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Abstract: The problem of inverse kinematics is essential to consider while dealing with the robot’s
mechanical structure in almost all applications. Since the solution of the inverse kinematics problem is
very complex, many research efforts have been working towards getting the approximate solution of
this problem. However, for some applications, working with the approximate robot’s model is neither
sufficient nor efficient. In this paper, an adaptive inverse kinematics methodology is developed to
solve the inverse kinematics problem in such a way that compensate for unknown uncertainty in
the Jacobian matrix of the serial kinematic chain robot manipulators. The proposed methodology is
based on continuous second order sliding mode strategy (CSOSM-AIK). The salient advantage of the
CSOSM-AIK approach is that it does not require the availability of the kinematics model or Jacobian
matrix of the robot manipulators from joint space variables to Cartesian space variables. The global
stability of the closed-loop system with CSOSM-AIK methodology is proven using the Lyapunov
theorem. In order to demonstrate the robustness and effectiveness of the proposed methodology,
some simulations are conducted.
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1. Introduction

The last three decades have witnessed the great and the continuous increase in the number of
used robots in industry. The robot manipulator is one of most popular industrial robots [1,2]. Dealing
with the robot’s mechanical structure in any way (modeling, simulation, etc.) requires solving the
problem of kinematics [3].

Kinematics is the analytical study of the robot motion without considering the applied forces.
Working with kinematics’ models for robot manipulators is highly needed to investigate the behavior
of robot manipulators. Robot Kinematics is categorized to two main categories; forward kinematics
and inverse kinematics. In forward kinematics, the position of the end-effector can be expressed
as a function of the joint positions [1,2,4] which is simple and straightforward. On the other hand,
the inverse kinematics [5] is concerned with finding the joints’ positions for a specified end effector
position [3]. The inverse kinematics problem is complex due to the nonlinearity and uncertainty of
the mapping equations that maps the joint space to the Cartesian space. Furthermore, the solution
of the inverse kinematics problem may not exist or may have multiple possibilities [3]. It becomes a
must to consider the inverse kinematics when coming to deal with certain type of tasks in cluttered
environments where robotic manipulators with few DOF are unable to operate [6].
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In order to solve the inverse kinematics problem, the robot kinematic model must be precisely
known [7,8]. However, the parameters of the robot kinematic model is either inaccurate or changing
according to the required task [9–11]. Furthermore, an analytic solution exists only for simple robot
configurations and only if the robot structure meets certain criteria [12] and despite of the simple robot
configuration, the solution is a very complex process. Many research efforts have been conducted
to deal with the solution of the inverse kinematics problem. Conventionally, the inverse kinematics
problem is formulated by the so called differential kinematics [6]. In such type of formulation, the
Jacobian matrix is used to describe the relation between the motion of every robot link and that
of the end effector. In order to get the velocities of each link, the desired linear and angular end
effector velocities are multiplied by the inverse of the Jacobian matrix. However, the problem is that
the Jacobian matrix for most of the redundant structures is not invertible. Thus, a pseudo-inverse
matrix is used instead [13,14]. In [6], an analytical solution of the inverse kinematics problem for
hyber-redundant manipulators that is based on the reducing the unnecessary DoFs is introduced.
However, reducing the unnecessary DoFs is valid only for hyber-redundant manipulators because
of its limited operation space. Thus, the developed analytical solution cannot be generalized in
all cases. Also, many researchers have dealt with the inverse kinematics problem using machine
learning. The main advantage of using machine learning in solving the inverse kinematics problem
is the avoidance of the complex inverse kinematics model calculations. In [15–17], machine learning
approaches have been introduced to solve the inverse kinematics problem. However, the introduced
approaches are constrained by specific known trajectories, and thus cannot be used for the generalized
inverse kinematics problem. Other machine learning approaches have been seen in the literature to
solve the inverse kinematics problem but based on the idealized model [18–20]. To overcome these
limitations, the authors in [21] have presented a machine learning approach to solve the generalized
inverse kinematics problem. Despite the approach introduced in [21] is good to consider for the
generalized inverse kinematics problem, it is not efficient when used in real time applications that
require computing the inverse kinematics parameters in the real time.

