
robotics

Article

URSIM: Unique Regions for Sketch Map
Interpretation and Matching

Malcolm Mielle * , Martin Magnusson and Achim J. Lilienthal

School of Natural Science, University of Örebro, 70281 Örebro, Sweden; martin.magnusson@oru.se (M.M.);
achim.lilienthal@oru.se (A.J.L.)
* Correspondence: malcolm.mielle@oru.se

Received: 3 April 2019; Accepted: 3 June 2019; Published: 5 June 2019
����������
�������

Abstract: We present a method for matching sketch maps to a corresponding metric map, with the aim
of later using the sketch as an intuitive interface for human–robot interactions. While sketch maps are
not metrically accurate and many details, which are deemed unnecessary, are omitted, they represent
the topology of the environment well and are typically accurate at key locations. Thus, for sketch
map interpretation and matching, one cannot only rely on metric information. Our matching method
first finds the most distinguishable, or unique, regions of two maps. The topology of the maps,
the positions of the unique regions, and the size of all regions are used to build region descriptors.
Finally, a sequential graph matching algorithm uses the region descriptors to find correspondences
between regions of the sketch and metric maps. Our method obtained higher accuracy than both
a state-of-the-art matching method for inaccurate map matching, and our previous work on the
subject. The state of the art was unable to match sketch maps while our method performed only 10%
worse than a human expert.

Keywords: map matching; sketch; human–robot interaction; interface; graph matching; segmentation

1. Introduction

In a time where touch screens are everywhere, from our laptops to our phones, drawing provides
an intuitive and simple interface for human–robot interactions. As shown in the work of Blades [1],
sketch maps are a reliable data acquisition tool to communicate information about an environment
and to provide directions. However, sketch maps are abstract representation of the environment:
they are not typically metrically accurate and may not include key information the user deemed
unnecessary or forgot. Furthermore, the person drawing will use different strategies to make the map
easy to understand, e.g., simplification of the representation by lowering the amount of details or
accurate description of key places. However, as shown by Jan et al. [2], sketch maps correctly represent
the topology of the environment and provide a relatively accurate representation at key locations.
In a scenario where a sketch map is used as a tool to give directions toward a goal, an important place
such as a crossing might be drawn as accurately as possible to avoid navigation errors. On the other
hand, corridors are easy to navigate and will not necessitate the same attention to details. Hence,
a user following indications on a sketch map can easily navigate corridors and reach points of interest,
even when the representation of the corridors in the sketch map is inaccurate.

Understanding a sketch map depends on three abilities: the ability to understand the topology
of the map, the ability to identify each individual element, such as rooms, corridors, and crossings,
and the ability to evaluate their importance. While simplifying the representation, and changing the
level of details in the sketch map might make it easier for a human to understand the map, it adds
in complexity for the robot. Looking at Figure 1, one can see a metric map of an indoor environment
(Figure 1a) and four associated sketch maps. Interpreting the sketch maps is not trivial: Figure 1b is

Robotics 2019, 8, 43; doi:10.3390/robotics8020043 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0002-3079-0512
https://orcid.org/0000-0001-8658-2985
https://orcid.org/0000-0003-0217-9326
http://dx.doi.org/10.3390/robotics8020043
http://www.mdpi.com/journal/robotics
https://www.mdpi.com/2218-6581/8/2/43?type=check_update&version=3

Robotics 2019, 8, 43 2 of 25

missing a corridor, in Figure 1d the middle corridor is not present in the metric map, and all maps
have large structural errors and errors in local scale, i.e., it is impossible to use a single transformation
to align the sketch and metric maps. Hence, a robot using a sketch map as an interface needs to solve
the hard problem of matching a semi-abstract representation with its own map of the environment.

(a) KTH metric map. (b) (c)

(d) (e)

Figure 1. The metric map of the KTH dataset for SLAM in (a) and four corresponding sketch maps
(b–e).

While finding correspondences between elements of a sketch map and a metric map is a complex
problem, the use for such a method is there: once the robot is able to match sketch maps to its own
metric map, sending navigation commands can be as simple as starting one’s phone, sketching the
environment, and directing the robot to its goal. In our work, we try to answer the question of how to
find correspondences between equivalent elements of a sketch map and an equivalent metric map.

2. Method Outline and Contributions

We present the Unique Regions for Sketch map Interpretation and Matching (URSIM) method to
find element-wise correspondences between a sketch map and an equivalent metric map representing
the environment. URSIM takes as inputs two maps segmented in regions and finds the most
distinguishable, or unique, regions in each map.

We call such regions anchors. Both segmented maps are then converted to graphs where each
region is a vertex and we have an edge between each region in contact. A vertex descriptor is created
for each vertex based on the topology of the map, the position of anchors, and the size of regions.

Robotics 2019, 8, 43 3 of 25

Finally, using a planar graph matching algorithm, URSIM finds the most likely correspondences
between both graphs’ vertices.

An illustration of the method can be seen in Figure 2.

Segmented
metric map

Find anchor
regions

Build region
descriptors

Segmented
sketch map

Find anchor
regions

Build region
descriptors

Use graph
matching to find
correspondences
between regions.

Figure 2. Flowchart of the Unique Region for Sketch map Interpretation and Matching (URSIM)
method. Looking at the example maps, one can see that understanding the sketch map and how it
relates to a metric representation of the environment is not straight forward.

The contributions of this paper are:

• A method to determine unique regions in segmented maps is proposed. By comparing the
characteristics of each segmented region to other regions of the same map, we determine the most
distinguishable, or unique, regions.

• A method to find two sets of equal length containing the most similar unique regions between two
maps is presented. The unique regions in those sets are called anchors and are used later during
the matching.

• A vertex descriptor using anchors in a graph with weighted vertices to compare the regions of two
maps is introduced. Each vertex descriptor represents the topology of the environment around
said vertex, relative to the position of anchors in the graph and the size of all other regions.

• An improvement of the graph matching algorithm used in our previous work [3] was confirmed.
Instead of using a specific characteristic, such as a region being a crossing or a dead end,
we changed the similarity measure used to compare vertices and compare the vertex descriptors
presented in the previous point. A user–chosen similarity threshold determines when vertices are
similar enough to be matched together.

3. Related Work

Few methods have been developed to match maps with a high level of abstraction. Instead,
most works focus on matching partial metric maps or limit the extent to which maps can differ by
using particular types of maps such as CAD models, aerial images, or blueprint layouts [4–8]. It is
easy to understand why that is: similar maps can use easily describable similarity measures based on
direct sensor measurements or some classic descriptors such as SIFT.

On the other hand, sketch maps have a high level of abstraction in the representation and
one needs to understand their implicit characteristics, such as their topology, to be able to use them:
a matching method that depends on correct metric information will lead to incorrect correspondences
when used on sketch maps.

Robotics 2019, 8, 43 4 of 25

However, sketch maps are used to convey information about the world and, thus, while they are
abstract representations of an environment, there is still a logic to how they are related to the real world.
That logic is conveyed through the topology of the environment and by putting emphasis on accurate
representation of important information; important information being decided in a subjective manner
by the person drawing.

A common way to find the topology of a map is to use its Voronoi diagram. The Voronoi diagram
is the set of all points at equal distance from at least two obstacles, and, as such, represents the topology
of the environment through its skeleton [9,10]. Working on metric maps with errors due to drift or
sensor noise, Schwertfeger and Birk [11,12] evaluated map quality by matching topology graphs
derived from the Voronoi diagrams of two grid maps. They used the wavefront propagation algorithm
to find a matching between the graphs. Correspondences are determined based on a similarity measure
between vertices and ICP [13] using the local maps around the vertices. They tested their method on
maps obtained by multiple robots during the RoboCup Rescue. While their method leads to good
matching results on sensor maps, it did not work well with sketch maps due to the multiple parameters
that needed tuning on a per map basis [3]. In this article, we propose to use a different similarity
measure that needs less parameters and is more robust to large differences in scale or representation
between the maps.

Park et al. [14] merged maps using rectangular features to estimate the largest shared area.
They assumed that the environment was made of polygons with orthogonal angles. Their method
is able to handle rotations and different global scales but cannot handle deformations of the map.
While the idea of segmenting the map into similar regions for matching is also used in URSIM,
URSIM is more robust to local changes.

