor cones. The red numbers are untracked targets and
the black letters are tracked targets; positions of all simulation elements for the previous minute are
illustrated by dashed (targets) and solid (agents) lines. The color patches are search cells occupied by
agents assigned to the search mode. Note that at this particular time in the simulation, agents 1, 2, 3,
and 7 are deployed, whereas the remaining are either charging or in queue for deployment. The figure
illustrates the complexity of the multi-vehicle mission.

Figure 4. A snapshot of the simulation with 12 available agents and 3 targets. Four agents are
currently deployed.

Simulations include 4, 6, 8, 10, and 12 agents searching for 1, 2, and 3 targets in all combinations.
The following discussion focuses on the case of 4 and 12 agents searching for 3 targets because their
greater disparity is conducive to comparing results. Note that the figures using blue lines indicate
simulation results with 4 agents, whereas red lines indicate simulations using 12 agents. These
simulation results represent the aggregation of over 70 simulations.
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3.2.1. Coverage Results

Figures 5 and 6 show the average coverage value for the search region over time. The light colored
dotted lines are the values for individual simulations, the green line is the maximum value, the solid
line is the average for all trials over time, and the dashed magenta line is the overall average of all
runs and all time. Recall from Section 3.1 that the ideal case is the maintenance of 100% coverage for
all time, which equates to 0 seconds since the last revisit. In Figure 5, the average coverage value,
approximately 0.13, corresponds to 43 s since the last revisit averaged across the entire search space. In
the 12-agent case, the average value hovers near 0.37, as shown in Figure 6, corresponding to 32 s since
the last revisit. As shown in the figures, the general coverage value tends to increase as the number of
available agents increases.

Figure 5. Mean coverage over all time for four agents.

Figure 6. Mean coverage over all time for 12 agents.

Note that in each of the figures, the coverage spikes before any targets are detected. Then, the
coverage drops closer to the mean value as agents need to be removed from service for recharging.
This trend suggests that the maximum coverage value for that agent case is the initial spike, and
further improvements in the swarm task assignment algorithm can raise the average coverage value
closer to this maximum value. Momentary lapses in coverage (i.e., 0) occur when the group’s overall
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battery levels are depleted such that all vehicles are returned to charge or that all deployed vehicles
are tracking targets. As expected, the 12-agent case sees fewer lapses in coverage since more assets
are available.

Figure 7 illustrates coverage trends for the three target experiments and an increasing number
of agents. The box plot shows an increase in average coverage as the number of agents increases.
As expected, Figure 7 shows increasing coverage as the number of agents increases.

Figure 7. Coverage trend results for three targets, all agent cases.

3.2.2. Tracking Results

Figures 8 and 9 describe the overall tracking performance of the group over time. Light colored
dotted lines illustrate individual experiments, the green line shows the maximum number of targets
(three, in the figures shown), the solid line is the average for all trials over time, and the dashed
magenta line is the overall average of all runs. However, as shown in the figures, having more agents
available results in more targets being tracked, an expected outcome. Figure 8 shows 4 agents are able
to track 0.5 out of 3 targets on average. Figure 9 shows that, on average, 12 agents are able to track
nearly 1.5 targets for all time.

Notice that no matter the number of agents, there is a large degree of variability in the number of
targets tracked from experiment to experiment. This is caused by the method used for resetting targets
when they leave the search space. The targets walk randomly through the space and are reset to a
new location if they move beyond the search space boundary. The target reset effectively acts as a lost
target, even though the agent may still have the ability to continue tracking. Alternative approaches
to modeling target behavior include settings in which the target always remains within the search
region or a new target is spawned at the edge of the region when another target leaves the search space.
Each of these approaches would result in different coverage performance and would be appropriate
depending on the specific use case of the algorithm.
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Figure 8. Average targets tracked by four agents for all time with three available targets.

Figure 9. Average targets tracked by 12 agents for all time with 3 available targets.

3.2.3. Vehicle Usage

Figures 10 and 11 show the overall vehicle usage as a function of time. The light colored dotted
lines are the values for individual experiments, the green line shows the maximum number of agents
available, the solid line is the average for all trials at that time, and the dashed magenta line is the
overall average of all runs. This metric is intended to measure the effect that recharging has on the
operation of the group. The ideal case is to have the maximum number of agents flying. However,
given the search area and number of targets, there may be fewer than the ideal number of agents
needed. As shown in the figures, more available agents imply more agents are airborne on average,
an expected outcome of adding more agents to the simulation. In Figure 10, of 4 available agents,
approximately 1.5, on average, are airborne throughout the whole experiment. Figure 11 shows that
when increasing the total number of agents to 12, an average of nearly 4.5 agents are airborne over all
simulations. In both of these cases the average number of agents airborne is 37.5% of the total number
of agents.
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Figure 10. Average vehicle usage for an hour-long experiment with four available agents.

Figure 11. Average vehicle usage for an hour-long experiment with 12 available agents.

The battery status for each of the agents directly relates to the usage metric because recharging is
the highest priority operational mode. Any agent will drop its task to go recharge if needed, regardless
of the task it is accomplishing. Each agent completes approximately three battery life cycles over the
course of a 60 min experiment. Overall, the increase in average usage as the number of available agents
increases is a numerical validation of the expected behavior of the group and motivates investment in
having the ideal number of agents.