Generally, designing a suitable controller for robot manipulators is very challenging as it requires
working with highly coupled multi input multi output nonlinear dynamic equations. The most
important thing is how to compromise between the controller structure and the performance
requirements. The complexity of the controller design is highly increased as strict performance
requirements are needed. Many control methods have been introduced in the literature to move the
robots’ joints as desired [13,22–25]. In all these methods and other methods, a perfect knowledge
of robot kinematics is required in order to solve the inverse kinematics problem. When comes to
uncertain kinematics, the stability of the control law cannot be guaranteed. Thus, it is assumed that the
exact kinematics and Jacobian matrix of the manipulator are known [7,26]. Other approaches in the
literature like in [27–31] have avoided the complexity of working with the inverse kinematic problem
by controlling the robot manipulator in the joint space instead of the task space.

On the other hand, the second order sliding mode control strategy is known in the literature with
its high robustness and structure simplicity [32]. Thus it has been widely used to control nonlinear
systems [33–36]. Keeping in mind the above mentioned requirements, the main goal of this paper
is designing a controller for serial kinematic chain robot manipulators that achieves a satisfactory
performance while keeping its simple structure. An adaptive inverse kinematics algorithm based on
continuous second order sliding mode strategy (CSOSM-AIK) is designed for serial kinematic chain
robot manipulators with uncertain Jacobian matrix. In contrast with other papers in the literature, no
assumptions have been made about the availability of the kinematics model or Jacobian matrix of
the robot manipulators from joint space variables to Cartesian space variables. Also, the proposed
approach differs from other approaches in the literature as it achieves the desired end effector trajectory
without considering working with the robot dynamics which makes its structure very simple compared
with the other approaches. In this adopted scheme, an adaptation law is addressed to compensate for
the unknown uncertainty of the Jacobian matrix. The proposed inverse kinematics scheme unifies the
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traditional second order inverse kinematics technique (TIK) in task (operational or Cartesian) space, the
adaptive control methodology, and the continuous second order sliding mode control in one approach.

The contribution of this paper is twofold. First, a second order sliding mode-based inverse
kinematics strategy (SOSMIK) with discontinuous robust action is synthesized to ensure trajectory
tracking by the robot manipulator end-effector in Cartesian space. This synthesis provides robust
behavior against uncertainties of the Jacobian matrix. However, when a large gain is applied to
handle the unknown parametric uncertainties, the undesired chattering is increased which may
yield unforeseen instabilities. Thus, secondly, an adaptive inverse kinematics algorithm based on
continuous second order sliding mode strategy (CSOSM-AIK) is presented as an improved variant to
the SOSMIK scheme in which, the discontinuous term is replaced by a smooth continuous action to
totally cancel the chattering effect. The significant advantage of the proposed CSOSM-AIK approach
is that no assumptions are made about the availability of the kinematics or Jacobian matrix of the
robot manipulators from joint space variables to Cartesian space variables. The global stability of the
closed-loop system with CSOSM-AIK methodology is proven using the Lyapunov theorem. Both
trajectory tracking error and error rate are further proven to converge to zero. Numerical simulations
are conducted on MATLAB using the kinematic model of serial robot manipulators with uncertain
Jacobian matrix. The presented results show the effectiveness of the presented approach in trajectory
tracking problems. Also, the robustness of proposed approach is proven through considering different
variations of uncertainties including a very severe uncertainty.

The remainder of this paper is organized as follows: Section 2 presents the characteristics of the
traditional inverse kinematics algorithm (TIK). Section 3 presents the characteristics of the proposed
second order sliding mode-based inverse kinematics algorithm (SOSMIK), and the characteristics of
the proposed continuous second order sliding mode-based inverse kinematics algorithm. Section 4
presents the simulation results. Conclusions and some future research directions are summarized in
Section 5.