Some works use CAD maps representing a building in a metrically correct way. For example,
Boniardi et al. [8] presented a method for localization using a CAD floor plan as prior map.
They performed matching between maps from different modalities by using maximum a posteriori
pose-graph-based SLAM system [15]. They reported better localization results than Monte-Carlo
localization on seven datasets. Although the method can handle some clutter in the environment,
the paper states that “significant or even full occlusion due to clutter or large installations have
a substantial effect on the method”. It should be also noted that associations can be hard to find
between maps with a high level of disparity and performing pose graph optimization using sensor
measurements might be impossible if the map built by the robot and the sketch differ too much. On the
other hand, our method is able to find correspondences between maps with large structural differences.

Kakuma et al. [7] aligned an occupancy grid map with a floor map to obtain semantic information
about the environment. They segmented the environment using morphological operations and created
a graph out of the segmentation. Using the shape of each region, they aligned the graph of the
occupancy map and the floor map using graph matching [16] and a similarity transform matrix
computed from correspondences of the regions. They tested their method in two environments and
obtained an error rate in scale, rotation, and translation of less than 4% compared to the alignment
given by a user. However, their method needs both maps to have similarly shaped regions after
segmentation since the region comparison is based on the Hu moments. Thus, URSIM can handle
maps with higher disparity than their method.

Freksa et al. [5] used schematic maps for interaction between a human and a robot, and between
a robot and its environment. A schematic map corresponds to a user–provided map depicting
a simplified version of the topology of the environment.

Corner correspondences between the environment and the schematic map are found by mapping
features detected in sensor space to features in the schematic map.

They tested their method on a simulated environment with three rooms. By definition, their
matching method depends on the ability to find spatial features and, since those features are not
always present in sketch maps, our method does not rely on them for matching. In addition, in the
work of Freksa et al. [5], correct interpretation of the spatial relationships is only possible because the

Robotics 2019, 8, 43 5 of 25

schematic map creation step is highly restricted, e.g., walls need to be straight and features easy to
detect. On the other hand, our method handles high disparity between the maps and is less restrictive
about the way the input is supposed to be drawn.

Setalaphruk et al. [4] studied navigation in an indoor environment using a map provided by
a user as input. They used the crossings and dead-ends of the Voronoi diagram as landmarks.
While correct corridor length was not needed, the walls in the map had to be straight and the
existence and connectivity of corridors had to be correct. Hence, their method assumes a sufficiently
accurate representation of the environment. Our method is able to match regions of two maps almost
independently of local scaling and does not require a metrically accurate representation.

Gholami Shahbandi et al. [17] developed a method to align a user given layout map and
a sensor-built map. A layout map is defined as a simplified representation of a building that can have
errors in local scaling and representation. As such, compared to other related works, the work of
Gholami Shahbandi et al. [17] is the most similar to ours in terms of its aim and the types of map used.
However, their alignment method is based on finding features such as walls and corners, which is not
easy to achieve on sketch maps. We evaluate the performance of URSIM compared to the method of
Gholami Shahbandi et al. [17] in Section 6.5.

Shah and Campbell [18] performed navigation using a sketch map of obstacles provided by the
user. They extracted waypoints from the Voronoi diagram and estimated the transformation between
the sketch map and the environment using a weighted least square affine matrix. The sketches were
scaled and rotated to fit the environment, and errors in local scale and representation were handled
by the path planner. However, obstacles and landmarks are not always represented in maps and our
method handles that case.

Chronis and Skubic [19,20], Parekh et al. [21], and Skubic et al. [22,23] developed a sketch-map
interface for robot control on a PDA and used it for navigation of one or a team of robots in an
indoor environment. They conducted a usability study which gave an average rating of 4.2 on a Likert
scale [24] to the sketch interface, with 5 being the maximum, showing that sketch maps are an intuitive
interface. However, for all methods, the correspondences between the sketch interface and the map of
the environment are found using isolated objects described by histograms of forces. Our method does
not need isolated objects and landmarks to find correspondences between the maps.

In our previous work [3], we matched hand-drawn sketch maps to a ground truth map using the
Voronoi diagram trimmed down automatically using the free space in the map. We used that diagram
as a graph and performed planar graph matching. We obtained a rate of correct correspondences
between vertices of 97% on a simple environment, and of 54% on a real environment. However,
we found that using the Voronoi diagram to find correspondences sketch maps is not sufficient due to
the pronounced differences between sketch and ground truth maps. The method presented in this
article segments the map in regions, and thus removes the need to use the Voronoi diagram, leading to
more correct correspondences as shown in Section 6.2.

In conclusion, no method in the state of the art is suitable for matching sketch maps to metric
maps. Indeed, all methods presented above have assumptions about prior maps, such as metric
accuracy or the presence of specific features in the maps, and those assumptions are not realistic for
sketch maps. Hence, the related work cannot take into account the local scaling errors and differences
in representation, or in the level of detail, between a sketch map and an equivalent metric map. On
the other hand, our method can find correspondences between sketch maps with large differences in
detail or representation compared to an equivalent metric map, with only two assumptions about the
sketch map: that it is clutter free, and that it represents the walls of the environment.

4. Segmenting the Maps and Building the Anchor Sets

Sketch maps of indoor places cannot directly be used as metric maps due to errors in local scale,
non-homogeneous levels of detail, and the approximation of distances and sizes. Instead of using
a sketch map as an accurate representation of an environment, a person using a sketch map will

Robotics 2019, 8, 43 6 of 25

focus on the topology and points of interest along the trajectory [25], i.e., places that are distinct
from the rest of the environment. However, as demonstrated by Mielle et al. [3], using the topology
of the environment alone is not enough to find correspondences between sketch and metric maps.
Indeed, sketch maps can vary greatly from the metric map and, while the topology of both the sketch
and the metric map can be correct, the schematization of the sketch can make it hard to find correct
correspondences due to the difference in the level of detail. In our previous work [3], we extracted the
topology by computing the Voronoi Diagram of the maps and used a planar graph matching algorithm
to find correspondences between the diagrams. We obtained a matching accuracy of 58% on a dataset
of sketches and we came to the conclusion that to get better correspondences between a sketch and an
equivalent metric map, we would need to consider more than just the topology of the environment
represented by the Voronoi diagram.

URSIM takes a different approach. URSIM takes as inputs the sketch and metric maps, segmented
into regions using a given map segmentation algorithm (see Section 4.1), and finds the most unique
regions in each map, as presented in Sections 4.2 and 4.3. Section 5.1 presents how URSIM then
builds region descriptors using those unique regions, the topology of the map, and attributes of the
regions. Finally, correspondences between the regions are found using graph matching, as described
in Section 5.2.

4.1. Map Segmentation

For segmentation of the sketch and metric maps, we use the MAORIS [26] algorithm. MAORIS’
main advantage is its ability to segment maps from different modalities in a way similar to that of
a human, reducing errors due to differences of representation or level of detail.

When segmenting the maps, the first step of the MAORIS algorithm changes each pixel’s value
to the diameter of the largest circle that can be fitted in free space and contains the respective pixel.
Then, pixels with the same values are merged into regions. Noise in the segmentation is removed by
detecting and merging special regions called ripples. Finally, neighboring regions with similar values
are merged together. For a more detailed description of the MAORIS algorithm, we refer the reader to
the corresponding paper [26].

It should be noted that other segmentation methods, such as Voronoi segmentation [27] or
DuDe [28], could be used as well in URSIM. However, since MAORIS was developed for maps from
different modalities and returned more accurate segmentation results than previous state-of-the-art
segmentation methods [27,28] on a dataset of sketch and metric maps, all maps in our work were
segmented using MAORIS.

4.2. Finding Unique Regions in a Segmented Map

Given a set of regions from a segmented map, the first step of the URSIM method is to find the
most unique regions, i.e., the most distinguishable ones. To do so, each region is associated with a set
of N attributes with values an, with 0 ≤ n < N, representing different characteristics such as the
size or shape of each region. All attributes are standardized to have comparable values and avoid
the effect of outliers. While normalizing would reduce the differences between an in the presence of
outliers, standardizing, which gives the data a mean of 0 and a standard deviation of 1, mitigates the
effect of outliers. Using the set of all attributes i for a given map, the set is standardized using the
standard score:

as
n =

an − µ

σ
(1)

with µ being the mean of all regions’ an and σ being the standard deviation. If the value of any as
n of a

region is at least 1 standard deviation away from the mean, we consider the region’s attribute, and
thus the region, to be unique.