3.3. Experimental Results

To further validate the methodology, a series of hardware experiments were conducted.
The experiments were conducted in a 5 m × 6 m work space. A motion capture system was used to
provide position feedback of the agents and the targets. We assume that, in an applied implementation,
vehicles are outfitted with a sensor suite capable of providing position information such that motion
capture is not a limiting factor. The experimental platform used for the agents was the Crazyflie
nano-quadcopter shown in Figure 12(Left). The targets were teleoperated radio-controlled cars with
tracking markers. The target vehicles were driven by human operators who were instructed to
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randomly drive the target vehicles throughout the workspace. This approach emulates the random
motion of the targets in the simulations without loss of generality.

Robot Operating System (ROS) was used to implement the communication structure between the
various components of the experiment. Figure 12(Right) shows the ROS communications between the
MATLAB node and the agents in green arrows and the ROS rigid-body messages from the OptiTrack
System to the MATLAB node. Using this architecture, the data were shared between the computer
controlling the flight controls of the UAVs and the computer running the algorithm. The approach
to controlling multiple Crazyflies simultaneously was derived from the work presented in [5]. The
centralized multi-vehicle search and tracking algorithm was implemented as a software node in
MATLAB. The centralized algorithm listens to the positions of the targets and agents, as well as the
battery level of the agents, to execute the persistent search and track task. The sensor cones were
simulated by the computer using position and orientation data from the motion capture system.

A key contribution of the hardware experiments is the use of the voltage levels measured from
the actual UAV instead of a simulated battery model. This is an important distinction since the battery
discharge is not as deterministic as the simulated model and can have significant variations between
specific vehicles. We set voltage thresholds to maximize usable flight time and provide realistic mission
life constraints to hardware experiments. Experiments replicated recharging by launching new UAVs
from a charged queue, effectively employing nearly twice the agents needed to conduct an experiment
with an autonomous recharging platform.

Position, Orientation

Battery Level

Pre-Planned Task Paths
& High Level Controller

Position, 
Orientation

Position Waypoints

Figure 12. (Left) CrazyFlie 2.0 with a custom printed circuit board for recharge and data acquisition [16].
(Right) Basic visualization of the hardware communication architecture. Arrows represent Robot
Operating System (ROS) messages between the three major nodes, the OptiTrack System, the
autonomous assets, and MATLAB base station.

Figure 13 visualizes the totality of a four-agent, three-target experiment. The colored lines denote
paths traveled by agents and targets, and the red box signifies the search boundary. Figure 14 shows
the battery levels over the course of the experiment. Note that large oscillations occur when an agent
lands and relaunches during the experiment. One of the challenges associated with the hardware
experiment was determining the robust operational voltage thresholds caused by variability between
individual UAVs. In this experiment, we were able to demonstrate that each of the operational modes
functions properly. An agent successfully completes a search path, as shown by the coordinated red
and orange paths on the top of the figure. An agent successfully detects and tracks a target, as seen
in the the random paths throughout the figure. Finally, an agent successfully returned to home base
for recharge, evidenced by the oscillations in the red and purple lines in Figure 14. This experiment
demonstrates that the algorithm discussed in Section 2 is capable of directing a multi-vehicle mission
with actual UAVs.
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Figure 13. Full experiment output figure, four agents, three targets.

Figure 14. Visualization of battery levels during an experiment for each of the four active agents.
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While this work utilizes a centralized form of autonomy for development and testing, the concepts
presented here could be extended to a decentralized autonomous platform that allows agents to make
tasking decisions for themselves. This could be further developed to include sensor measurements
taken directly from the vehicle, although that would require a larger, more capable UAV platform.

4. Conclusions

This work presents a multi-vehicle control structure that addresses the limited battery life
of individual agents to accomplish a persistent search and track mission. The control structure
maps the relationships between control modes to increase the overall ability of a multi-vehicle team.
This approach allows for scalability to different assets or tasks. To accomplish the search and track
mission, we designed search trajectories to enable reliable coverage of the entire search space. To enable
persistent operations for realistic platforms, we designed return to base and recharging operation
modes to account for the limited battery life of small UAVs. Finally, we created a multi-modal
architecture to drive agents through four main modes of operation: search, track, return, and recharge.
Coordination took the form of a heuristic decision-making model to prioritize tasks that accomplish
the search and track mission. Simulations are indicative of coverage, tracking, and vehicle usage
performance for combinations of targets and number of agents. Hardware experiments demonstrate
multiple UAVs executing a search and track mission. This work shows that persistent multi-vehicle
operations are an effective method for increasing overall UAV utility, especially when compared with
other methods for increasing individual agent power reserves.

Future developments of the concepts presented in this work could improve both the persistent
multi-vehicle control algorithm or the hardware system. Algorithm improvement will focus on
streamlining the group’s coordination and task reassignment to enhance performance. For example,
incorporating a more robust replanning algorithm to execute dynamic spatial reconfiguration based
on the spatiotemporal coverage measurement will more effectively distribute search agents. Hardware
system improvement could focus on scaling up experiments to a larger, more capable UAV platform
and complementary recharging mechanism to demonstrate a completely autonomous persistent
mission. Finally, the replenishment concepts presented in this work could be applied to an array of
multi-vehicle operational tasks.
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