2. The Traditional Inverse Kinematics Method

This section summarizes the classical inverse kinematic method used for the control of serial
kinematic chain robot manipulators with uncertain Jacobian matrix and after that the proposed
approach is introduced in details in Section 3.

According to [1,2], the end-effector position of the robot manipulator can be specified in the
operational space as follows:

xe = [pe φe]
T (1)

where pe and φe describe the position and orientation of the end-effector.
The direct kinematics can be written as [9,26,37]:

xe = h(q) (2)

where h(q) is a nonlinear vector function.
The differential kinematics can be obtained of the direct kinematics equation as [26].

•
xe =

[
•
pe

•

φe

]T
= JA(q)

•
q (3)

where
•
xe represents the vector of end-effector velocity and

•
q represents the vector of joint velocities.

JA(q) defines the analytical Jacobian matrix which is given by:

JA(q) =
∂h(q)
∂q

(4)
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The time differentiation of the differential kinematics given in Equation (3) leads to [4,38]:

••
x e = JA(q)

••
q +

•

JA(q,
•
q)
•
q (5)

In general, the robot physical parameters and the Jacobian matrix parameters involve a nominal
part and some variations. Therefore, assuming the existence of the kinematic model in Equation (5),
uncertainties can be written as follows:

••
x e = (JA(q) + ∆JA(q))

••
q +

(
•

JA(q,
•
q) + ∆

•

JA(q,
•
q)

)
•
q

••
x e = JA(q)

••
q +

•

JA(q,
•
q)
•
q +

(
∆JA(q)

••
q + ∆

•

JA(q,
•
q)
•
q
) (6)

where JA(q) and
•

JA(q,
•
q) are known. ∆JA(q) and ∆

•

JA(q,
•
q) represent the uncertainties (parameter

variations) in the robot Jacobian matrix and its first derivative. All uncertain elements can be lumped
as follows:

ς(t) = −
{
∆JA(q)

••
q + ∆

•

JA(q,
•
q)
•
q
}

(7)

Thus Equation (5) can be rewritten as:

••
x e = JA(q)

••
q +

•

JA(q,
•
q)
•
q− ς(t) (8)

where ς(t) ∈ Rm represents the uncertainty vector of the kinematics model consisting of all
structured uncertainties.

If the kinematics model and the physical parameters of the Jacobian matrix JA(q) of robotic
manipulators (without uncertainties, i.e., ς(t) = 0) are precisely known, the traditional inverse
kinematics algorithm (TIK) is designed as [1,2]:

••
q = J−1

A (q)(
••
x d + Kd

•
ex + Kpex −

•

JA(q,
•
q)
•
q) (9)

where ex(t) = xd(t)−xe(t) represents the m× 1 end-effector position tracking error in which xe(t) ∈ Rm is
the actual end-effector pose in the task space. xd(t) ∈ Rm describes the desired pose of the end-effector in
the task space with desired position pd and desired orientation φd. The m× 1 vector

•
ex(t) =

•
xd(t)−

•
xe(t)

is the end-effector velocity tracking error in which,
•
xe(t) ∈ Rm defines the vector of end-effector velocity

and
•
xd(t) ∈ Rm is the vector of end-effector desired velocity. The matrices Kp and Kd are m×m positive

definite diagonal proportional and derivative gain matrices.
Substituting Equation (9) into Equation (5) leads to the operational space error to be as

follows [1,2,9,37]:
••
e x + Kd

•
ex + Kpex = 0 (10)

If Kp and Kd are positive definite matrices, the system is asymptotically stable and the error
converges to zero with a rate that depends on the eigenvalues of matrices Kp and Kd. The block diagram
of the traditional inverse kinematics (TIK) algorithm is depicted in Figure 1.
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Figure 1. Block diagram of the traditional inverse kinematics algorithm.

3. The Proposed Approach

In this section, the proposed algorithms are presented in details.