In our method, we use two simple attributes based on the way MAORIS uses free space to
segment maps: the size of each region and their general shape. The size of a region corresponds to the

Robotics 2019, 8, 43 7 of 25

number of pixels in it. The shape of a region is roughly estimated by using the eigenvalues of its two
first principal components (PC): more circular regions will have similar eigenvalues, while elongated
regions will have different eigenvalues. To obtain a scalar parameter from the PCs describing the shape
of a region, we first calculate the eigenvalues of the two first PCs. We then normalize the eigenvalues
between 0 and 1 by dividing both of them by the larger one. Finally, the attribute representing the
shape is the difference between both normalized eigenvalues. An example of unique regions in a
sketch map is shown in Figure 3. However, it should be noted that the method to find unique regions
is independent of the set of attributes used. One could use different attributes depending on the type
of map or segmentation. We left the study of additional suitable attributes for future work.

(a) (b)

Figure 3. Example of a map segmentation on the left and unique regions found using the map attributes
on the right. Non-unique regions are left white. (a) MAORIS map segmentation of a sketch map.
(b) Coloured are the unique regions found in the map shown in (a) using the size and shape attributes.

4.3. Creating the Sets of Anchors from the Unique Regions of the Sketch and Metric Maps

Given a sketch and metric map, the number of unique regions found in each map might be very
different, e.g., if one map has multiple similar looking regions compared to the other map, or if a map
represents a bigger part of the environment than the other. As presented in Section 5.1, the URSIM
method uses the position of all unique regions to build region descriptors representing the topology of
the environment and the position of the anchors. Hence, having a different number of unique regions
between the sketch and metric maps may create dissimilar region descriptors between otherwise
equivalent regions. In this section, we present how, before creating the region descriptors, URSIM
reduces both sets of unique regions to the same length by finding the most similar unique regions
between the sketch and metric maps.

We define the disparity score d between two regions R and R’ as the mean of the differences of
their attributes standardized:

d =
1
N

N

∑
n=0

as
n − as′

n (2)

and use the Hungarian matching algorithm [29], with weights given by the disparity score, to find the
set of unique regions that are the most similar.

In practice, the Hungarian algorithm finds correspondences between the two sets of unique
regions, effectively making both sets of unique regions equal in length if we disregard the regions
that were not matched. However, since the topology of the environment is not yet taken into account,

Robotics 2019, 8, 43 8 of 25

the correspondences are often not correct, as can be seen in Figure 4. Thus, this step is only used to
reduce the sets of unique regions to two sets of equal length by removing the most dissimilar unique
regions between the maps, i.e., the regions unmatched by the Hungarian matching. However, the
Hungarian matching correspondences themselves are not used in the rest of the method.

We refer to the regions in the reduced sets as the anchors of the maps.

(a) (b) (c)

Figure 4. Examples of correspondences between anchors identified using the Hungarian matching
between different map types. Correct correspondences are in grey while incorrect correspondences
are in red. While the Hungarian matching algorithm allows determining a reduced set of anchor
regions most likely to correspond to each other, one can see that it is often unable to find sufficiently
many correct associations between the vertices since the topology of the map is not yet taken into
account. (a) shows correspondences between a sketch map and a metric map; the use case of URSIM.
While the main room is correctly matched, the smaller regions are incorrectly matched. (b) shows
correspondences between two sketch maps. One out of two of the anchor correspondences is correct.
(c) shows the correspondences between two sensor maps. Two out of three correspondences are correct.

5. Graph Matching

5.1. Computing Vertex Descriptors that Express Topological Similarity with Respect to the Anchors and the
Standardized Size of Regions

After reducing the set of unique regions as described in Section 4.3, we have two sets of equal
length containing the most similar unique regions between the maps, i.e., the anchors. However,
those anchors typically only concern a subset of all regions in the environment. The remaining regions
not included in the anchor sets do not have attributes that distinguish them from most of the other
regions in the map. To be able to express the similarity between all regions, and not just the anchors,
the next step of the URSIM method creates region descriptors for all regions in both the sketch map
and the metric map.

From a segmented map, we build a graph where each vertex corresponds to a region and edges
connect regions in contact. The graph creation process is illustrated in Figure 5. We then compute
a descriptor for each vertex. We built on the Laplacian Family Signature (LFS) presented by Hu and
Guibas [30]. The LFS of a vertex vu with index u is the vertex descriptor describing a given vertex’s
structural relationship to its extended neighborhood:

Robotics 2019, 8, 43 9 of 25

su(t) = ∑
k

h(t, λk)φk(u)2 (3)

The expression of the LFS depends on the eigenpairs {λk, φk}
|V|
k=1 of the graph Laplacian L with

φk(u) representing the uth element of the eigenvector k, and where h(t, λk) is a real-valued function.
The calculation of su(t) depends on the uth elements of φk due to the ordering of the vertices used
when calculating L. While the calculation of the graph Laplacian L is described in more detail below,
it should be noted that L is a matrix representation of the graph. More precisely, Lmeasures the extent
to which a graph differs at one vertex from its values at nearby vertices. Given a graph with V vertices,
the vertices are ordered from v1 to vV to calculate L as follow:

L =

Lv1v1 Lv1v2 . . . Lv1vV

Lv2v1 Lv2v2 . . . Lv2vV
...

...
. . .

...
LvV v1 LvV v2 . . . LvV vV

 (4)

where Lvnvm relates vertex n to vertex m. When calculating the eigenpairs of L, a given vertex vu is
directly related to the element u of each eigenvector k, according to the ordering used to calculate L.
For a given eigenvector φk, we have:

φk =

φk(1)
φk(2)

...
φk(V)

 (5)

where φk(u) relates to vu.
In our work, we use the heat kernel signature (HKS) as the real-valued function h(t, λk). The HKS

was presented by Aubry et al. [31] and represents the relationship of a given vertex to its neighborhood
in terms of simulated heat diffusion. For each vertex, the signature records the amount of heat
su(t) left at the vertex at a number of times assuming a unit amount of heat is put on the vertex
initially. The HKS for each vertex is expressed as h(t, λk) = e−tλk and is intrinsic, meaning that, if two
graphs are isomorphic, then the signatures of corresponding vertices are the same, i.e., equivalent
vertices dissipate heat similarly. The signatures are also stable under small perturbations [30]. Hence,
the similarity between two vertices can be evaluated by comparing their HKS.

However, for each vertex, the heat diffusion should be influenced by the size of the region. As in
a real environment, a smaller room should diffuse heat to neighboring rooms faster than a larger
room. Without taking the size of a region into account, every vertex will diffuse heat in the same way
and important information given by the segmentation will be lost during the matching. Thus, each
vertex is associated with a weight corresponding to the standardized size attribute of the corresponding
region, as illustrated in Figure 5. We use the standardized size of regions to reduce scaling errors
between the sketch and metric maps. However, the graph Laplacian used by Hu and Guibas [30] for
the LFS is expressed with weights on the edges instead of the vertices. Indeed, the generalized graph
Laplacian is defined as the difference between the diagonal matrix of the vertex degree and A is the
graph adjacency matrix:

A =

{
w(i, j) if (i, j) ∈ E
0 otherwise

(6)

with E the set of edges in the graph G and w the weights on the edges, i.e., w : E 7→ R+.

L =

∑z∼v αz if u = v

−√αvαu if u ∼ v

0 otherwise

(7)

Robotics 2019, 8, 43 10 of 25

where vertex v has weight αv and u ∼ v means that the vertex u and v are adjacent.

0.80.6

0.10.1

0.40.3
0.5

0.10.1

0.80.6

0.40.3
0.5

Figure 5. The sketch map with regions and their corresponding standardized sizes on the left is
converted to a graph, with weighted vertices, on the right.

To express the graph Laplacian, and by extension the LFS, with weights on the vertices instead,
we use the formulation proposed by Chung and Langlands [32].

To be able to use the graph Laplacian defined in Equation (7) to find the eigenvectors and values
of the graph, which are necessary for the LFS, one needs to prove that L is symmetric and positive
semi-definite. Since this aspect of L was not shown by Chung and Langlands [32], we show that L is
indeed symmetric and positive semi-definite. We can define the incidence matrix B as in the work of
Chung and Langlands [32]:

B =

√

αv if e = {u, v}, u = vi, v = vj, and i ≤ j

−√αv if e = {u, v}, u = vi, v = vj, and i > j

0 otherwise

(8)

Thus, we have L = BTB. If we consider the eigen decomposition of Lwith unit-norm eigenvector
φi and corresponding eigenvalue λn, we have:

λn = φT
i Lφi

= φT
i BTBφi

= (Bφi)
T(Bφi)

(9)

Since λn can be written as the inner product of the vector Bφi with itself, this shows that λn ≥ 0
and so the eigenvalues of L are all non-negative and L is positive-semidefinite, allowing us to use the
eigenvectors and eigenvalues of L.