3.1. The Proposed Second Order Sliding Mode-Based Inverse Kinematics Algorithm

In practice, it is difficult to implement the TIK algorithm as it requires the accurate knowledge
of both; the physical parameters of the robot manipulators and the complete equations of motion.
Unfortunately, the physical parameters cannot be obtained perfectly since the robot is required to
interact with changing environment according to different specified tasks [25,26]. Moreover, there
are structured uncertainties as represented by ς(t) in Equation (7). The existence of the uncertainties
deteriorates the tracking performance and the robustness. Consequently, the stability of the traditional
inverse kinematics (TIK) algorithm in Equation (9) could not be guaranteed in the existence of uncertain
kinematics from joint space to Cartesian space. Thus, the TIK algorithm must be coupled with robust
methodologies to achieve the good suppression of the uncertain factors and to achieve the desired
tracking performance. In this paper, the second order sliding mode scheme (SOSM) is used.

The second order sliding mode-based inverse kinematics strategy (SOSMIK) can be designed as:

••
q = (Kd JA)

−1
{
Kd
••
x d −Kd

•

JA
•
q + Kp

•
ex + Kiex −K1sx(t) − ur(t)

}
(11)

where s(t) is m× 1 second order sliding surface vector which is defined as in [39]:

•
sx(t) + K1sx(t) = Kd

•
ex(t) + Kp ex(t) + Ki

∫
ex(τ)dτ (12)

where the matrices Kp, Ki and Kd are m ×m positive definite diagonal proportional, integral and
derivative gain matrices. The matrix K1 is m×m positive definite diagonal gain matrix. The robust
sliding mode term ur(t) is used to ensure the convergence of error to zero while tracking a desired
trajectory with the existence of uncertainties.

To find the robust control law ur(t), the Lyapunov function can be chosen as [39]:

V(t) =
K1

2
sx

Tsx +
1
2
•
sx

T•sx (13)

•

V(t) = K1sx
T•sx +

•
sx

T••s x (14)
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By taking the derivative of sliding surface in Equation (12) with respect to time, we get:

••
s x(t) = −K1sx(t) + Kd

••
e x(t) + Kp

•
ex(t) + Ki ex(t) (15)

Substituting from Equation (15) into Equation (14) yields:

•

V(t) = K1sx
T•sx +

•
sx

T
{
−K1

•
sx + Kd

••
e x + Kp

•
ex + Ki ex

}
(16)

By using
(
••
e x =

••
x d −

••
x e

)
, Equation (16) can be rewritten as:

•

V(t) = K1sx
T•sx +

•
sx

T
{
−K1

•
sx + Kd

(
••
x d −

••
x e

)
+ Kp

•
ex + Ki ex

}
(17)

By substituting from Equation (8) into Equation (17), we get:

•

V(t) = K1sx
T•sx +

•
sx

T
{
−K1

•
sx + Kd

••
x d −Kd JA

••
q −Kd

•

JA
•
q + Kdς(t) + Kp

•
ex + Ki ex

}
(18)

Substituting Equation (11) into Equation (18) yields:

•

V(t) = K1sx
T•sx −K1‖

•
sx‖

2
−K1

•
sx

Tsx +
•
sx

T {
Kdς(t) − ur(t)

}
(19)

By using
(
K1sx

T•sx = K1
•
sx

Tsx

)
, Equation (19) can be rearranged as:

•

V(t) = −K1‖
•
sx‖

2
+
•
sx

T{Kdς(t) − ur(t)
}

(20)

•

V(t) ≤ −K1‖
•
sx‖

2
+
•
sx

T{
‖Kd‖ ‖ς(t)‖ − ur(t)

}
(21)

The robust signal ur(t) can be chosen as:

ur(t) = Kr sign
(
•
sx(t)

)
(22)

where Kr = kr Im×m represents the gain matrix that describes the upper bound of uncertainty vector
(‖ς(t)‖). Im×m is the m×m identity matrix and sign[.] is the signum function.