The LFS in Equation (3) represents the structural relationship of a vertex compared to its neighbors.
Instead, we want the LFS to represent the structural relationship of the vertex compared to the set of
anchors found in Sections 4.2 and 4.3. Thus, we use the heat kernel value of anchor vertices at a given
vertex, as presented by Hu et al. [33]. Namely, for any vertex v of a graph G, we define the heat kernel
distance to anchor vertices as:

san
u (t) = ∑

a∈An

∑
k

h(t, λk)φk(u)φk(a) (10)

with An the set of anchor vertices. Equation (10) is equivalent to Equation (3) but restricted to anchors
instead of expressed for all vertices in the graph. Hence, for a vertex u, instead of calculating the square

Robotics 2019, 8, 43 11 of 25

of the uth element of the eigenvector k, we use the product of the uth element of eigenvector k, i.e.,
φk(u), with the element of eigenvector k corresponding to the anchor a, i.e., φk(a). Hence, Equation (10)
describes the structural relationship of a vertex compared to its neighbors and the positions of all
anchors in the graph, instead of the position of the vertex u itself.

5.2. Planar Graph Matching Using the Laplacian Family Signature

We extend the planar graph matching method presented in our previous work [3] to use the LFS.
Our solution to the graph matching problem is a neighbor expanding matching strategy. To initialize
the matching process, the matching algorithm starts by finding a set of pairs of vertices, also called
seeds, between a graph G and a corresponding graph G′. How to find the seeds is described below.
From each seed, the algorithm finds the correspondences between the vertices of their neighborhoods
by considering all permutations of ordered neighbors and keeping the one that yields the minimum
normalized Levenshtein edit distance [34]. The Levenshtein edit distance is the minimum number of
single edits between two sequences required to change one sequence into the other. Given two vertices’
neighborhoods, we consider as possible changes: removing a vertex and all of its edges, adding a vertex
and an edge, or replacing a vertex. Each removal, replacement, or vertex creation is one edit. Thus,
removing a vertex and all its edges has a cost of 1 + n with n the number of edges associated with the
vertex. On the other hand, adding a vertex and an edge has a cost of 2 and replacing a vertex a cost
of 1. Then, to find all correspondences between vertices of the graphs, the neighborhood matching
process is repeated for newly obtained vertex-to-vertex correspondences until no correspondence is
left to expand.Once all seeds have been expanded, the final solution to the matching problem is the
one with the lowest cost when adding both the cost of all correspondences and the cost of removing,
in both graphs, all vertices without a correspondence, and their associated edges. See Algorithm 1
for the pseudocode of the matching algorithm and Figure 6 for an illustration of the calculation of the
Levenshtein edit distance between two neighbors.

Algorithm 1: Graph-Edit-Distance matching algorithm.
Data: seeds
Result: matching

1 to_explore = {};
2 while seeds is not empty do
3 add first element of seeds to to_explore;
4 remove first element of seeds;
5 hypothesis = {};
6 while to_explore is not empty do
7 pair = first element of to_explore;
8 remove first element of to_explore;
9 add pair to hypothesis;

10 min_permutation = the permutation of the neighborhoods of the two vertices in pair that
minimizes the normalized Levenshtein edit distance;

11 for every correspondence in min_permutation do
12 if both vertices in correspondence are not already in hypothesis then
13 add correspondence to to_explore;
14 if correspondence is in seeds then
15 remove correspondence from seeds;
16 edit_distance = get edit distance from hypothesis;
17 add hypothesis and edit_distance to hypothesis_all;
18 matching = hypothesis in hypotheses_all with the smallest edit_distance;
19 return matching;

Robotics 2019, 8, 43 12 of 25

G G’

Figure 6. Illustration of the calculation of the Levenshtein edit distance for correspondences between
the neighbors of two vertices in red, where vertex attributes are represented by colors. The blue and
black vertices are correctly matched and do not increase the Levenshtein edit distance. On the other
hand, the olive and grey vertices are matched but need to change color attribute, thus increasing the
Levenshtein distance by one. Finally, the empty vertex on top of the left neighbor needs to be removed,
increasing the Levenshtein edit distance by 2: one for the removal of the vertex and one for the removal
of the edge. The final edit distance of this matching is 3.

To decide when to remove or replace a vertex, the Levenshtein edit distance needs a comparison
measure between vertices. We define the comparison measure between two vertices as the mean
absolute difference between their heat kernel anchor distances san

u (t) over nl times samples, starting
from 0 and with a sampling time of n:

c(v, v′) =
∑nl

i=0 |s
an
u (i ∗ n)− san

v′ (i ∗ n)|
nl

(11)

where u is a vertex of the graph G and u′ a vertex of G′. Since san
u (t) is bounded between 0 and 1,

Equation (11) is also bounded between 0 and 1. The vertices are replaced or removed only if they are
sufficiently different from each other up to a certain threshold m, i.e., c(v, v′) ≤ m. Stability to the
threshold m is evaluated in Section 6.4. Similarly, we find the seeds by calculating c(v, v′) for every
possible correspondence between the vertices of G and G′. If c(v, v′) ≤ m, we create a new seed for the
matching algorithm.

In the worst case with two graphs with p and y vertices, respectively, the algorithm would be
O(p · y) and return p · y possible solutions. However, since the heat diffusion is not usually the same
in each graph, we observed during the experiments presented in Section 6 that the algorithm used 32%
of all possible seed combinations on average. Furthermore, in the same experiments, URSIM took on
average less than 1 s to find the correspondences between sketch and metric maps, even though the
research code had not been optimized.

6. Experiments

We evaluated our dataset on 25 sketches presented in our previous work [26] and available
online [35].

The sketch map dataset corresponds to the ground truth of the KTH dataset for SLAM
(http://www.nada.kth.se/%7Ejohnf/kthdata/dataset.html). Twenty-five anonymous users explored
a 3D environment online (http://mro.oru.se/wp-content/material/sketchmap-web/) and were asked
to draw a 2D map from memory. The metric map representing the environment and four sketch maps
are shown in Figure 1.

The correct correspondences, i.e., ground truth correspondences, between each sketch map and
the metric map were manually annotated by both an expert in mobile robotics and an architect.

Given two segmented maps, the ground truth correspondences annotate which regions are
equivalent. However, due to factors such as map resolution, level of detail, or noise in the
measurements, the segmentation of the sketch and metric maps can differ and regions in the sketch

http://www.nada.kth.se/%7Ejohnf/kthdata/dataset.html
http://mro.oru.se/wp-content/material/sketchmap-web/

Robotics 2019, 8, 43 13 of 25

map can be matched to more than one region in the metric map. Similarly, regions in the metric map
can be matched to multiple regions in the sketch map, as illustrated in Figure 7.

Figure 7. Regions in one map may have several ground truth correspondences in another map. In this
example, one region on the metric map on the left side has ground truth correspondences to three
regions in the sketch map. Those three correspondences form a clique.

We refer to such groups of correspondences as ground truth cliques.
We evaluated the set of correspondences returned by URSIM by calculating its F1 score:

F1 = 2
p · r

p + r
(12)

with the precision p:

p =
tp

tp + f p
(13)

and the recall r:

r =
tp

tp + f n
(14)

The F1 score ranges between 0 and 1, with 0 being the worst possible score and 1 being the
best. The precision and recall are calculated using the number of true positives tp, false positives
f p, and false negatives f n. Given a set of correspondences between a sketch map and a metric map,
true positives are correspondences where both vertices are present in the same ground truth clique.
False positives are all correspondences for which both vertices are not present in the same ground
truth clique. Finally, false negatives are all ground truth cliques for which no correspondence in the set
corresponds to a true positive.

All results reported in this section were calculated over both ground truth sets.

6.1. Stability with Respect to the Number of Time Samples

Two intrinsic parameters of URSIM, present in Equation (11), are the sampling rate n used to
calculate the values of t, and the number of samples nl . While the sampling rate n is closely related to
the scale of the global information, there is no direct way to choose it. We investigated the stability
of URSIM to those parameters by using between nl = 1 and nl = 25 time samples, and increasing by
n = 0.2 between subsequent samples. For each map and value of nl , the matching algorithm was run
with different values of m, the threshold under which two vertices are considered similar, ranging
from 0 to 1 by steps of 0.025. The highest F1 score over all possible m was kept as the final matching F1

score. The stability of URSIM to the threshold m is presented in Section 6.4.
Over the sketch map dataset, the F1 scores obtained are fairly independent on nl , as shown in

Figure 8. While using more time samples leads to slightly better results, the F1 mean score is always
above 0.69 and stays fairly stable when using more than 10 time samples. Hence, while the value of
the threshold m matters, as shown in Section 6.4, the number of time samples does not have much

Robotics 2019, 8, 43 14 of 25

influence on the matching accuracy. Accordingly, in the rest of the experiments, we used a sampling
rate n = 0.2 and used nl = 15.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24

m
ea

n
F 1

time samples nl

Figure 8. Mean F1 score using a different number of time samples ranging from 1 to 25 on the sketch
map dataset. One can see that the score stays relatively stable and does not depend much on the
number of time samples. Using at least 14 time samples leads to slightly better results.

6.2. Evaluation of the F1 Scores

We calculated the F1 scores over the sketch dataset using URSIM and evaluated the correspondences
in terms of both the mean and median F1 scores. While the mean enabled us to evaluate the general
quality of the correspondences, the median gave a measure that disregards potential outliers.
For example, a high median with a low mean value shows that, while most correspondences are
correct, some incorrect correspondences returned low scores. On the other hand, a high mean with
a low median means that most correspondences were wrong but correct ones scored very high.
An efficient matching algorithm should have both mean and median as high as possible. As for the
previous experiment, the matching algorithm was run with different values of m ranging from 0 to 1
by steps of 0.025, and the highest F1 score over all possible m was kept as the final matching F1 score.

As a baseline, we used the graph description proposed in our previous work [3] where regions
are matched depending on their type: regions can either be crossings when they have more than
one edge or dead-ends when they only have one edge. The results of the baseline are presented
in the first column of Table 1. Furthermore, to test the effectiveness of URSIM’s graph matching
method presented in Section 5.2, we replaced it by two different matching algorithms, the Hungarian
matching and the VF2 algorithm developed by Cordella et al. [36], and compared their respective F1

scores. While URSIM’s planar matching algorithm expands correspondences between vertices one
neighborhood at the time, the Hungarian algorithm finds the solution of the assignment problem
between the vertices. On the other hand, VF2 was developed to quickly find the largest common
sub-graph between two large graphs. We also incrementally tested the usefulness of each attribute
used to create the region descriptors by progressively building the descriptors and calculating the
matching accuracy at each step. The second column of Table 1 presents the F1 scores obtained when
using only the topology to build the descriptors: anchors and weights on the vertices were not used
to calculate the LFS. We refer to this test as T1 and the flowchart of the algorithm can be seen in
Figure 9a. The third column presents the test T2 whose flowchart is illustrated in Figure 9b. For T2,
the topology and positions of anchors in the graph were taken into account when calculating the
LFS. However, vertices had equal weights and, thus, the relative sizes of regions were not taken into
account. The fourth column shows the matching results of the test T3, where, when calculating the
LFS, the weights on the vertices were the standardized region’s sizes but the positions of anchors in
the graph were not taken into account (see Figure 9c). Finally, test T4, in the last column, corresponds
to the full graph representation used by the URSIM method and used the topology, the positions of
anchors in the graph, and the standardized size as weights for the vertices when calculating the LFS
(see Figure 9d).

Robotics 2019, 8, 43 15 of 25

Table 1. Median and mean F1 scores over the sketch map dataset. Using the anchors and the standardized
sizes as weights on the vertices leads to an increase for both the median and mean F1 score, i.e., increase
of the accuracy of the correspondences.

Algorithm Baseline T1 T2 T3 T4

Median values

Hungarian 0.27 0.50 0.42 0.40 0.47
VF2 0.00 0.00 0.00 0.00 0.00
Planar 0.67 0.74 0.67 0.67 URSIM: 0.80
Human VS Human 0.89

Mean ± one standard deviation

Hungarian 0.27± 0.23 0.48± 0.24 0.47± 0.24 0.42± 0.22 0.50 ± 0.24
VF2 0.03± 0.17 0.22 ± 0.33 0.22 ± 0.33 0.13± 0.29 0.13± 0.29
Planar 0.61± 0.30 0.68± 0.28 0.70± 0.23 0.70± 0.25 URSIM: 0.73 ± 0.22
Human VS Human 0.84± 0.16

Regions

Descriptors

Graph matching:
Planar,
Hungarian, or
VF2

Topology

(a)

Regions

Descriptors

Graph matching:
Planar,
Hungarian, or
VF2

Topology

Size

Anchors

Shape

(b)

Regions

Descriptors

Graph matching:
Planar,
Hungarian, or
VF2

Topology

Size

(c)

Regions

Descriptors

Graph matching:
Planar,
Hungarian, or
VF2

Topology

Size

Anchors

Shape

(d)

Figure 9. Flowcharts describing the attributes used to build the descriptors in the tests of Section 6.2.
(a) In the first test, T1, only the topology was used to generate the region descriptors. (b) In the second
test, T2, both the topology and the anchors were used to generate the region descriptors. (c) The third
test, T3, used the topology and the standardized size of regions. (d) The last test, T4, used the topology,
the anchors, and the standardized size of regions.

In all cases, the planar matching scored higher than both VF2 and the Hungarian matching.
This result highlights the importance of using the topology as much as possible during the matching.

Robotics 2019, 8, 43 16 of 25

Indeed, both the Hungarian matching and VF2 only consider the topology through the region
descriptors. On the other hand, the planar matching presented in Section 5.2 starts from a pair
of vertices, i.e., the seed, and expands the correspondences one neighborhood at a time, sequentially
(see Line 10 of Algorithm 1). Therefore, the topology is taken into account both through the descriptors
and by the planar graph matching algorithm during the neighborhood matching step.

Looking at the results of the planar matching in Table 1, URSIM has higher scores than the method
presented in our previous work [3]. Furthermore, URSIM has the highest median and mean F1 scores,
with 0.80 and 0.73± 0.22, respectively, and, removing any attribute of the calculation of the LFS,
leads to lower mean and median F1 scores. Thus, we conclude that every attribute used in URSIM to
build the descriptors and find correspondences is needed.

As a reference, we also calculated the median and mean F1 scores between both sets of ground
truth correspondences given by the users. While one set of ground truth correspondences was used in
place of the correspondences returned by a matching algorithm, the other set was used as the ground
truth set. One could expect the results for humans to be close to the maximum score, 1. However,
the mean F1 score is 0.84± 0.16 and the median is 0.89, showing that finding correspondences between
a sketch map and a metric representation is not a trivial task, even for humans. The high level of
abstraction and error in local scales, as shown in Figure 1 and mentioned in Section 3, make matching
sketch maps a challenge even for humans.

6.3. Evaluation of the F1 Scores over a Dataset of Partial Sensor Maps

To test the limits of the algorithm, we also applied URSIM to a scenario other than sketch-to-metric
map matching: partially overlapping sensor maps built by one or more robots. We evaluated
the accuracy of the correspondences on a dataset of 14 indoor sensor maps (https://github.com/
saeedghsh/Halmstad-Robot-Maps) provided by Gholami Shahbandi et al. [17]. The dataset of indoor
maps is composed of multiple partial views of an indoor environment scanned by a robot using a
Google Tango tablet. Since the maps were built at different times and over different trajectories, they
have different noise levels and cover different sets of rooms. As such, while the maps are largely
metrically correct, the missing information between the maps make this dataset a challenge for
matching algorithms. As for the sketch map dataset, the correct correspondences were manually
annotated by both an expert in mobile robotics and an architect. However, while an actual metric
map of the full environment was available for the sketch map dataset, this was not the case for the
robot map dataset since the whole environment was never covered in one mapping run and every
partial sensor map is, by definition, metric. Hence, since no partial sensor map is inherently a better
metric map than the others for URSIM, each user created ground truth correspondences using a given
partial sensor map as URSIM’s metric map. Both sensor maps used as URSIM’s metric maps are visible
in Figure 10. We then ran the same tests with the same conditions as in Section 6.2.

Looking at the results in Table 2, one can see that again the planar matching algorithm scores
higher than both the Hungarian matching and VF2. The planar algorithm outperforms Hungarian
matching by 0.21 for the median and by 0.19 for the mean. Furthermore, VF2 did not manage to find
any correct correspondence between the partial robot maps since the differences between the map’s
graphs were too large. Looking at the results of URSIM, the F1 scores are better than in our previous
work [3]. However, URSIM was not designed for partial sensor maps: the median only increases
significantly when using the anchors to build the descriptors while the mean stays the same with
or without using the anchors. On the other hand, using the standardized size of regions decreased
the matching accuracy. It should be noted that, even though using the anchors to create the region
descriptors is the best strategy for partial sensor maps, worst-case matches got a lower score; only the
median increased while the mean stayed stable. Hence, while using the LFS and anchors for matching
sensor maps is better than the strategy used in our previous work [3], URSIM is not an ideal choice for
finding correspondences between partial sensor maps.

https://github.com/saeedghsh/Halmstad-Robot-Maps
https://github.com/saeedghsh/Halmstad-Robot-Maps

Robotics 2019, 8, 43 17 of 25

(a) (b)

Figure 10. Partial sensor maps used by the two users as URSIM’s metric map to build the ground truth
correspondences. Both maps represent the same part of the environment. However, since they were
built at different times and different doors were opened, the robot mapped a different set of rooms for
each map. (a) Partial map used as the metric map for the first user. (b) Partial map used as the metric
map for the second user.