Substituting Equation (22) into Equation (21) yields:

•

V(t) ≤ −K1‖
•
sx‖

2
+
•
sx

T
{
‖Kd‖ ‖ς‖ −Kr sign

(
•
sx

)}
≤ −K1‖

•
sx‖

2
+ ‖
•
sx‖ ‖Kd‖ ‖ς‖ − ‖

•
sx‖Kr

•

V(t) ≤ −K1‖
•
sx‖

2
+ ‖
•
sx‖{‖Kd‖ ‖ς‖ − kr} ≤ −K1‖

•
sx‖

2
+ ‖
•
sx‖{‖Kd‖ ‖ς‖ − kr}

(23)

In Equation (23), the first term on the right-hand side is negative definite. To render the 2nd term
in Equation (23) less than or equal to zero, the parameter kr must be selected as:

kr ≥ ‖Kd‖ ‖ς(t)‖ (24)

From Equations (23) and (24), we can conclude that the stability condition
•

V < 0 is satisfied. Thus,
the error state trajectory converges to the sliding surface s(t) = 0.

Substituting Equation (22) into Equation (11) yields the SOSMIK as:

••
q = (Kd JA)

−1
{
Kd
••
x d −Kd

•

JA
•
q + Kp

•
ex + Kiex −K1sx −Kr sign

(
•
sx(t)

)}
(25)

The resulting SOSMIK is illustrated in Figure 2.
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3.2. The Proposed Continuous Second Order Sliding Mode-Based Inverse Kinematics Algorithm

It has been shown in Equation (25) that the proposed controller guarantees the stability of the
system in the sense of the Lyapunov theorem. However, the SOSMIK has the discontinuous signum
function in the discontinuous term Kr sign(s(t)) and therefore chattering is a great problem in using
this controller. Moreover, the gain Kr is concerned with the boundaries of unknown uncertainties as
indicated by the stability condition in Equation (24). To avoid the chattering effect and the necessity
of the knowledge of the bounds of uncertainties, while preserving fast convergence of the SOSMIK
algorithm, a continuous second order sliding mode-based adaptive inverse kinematics algorithm
(CSOSM-AIK) can be designed as:

••
q = (Kd JA)

−1
{
Kd
••
x d −Kd

•

JA
•
q + Kp

•
ex + Kiex −K1sx −Kdς̂(t)

}
(26)

where ς̂(t) is the estimated perturbation. ς̂(t) represents an adaptive term that estimates the lumped
uncertainty ς(t) in Equation (7).

To find ς̂(t), the Lyapunov function can be chosen as:

V(t) =
1
2

K1sx
Tsx +

1
2
•
sx

T•sx +
1
2

Kd
∼
ς

T∼
ς (27)

where
∼
ς(t) is the lumped uncertainty estimation error which can be defined as follows:

∼
ς(t) = ς(t) − ς̂(t) (28)

The derivative of Lyapunov function is as follows:

•

V(t) = K1sx
T•sx +

•
sx

T••s x + Kd
∼
ς

T
•
∼
ς (29)

Substituting
•
∼
ς = −

•

ς̂ into Equation (29) yields:

•

V(t) = K1sx
T•sx +

•
sx

T••s x −Kd
∼
ς

T •
ς̂ (30)



Robotics 2020, 9, 4 8 of 26

Substituting Equation (15) into Equation (30) yields:

•

V(t) = K1sx
T•sx +

•
sx

T
{
−K1

•
sx + Kd

••
e x + Kp

•
ex + Ki ex

}
−Kd

∼
ς

T •
ς̂ (31)

By using
(
••
e x =

••
x d −

••
x e

)
, Equation (32) can be written as:

•

V(t) = K1sx
T•sx +

•
sx

T
{
−K1

•
sx + Kd

(
••
x d −

••
x e

)
+ Kp

•
ex + Ki ex

}
−Kd

∼
ς

T •
ς̂ (32)

Substituting Equation (8) into Equation (32) results in:

•

V(t) = K1sx
T•sx +

•
sx

T
{
−K1

•
sx + Kd

••
x d −Kd JA

••
q −Kd

•

JA
•
q + Kdς+ Kp

•
ex + Ki ex

}
−Kd

∼
ς

T •
ς̂ (33)

Substituting the CSOSM-AIK algorithm in Equation (26) into Equation (33) yields:

•

V(t) = K1sx
T•sx +

•
sx

T
{
−K1

•
sx + Kdς(t) −K1sx −Kdς̂(t)

}
−Kd

∼
ς

T •
ς̂ (34)

Eliminating similar terms in Equation (34) gives:

•

V(t) =
•
sx

T
{
−K1

•
sx + Kdς(t) −Kdς̂(t)

}
−Kd

∼
ς

T •
ς̂ (35)

Substituting Equation (28) into Equation (35), the resulting equation can be rewritten as:

•

V(t) ≤ −K1‖
•
sx‖

2
+
•
sx

TKd
∼
ς−Kd

∼
ς

T •
ς̂ (36)

Substituting
(
•
sx

TKd
∼
ς(t) =

∼
ς

T
Kd
•
sx

)
into Equation (36) gives:

•

V(t) ≤ −K1‖
•
sx‖

2
+
∼
ς

T
Kd

{
•
sx −

•

ς̂
}

(37)

The time evolution of the estimated uncertainty ς̂ can be chosen as:

•

ς̂(t) =
•
sx(t) (38)

Substituting Equation (38) into Equation (37) yields:

•

V(t) ≤ −K1‖
•
sx‖

2
(39)

From the above analysis, the global asymptotic stability is guaranteed since
•

V(t) < 0.
From Equations (26) and (38), the continuous second order sliding mode-based adaptive inverse

kinematics methodology (CSOSM-AIK) is described as:

••
q = (Kd JA)

−1
{
Kd
••
x d −Kd

•

JA
•
q + Kp

•
ex + Kiex −K1sx − ς̂(t)

}
•

ς̂(t) =
•
sx(t)

(40)

The proposed continuous second order sliding mode-based adaptive inverse kinematics
methodology (CSOSM-AIK) is depicted in Figure 3.
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Figure 3. Block diagram of the continuous second order sliding mode-based adaptive inverse kinematics
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4. Results

In order to validate the feasibility and effectiveness of the proposed inverse kinematics strategy,
the developed CSOSM-AIK methodology is tested for the inverse kinematics solution of two different
serial robot manipulator configurations; the three-link robot arm and anthropomorphic robot arm.
Also, a comparison with another work in the literature is provided.

4.1. Three-Link Robot Arm

The developed continuous second order sliding mode-based adaptive inverse kinematics
methodology (CSOSM-AIK) is first examined through simulations using the three-link planar arm
shown in Figure 4 [1,2].
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The direct kinematics equation for this arm is deduced as follows [1,2]:

xe =

[
pe

φe

]
= k(q) =


a1c1 + a2c12 + a3c123

a1s1 + a2s12 + a3s123

q1 + q2 + q3

 (41)

The analytical Jacobian of the three-link planar manipulator is given by [1,2]:

JA(q) =
∂k(q)
∂q

=


−a1s1 − a2s12 − a3s123 −a2s12 − a3s123 −a3s123

a1c1 + a2c12 + a3c123 a2c12 + a3c123 a3c123

1 1 1

 (42)

where the link lengths are a1 = a2 = a3 = 0.5 m. It is desired to move the end effector of this three link
robot on a circular trajectory of radius (0.5 m) and centered at (0.25, 0.5) as shown in Figure 5.
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The X and Y coordinates of the desired circular trajectory in the X-Y plane can be deduced as
follows [1,2]:

pd(t) =
[

xd
yd

]
=

[
0.25(1− cosπt)
0.25(2 + sinπt)

]
0 ≤ t ≤ 4 (43)