Table 2. Median and mean F1 scores over the partial sensor map dataset. The best results are found
when using the planar matching with the anchors. When using the anchors to calculate the LFS, the
mean stays stable but the median increases. Hence, overall, while more map matches obtained higher
F1 scores, maps with a low F1 score are even lower than the maps with a low score when the anchors
are not used.

Algorithm Baseline T1 T2 T3 T4

Median value

Hungarian 0.00 0.25 0.19 0.19 0.12
VF2 0.00 0.00 0.00 0.00 0.00
Planar 0.19 0.40 0.48 0.37 URSIM: 0.37
DAM 0.94

Mean ± one standard deviation

Hungarian 0.03± 0.06 0.25 ± 0.19 0.21± 0.20 0.17± 0.16 0.22± 0.21
VF2 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
Planar 0.23± 0.21 0.45± 0.19 0.46 ± 0.18 0.40± 0.25 URSIM: 0.39± 0.22
DAM 0.78± 0.31

6.4. Stability with Respect to the Threshold m

The planar matching depends on a parameter m, presented in Section 5.2, representing the
threshold under which two vertices are considered similar. When looking at Figure 11, one can see
that, for the previous experiment, the best m values are under 0.25 for the sketch map dataset and
under 0.425 for the partial map dataset.

We evaluated how stable URSIM’s accuracy is with respect to the selection of the parameter m
by calculating the F1 scores with a fixed m value, for all maps in the datasets. We tested values of
m ranging from m = 0 to m = 0.5 with a step size of 0.05. While the threshold m can vary between

Robotics 2019, 8, 43 18 of 25

0 and 1, we found that above 0.5 the F1 scores stayed constant and thus we only present the results
between m = 0 and m = 0.5. The stability is evaluated by looking at the median and mean of the
F1 scores.

0

5

10

15

20

25
nu

m
be

r
of

be
st

ov
er

al
lm

ap
-t

o-
m

ap
m

at
ch

in
g

0

5

10

15

20

25

0 0.05
0.1 0.15

0.2 0.25
0.3 0.35

0.4 0.45
0.5

threshold m

Figure 11. For all maps in the datasets, those charts show for how many maps a given m value lead to
the best set of correspondences. On top are the results for the sketch map dataset and at the bottom the
results for the partial map dataset. All best-correspondences m values are under 0.25 for the sketch
map dataset and under 0.425 for the partial map dataset.

In Figure 12, one can see a box plot of the F1 scores over the sketch map dataset for fixed values of
m. While both maximum median and mean are for m = 1.5, with the maximum median being 0.67
and the maximum mean 0.57, the mean and median F1 scores using a fixed m are significantly lower
than the median and mean F1 scores when choosing m on a per-map basis (see Section 6.2).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

F 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

F 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

m
ea

n
F 1

threshold m

Figure 12. F1 scores when using URSIM with m ranging from 0 to 0.5 on the sketch dataset. The highest
score was found around m = 0.15. However, even better F1 scores could be obtained using different
values of m for each sketch map. This shows that m must be carefully chosen on a per map basis.

Hence, while for all sketch maps the best m value is under 0.25, using a fixed m value over the
whole sketch map dataset leads to poorer matching results.

In Figure 13, one can see the same box plot as in Figure 12 over the partial map dataset. The region
descriptors were built using only the topology and the position of anchors in the graph (see Figure 9b),
since this strategy returned the highest F1 scores on the partial sensor map dataset, as shown in

Robotics 2019, 8, 43 19 of 25

Section 6.3. As for the sketch map dataset, using a fixed m value gives less accurate results than fine
tuning the value of m for each map: a fixed value of m gives fairly stable results between 0.025 and 0.4,
however, it is constantly under the F1 scores reported in Section 6.3 where m was fine tuned for each
map. In conclusion, while the correct values of m were found in the lower half of all possible values, as
for sketch maps finding the best value of m for a given map is important.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

F 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

F 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

m
ea

n
F 1

threshold m

Figure 13. F1 scores when using URSIM with m ranging from 0 to 0.5 on the partial map dataset. Above
m = 0.1 the F1 scores are rather stable but are again not as good as when using different values of m
tailored for particular maps. Again, m must be carefully chosen on a per map basis.

6.5. Comparison with a Metric Map Matching Algorithm

We also evaluated the results of URSIM in comparison to a recent state-of-the-art map matching
method proposed by Gholami Shahbandi et al. [17], that we refer to as the decomposition alignment
method (DAM). DAM focuses on sensor map to layout map matching, where a layout map represents
the layout of the environment without much details and with possible errors in representation. Hence,
in the related work, DAM is the method closest to URSIM in terms of its purpose: matching maps with
high disparities. Furthermore, Gholami Shahbandi et al. [17] showed that DAM scores better when
working with sensor maps than other recent works by Carpin [37] and Saeedi et al. [38]. They also
found that those two matching methods [37,38] cannot match layout maps to sensor maps due to the
large disparity in representation, even after correctly scaling the layout map. Since the sketch maps we
used have an even higher level of disparity than layout maps, and since DAM performed better on
both layout to sensor map and sensor to sensor map matching than the methods of Carpin [37] and
Saeedi et al. [38], we focused on comparing our results to DAM’s.

DAM starts by segmenting two maps into regions and calculates the oriented minimum bounding
box for each region. Segmentation is done using the morphological region segmentation presented by
Bormann et al. [27]. For every pair of bounding boxes with similar shapes, a matching hypothesis is
generated in the form of affine transformations. The shape descriptor of regions used to perform the
matching is an ordered sequence of vertex-edge tuples where vertices denote corners, i.e., places where
the region’s boundary has an angle other than π. For each possible hypothesis, by applying the
associated affine transform, the correspondences between all bounding boxes are found and a matching
score is calculated. The transformation that leads to the highest score is used to perform the matching.
Thus, DAM takes into account metric information of the maps and uses a different set of features than
our method.

Gholami Shahbandi et al. [17] reported a success rate of 50.54% on the subset of the partial map
dataset used in this article. However, that number alone did not allow us to compare their method
to ours since the F1 score cannot be compared to the success rate. To be able to compare the affine
transformation returned by DAM with the ground truth correspondences given by the users, we

Robotics 2019, 8, 43 20 of 25

created correspondences between the largest overlapping MAORIS regions in both maps after having
applied DAM’s affine transformation. We compared those correspondences to the ground truth
correspondences using the method presented at the beginning of this section.

Over the partial sensor map dataset, DAM has a mean F1 score of 0.78± 0.31 and a median of
0.94 performing better than URSIM. However, over the sketch map dataset, DAM is not able to return
correct correspondences due to the highly schematic nature of sketch maps and the large errors in local
scale. Indeed, corners and walls are hard to find in sketches and Gholami Shahbandi et al. showed
that the absence of these two features would result in incorrect correspondences. Two of the best
map alignment returned by DAM are shown in Figure 14 where the sketch maps are overlaid on the
metric map. One can see that since the maps cannot be locally scaled and translated to fit each other,
the results are incorrect. Hence, while using DAM to match partial sensor maps returns more accurate
matching results, URSIM performs better at matching maps which structural differences and a high
level of abstraction in the representation.

(a) (b)

Figure 14. Sketch map transformed onto the metric map using the affine transformation found by the
map matching algorithm of Gholami Shahbandi et al. [17]. The two images correspond to the two best
results over the sketch map dataset. One can see that having an affine transformation between the map
does not lead to accurate map matching when using sketch maps since local scale errors cannot be
taken into account. Hence, the transformed sketch map cannot be used for robot navigation or other
tasks. (a) While the maps are correctly centered, the corridors are not matched together due to the
differences in local scaling between the maps. (b) Local scale differences make it impossible for the
matching algorithm to transform the sketch map onto the metric map.

7. Discussion and Future Work

Our results show that URSIM outperforms the state of the art in finding correspondences between
a sketch map and a metric map. Some of the best matches returned by URSIM between sketch and
metric maps are shown in Figure 15a–c. URSIM is mainly sensitive to the parameter m representing
the threshold to determine when two regions are similar, and this parameter needs to be tuned on a
per map basis. However, it should be noted that, in the experiments, m had values bounded in the
lower quarter of all possible values.

Robotics 2019, 8, 43 21 of 25

(a) (b) (c) (d) (e)

Figure 15. Some of the best matches returned by URSIM between sketch and metric maps, and partial
sensor maps. Over the three sketch maps in (a–c) only one correspondence is wrong, visible in red
in (b), due to the different segmentation between the maps. However, URSIM is not adapted for
partial sensor maps and several correspondences are wrong in (d,e). While using methods that rely
on metric information leads to incorrect correspondences when using sketch maps (see Section 6.5),
adding simple metric information when matching partial sensor maps, e.g., angles between regions or
distances, could increase the accuracy of the URSIM’s correspondences for sensor maps.

When comparing our results to the correspondences given by a user, our study shows that URSIM
has a matching accuracy close to that of a user, with URSIM’s F1 scores being 10% under the user’s.
Our study shows the importance of using the topology and local information around vertices when
matching sketch and metric maps. For example, changing URSIM’s graph matching method to another
graph matching method that does not consider the topology of the environment leads to less accurate
matching results. Furthermore, our study shows that the accuracy of the correspondences increases
when using the topology and both the position of the anchors in the graph and the standardized sizes
of regions to build the region descriptors. However, using the topology and either the position of the
anchors in the graph or the standardized sizes of regions did not increase the accuracy compared to
using the topology alone. Thus, the position of the anchors in the graph and the standardized sizes of
regions are equally important for matching sketch maps to metric maps. Moreover, our study of the
matching results of DAM, a state-of-the-art matching method for layout maps [17], shows that metric
information is not useful to find correspondences between sketch and metric maps. While layout
maps are schematic maps, they are metrically close to correct and clearly represent features of the
environment, such as corner and walls. Due to DAM’s dependency on finding features and using
metric information, it is unable to match sketch maps and metric maps, supporting our assumption
that relying on metric information leads to incorrect correspondences. On the other hand, URSIM
underperformed compared to DAM when used on partial sensor maps, showing the limitation of our
method when dealing with metrically correct maps with partial overlap.

Hence, the relevance of the URSIM method is predominantly for highly schematic maps, or maps
with a high level of abstraction, such as what could be encountered in a sketch-based interface for
robot operators.

URSIM depends on finding the most unique regions of the map, called anchors. One subject that
remains to be explored is how to find the best possible region attributes to find anchors and create
the region descriptors used during the graph matching. Furthermore, future work should look at
how to automatically determine the parameter m using either a learning algorithm or attributes of the
sketch map or environment. A future study could also evaluate the usefulness of metric information

Robotics 2019, 8, 43 22 of 25

depending on the map type: from metrically correct sensor maps to highly abstract sketch maps,
using semi-metric maps such as emergency maps and layout maps as middle points between the
two representations. This information could be used to develop a system that automatically takes into
account the correct amount of metric information depending on the type of map being matched.

8. Applications

To the best of our knowledge, URSIM is the first method addressing the problem of map matching
between a hand drawn sketch map of an indoor environment and a metric map with a high matching
accuracy. Several possible applications of URSIM are described below.

A sketch interface can be used to control one or more service robots in a building such as an
airport or a train station. Such service robots can be provided with metric prior maps, e.g., floor plans
or emergency maps. Furthermore, since the robots perform their tasks in the same environment over
multiple days, they can also build fairly accurate sensor maps. Using a sketch application on their
phones, users could direct the robots to specific places by drawing the environment and sketching the
robots’ trajectories. The robots could infer their trajectories in the environment by matching the user
provided sketch map to their own prior or sensor maps using URSIM.

In another scenario, sketch maps can be used to enhance existing prior maps, e.g., emergency
maps. Working with Dortmund’s firemen, we identified that they have access to emergency maps that
they use to direct their operations [39]. However, while firemen are proficient with emergency maps,
other people may not be, especially in situations of stress. On the other hand, a sketch map is easy
and quick to draw and, if using URSIM to find the correspondences, the sketch can be drawn by hand
and without major drawing constraints. Once the sketch map of the environment is matched onto the
emergency map using URSIM, civilians can give information concerning the position of elements such
as gas bottles, the position of victims, or where the fire started. Civilians can also help by sketching the
safest or fastest trajectories to points of interest. Being able to quickly relate sketched information to
a known map type leads to increased situation awareness and safer operations for both the firemen
and the persons they are trying to rescue.

Furthermore, we previously developed the Auto-Complete Graph (ACG) method [39] to integrate
an emergency map into the robot’s Simultaneous Localization and Mapping (SLAM). By first matching
a sketch map to an emergency map using URSIM and then integrating the emergency map in the
SLAM using the ACG method, the information of the sketch map could be included in the robot’s
map during exploration and used to navigate to points of interest, both by sketching a trajectory or
autonomous navigation.

9. Summary and Conclusions

Sketch maps are intuitive interfaces for human users. However, using them as human–robot
interface necessitates being able to understand them and to find correspondences between elements of
the sketch and equivalent elements of the environment represented in a metric map. Finding those
correspondences is not a trivial task, even for a human.

In our work, we present the URSIM method aimed at matching sketch maps, with a high level of
disparity in representation and details, to an equivalent metric map. URSIM takes as inputs a sketch
map and an equivalent map segmented into regions. After determining which regions are the most
unique (anchor regions), URSIM builds region descriptors taking into account the topology of the
environment and the position of the anchors in the topological graph. Corresponding regions are
found using a planar graph matching algorithm.

URSIM was able to match sketch maps to metric maps, outperforming the state of the art. On the
other hand, the state of the art could not find correspondences between the regions due to the high
level of abstraction in sketch maps. Considering that, in our experiment, two human users achieved
a F1 score of 0.89 when matching the sketch maps while URSIM obtained an F1 score of 0.80. URSIM’s

Robotics 2019, 8, 43 23 of 25

results are very encouraging and constitute an important step toward developing a reliable sketch map
interface for human–robot interactions.

Author Contributions: Conceptualization, M.M. (Malcolm Mielle) and M.M. (Martin Magnusson); methodology,
M.M. (Malcolm Mielle); software, M.M. (Malcolm Mielle); validation, M.M. (Malcolm Mielle); writing—original
draft preparation, M.M. (Malcolm Mielle); formal analysis, M.M. (Malcolm Mielle); investigation,
M.M. (Malcolm Mielle); resources, M.M. (Malcolm Mielle); data curation, M.M. (Malcolm Mielle); writing—review
and editing, M.M. (Malcolm Mielle), M.M. (Martin Magnusson) and A.J.L.; supervision, M.M. (Malcolm Mielle),
M.M. (Martin Magnusson) and A.J.L.; project administration, M.M. (Malcolm Mielle); and funding acquisition,
M.M. (Martin Magnusson) and A.J.L.

Funding: This work was funded in part by the EU H2020 project ILIAD (ICT-26-2016 732737) and by the Swedish
Knowledge Foundation under contract number 20140220 (AIR).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blades, M. The reliability of data collected from sketch maps. J. Environ. Psychol. 1990, 10, 327–339.
[CrossRef]

2. Jan, S.; Wang, J.; Schwering, A.; Chipofya, M. Ordering: A reliable qualitative information for the alignment
of sketch and metric maps. In Proceedings of the 2013 IEEE 12th International Conference on Cognitive
Informatics and Cognitive Computing, New York, NY, USA, 16–18 July 2013; pp. 203–211.

3. Mielle, M.; Magnusson, M.; Lilienthal, A.J. Using sketch-maps for robot navigation: Interpretation and
matching. In Proceedings of the 2016 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016; pp. 252–257.

4. Setalaphruk, V.; Ueno, A.; Kume, I.; Kono, Y.; Kidode, M. Robot navigation in corridor environments
using a sketch floor map. In Proceedings of the 2003 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, Kobe, Japan, 16–20 July 2003; Volume 2, pp. 552–557.

5. Freksa, C.; Moratz, R.; Barkowsky, T. Schematic Maps for Robot Navigation. In Spatial Cognition II: Integrating
Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications; Freksa, C., Habel, C., Brauer, W.,
Wender, K.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 100–114.

6. Kümmerle, R.; Steder, B.; Dornhege, C.; Kleiner, A.; Grisetti, G.; Burgard, W. Large scale graph-based
SLAM using aerial images as prior information. Auton. Robots 2011, 30, 25–39. [CrossRef]

7. Kakuma, D.; Tsuichihara, S.; Ricardez, G.A.G.; Takamatsu, J.; Ogasawara, T. Alignment of Occupancy Grid
and Floor Maps Using Graph Matching. In Proceedings of the 2017 IEEE 11th International Conference on
Semantic Computing (ICSC), San Diego, CA, USA, 30 January–1 February 2017; pp. 57–60.

8. Boniardi, F.; Caselitz, T.; Kümmerle, R.; Burgard, W. Robust LiDAR-based localization in architectural floor
plans. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3318–3324.

9. Beeson, P.; Jong, N.K.; Kuipers, B. Towards autonomous topological place detection using the extended
voronoi graph. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 18–22 April 2005; pp. 4373–4379.

10. Zhang, T.; Suen, C.Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM 1984, 27, 236–239.
[CrossRef]

11. Schwertfeger, S.; Birk, A. Evaluation of map quality by matching and scoring high-level, topological
map structures. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany, 6–10 May 2013; pp. 2221–2226.

12. Schwertfeger, S.; Birk, A. Map evaluation using matched topology graphs. Auton. Robots 2016, 40, 761–787.
[CrossRef]

13. Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. SPIE 1992, 1611. [CrossRef]
14. Park, J.; Sinclair, A.J.; Sherrill, R.E.; Doucette, E.A.; Curtis, J.W. Map merging of rotated, corrupted,

and different scale maps using rectangular features. In Proceedings of the 2016 IEEE/ION Position,
Location and Navigation Symposium (PLANS), Savannah, GA, USA, 11–16 April 2016; pp. 535–543.

http://dx.doi.org/10.1016/S0272-4944(05)80032-5
http://dx.doi.org/10.1007/s10514-010-9204-1
http://dx.doi.org/10.1145/357994.358023
http://dx.doi.org/10.1007/s10514-015-9493-5
http://dx.doi.org/10.1109/34.121791

Robotics 2019, 8, 43 24 of 25

15. Sünderhauf, N.; Protzel, P. Towards a robust back-end for pose graph SLAM. In Proceedings of the
2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–18 May 2012;
pp. 1254–1261.

16. Sebastian, T.B.; Klein, P.N.; Kimia, B.B. Recognition of shapes by editing their shock graphs. IEEE Trans.
Pattern Anal. Mach. Intell. 2004, 26, 550–571. [CrossRef] [PubMed]

17. Gholami Shahbandi, S.; Magnusson, M.; Iagnemma, K. Nonlinear Optimization of Multimodal Two-Dimensional
Map Alignment With Application to Prior Knowledge Transfer. IEEE Robot. Autom. Lett. 2018, 3, 2040–2047.
[CrossRef]

18. Shah, D.C.; Campbell, M.E. A qualitative path planner for robot navigation using human-provided maps.
Int. J. Robot. Res. 2013, 32, 1517–1535. [CrossRef]

19. Chronis, G.; Skubic, M. Sketch-based navigation for mobile robots. In Proceedings of the 12th IEEE
International Conference on Fuzzy Systems, St. Louis, MO, USA, 25–28 May 2003; Volume 1, pp. 284–289.

20. Chronis, G.; Skubic, M. Robot navigation using qualitative landmark states from sketched route maps.
In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA,
26 April–1 May 2004; Volume 2, pp. 1530–1535.

21. Parekh, G.; Skubic, M.; Sjahputera, O.; Keller, J.M. Scene matching between a map and a hand drawn
sketch using spatial relations. In Proceedings of the 2007 IEEE International Conference on Robotics and
Automation, Roma, Italy, 10–14 April 2007; pp. 4007–4012.

22. Skubic, M.; Bailey, C.; Chronis, G. A sketch interface for mobile robots. In Proceedings of the 2003 IEEE
International Conference on Systems, Man and Cybernetics, Washington, DC, USA, 8 Ocotber 2003;
Volume 1, pp. 919–924.

23. Skubic, M.; Anderson, D.; Blisard, S.; Perzanowski, D.; Schultz, A. Using a hand-drawn sketch to control
a team of robots. Auton. Robots 2007, 22, 399–410. [CrossRef]

24. Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 22, 55.
25. Kinnear, P.R.; Wood, M. Memory for topographic contour maps. Br. J. Psychol. 1987, 78, 395–402. [CrossRef]
26. Mielle, M.; Magnusson, M.; Lilienthal, A.J. A Method to Segment Maps from Different Modalities Using

Free Space Layout MAORIS: Map of Ripples Segmentation. In Proceedings of the 2018 IEEE International
Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–26 May 2018; pp. 4993–4999.

27. Bormann, R.; Jordan, F.; Li, W.; Hampp, J.; Hägele, M. Room segmentation: Survey, implementation, and
analysis. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 16–21 May 2016; pp. 1019–1026.

28. Fermin-Leon, L.; Neira, J.; Castellanos, J.A. Incremental contour-based topological segmentation for robot
exploration. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Marina Bay Sands, Singapore, 29 May–3 June 2017; pp. 2554–2561.

29. Kuhn, H.W. The Hungarian method for the assignment problem. Naval Res. Logist. Q. 1955, 2, 83–97.
[CrossRef]

30. Hu, N.; Guibas, L. Spectral descriptors for graph matching. arXiv 2018, arXiv:1304.1572
31. Aubry, M.; Schlickewei, U.; Cremers, D. The wave kernel signature: A quantum mechanical approach to

shape analysis. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 1626–1633.

32. Chung, F.; Langlands, R.P. A Combinatorial Laplacian with Vertex Weights. J. Comb. Theory Ser. A 1996,
75, 316–327. [CrossRef]

33. Hu, N.; Rustamov, R.M.; Guibas, L. Graph Matching with Anchor Nodes: A Learning Approach. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA,
23–28 June 2013.

34. Li, Y.; Liu, B. A normalized Levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 2007,
29, 1091–1095. [CrossRef] [PubMed]

35. Mielle, M.; Magnusson, M.; Lilienthal, A.J. Sketch Maps Dataset. 2017. Available online: https://zenodo.
org/record/892062#.XPXfFHERVPY (accessed on 4 June 2019).

36. Cordella, L.P.; Foggia, P.; Sansone, C.; Vento, M. A (sub)graph isomorphism algorithm for matching large
graphs. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1367–1372. [CrossRef] [PubMed]

37. Carpin, S. Fast and accurate map merging for multi-robot systems. Auton. Robots 2008, 25, 305–316.
[CrossRef]

http://dx.doi.org/10.1109/TPAMI.2004.1273924
http://www.ncbi.nlm.nih.gov/pubmed/15460278
http://dx.doi.org/10.1109/LRA.2018.2806439
http://dx.doi.org/10.1177/0278364913496485
http://dx.doi.org/10.1007/s10514-007-9023-1
http://dx.doi.org/10.1111/j.2044-8295.1987.tb02257.x
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1006/jcta.1996.0080
http://dx.doi.org/10.1109/TPAMI.2007.1078
http://www.ncbi.nlm.nih.gov/pubmed/17431306
https://zenodo.org/record/892062#.XPXfFHERVPY
https://zenodo.org/record/892062#.XPXfFHERVPY
http://dx.doi.org/10.1109/TPAMI.2004.75
http://www.ncbi.nlm.nih.gov/pubmed/15641723
http://dx.doi.org/10.1007/s10514-008-9097-4

Robotics 2019, 8, 43 25 of 25

38. Saeedi, S.; Paull, L.; Trentini, M.; Seto, M.; Li, H. Efficient map merging using a probabilistic generalized
voronoi diagram. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Algarve, Portugal, 7–12 October 2012; pp. 4419–4424.

39. Mielle, M.; Magnusson, M.; Lilienthal, A.J. The Auto-Complete Graph: Merging and Mutual Correction of
Sensor and Prior Maps for SLAM. Robotics 2019, 8, 40. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/robotics8020040
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Method Outline and Contributions
	Related Work
	Segmenting the Maps and Building the Anchor Sets
	Map Segmentation
	Finding Unique Regions in a Segmented Map
	Creating the Sets of Anchors from the Unique Regions of the Sketch and Metric Maps

	Graph Matching
	Computing Vertex Descriptors that Express Topological Similarity with Respect to the Anchors and the Standardized Size of Regions
	Planar Graph Matching Using the Laplacian Family Signature

	Experiments
	Stability with Respect to the Number of Time Samples
	Evaluation of the F1 Scores
	Evaluation of the F1 Scores over a Dataset of Partial Sensor Maps
	Stability with Respect to the Threshold m
	Comparison with a Metric Map Matching Algorithm

	Discussion and Future Work
	Applications
	Summary and Conclusions
	References