The manipulator is assumed to be at the initial posture q(0) =
[
π −π2

−π
2

]T
rad, corresponding

to the end-effector initial pose of p(0) = [x(0) y(0)]T = [0 0.5]T m. With regards of the end-effector
orientation, it is desired to follow the following orientation trajectory:

φd(t) = sin
π
24

t 0 ≤ t ≤ 4 (44)
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In order to check the robustness of the proposed scheme CSOSM-AIK, large severe uncertainties
are simulated. This can be represented by an unpredicted variation of the Jacobian matrix (∆JA(q)) at
t = 2.0 s, which is set to:

∆JA(q) =


−0.25 s1 − 0.3 s12 − 0.27 s123 −0.3 s12 − 0.27 s123 −0.27 s123

0.25 c1 + 0.3 c12 + 0.27 c123 0.3 c12 + 0.27 c123 0.27 c123

0.85 0.95 0.87

 (45)

The parameters of the various types of the competing inverse kinematics approaches are set as
given in Table 1.

Table 1. Inverse kinematics parameters for three link robot arm.

Algorithm Parameters

TIK Kp = diag{450, 450, 450} and
Kd = diag{450, 450, 450}

SOSMIK
Kp = diag{450, 450, 450},

Kd = diag{250, 250, 250}Ki = diag{300, 300, 300},
K1 = diag{150, 150, 150}Kr = diag{600, 600, 600}

CSOSM-AIK
Kp = diag{450, 450, 450}, Kd = diag{200, 200, 200},

Ki = diag{400, 400, 400} and
K1 = diag{150, 150, 150}

Figures 6–8 illustrate the resulting position trajectories for joint 1, 2, and 3, respectively. Also,
Figures 9 and 10 depict the tracking position errors in the X and Y coordinates. The trajectory of
the end-effector is shown in Figure 11. The resulting tracking position trajectories in the X and Y
coordinates are shown in Figures 12 and 13 respectively.
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Figure 10. Tracking position error in y coordinate (m).

From the simulation results, it is noted that the developed methodology provides good and
robust performance even in the presence of Jacobian matrix uncertainty. According to the results of
proposed inverse kinematics methodology (CSOSM-AIK), it can be seen that a favorable and better
tracking behavior without chattering phenomenon can be obtained. A comparison of tracking response
characteristics among all presented inverse kinematics methodologies is shown in Table 2. The integral
of squared error (ISE), integral absolute error (IAE) and integral time multiplied absolute error (ITAE)
are used as performance metrics. It is obvious from Table 2 that the proposed continuous second order
sliding mode-based adaptive inverse kinematics strategy (CSOSM-AIK) provides a superior trajectory
tracking performance with the smallest error. The performance indices ISE, IAE and ITAE are given by:
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ISE =
∫

e2(t)dt
IAE =

∫ ∣∣∣e(t)∣∣∣dt
ITAE =

∫
t
∣∣∣e(t)∣∣∣dt

(46)
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Figure 11. The end-effector circular trajectory.
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Table 2. Performance indices of the different algorithms for the first simulations.

Algorithm
ISE IAE ITAE

X-Coordin. Y-Coordin. X-Coordin. Y-Coordin. X-Coordin. Y-Coordin.

TIK 3.75 1.995 4.5878 5.7294 7.8871 7.8772
SOSMIK 0.85 0.79 2.9450 3.6575 4.5473 4.0754

CSOSM-AIK 0.0632 0.0478 0.8645 1.0122 2.2461 2.2039

In order to more prove the robustness of the proposed approach, more severe uncertainty is
implemented by considering a step disturbance from 0.5 m to 0.75 m in the lengths of the three links at
t = 0.2 s as shown in Figure 14.Robotics 2020, 9, x FOR PEER REVIEW 15 of 28 
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Figures 15 and 16 depict the tracking position errors in the X and Y coordinates. The trajectory
of the end-effector is shown in Figure 17. The resulting tracking position trajectories in the X and Y
coordinates are shown in Figures 18 and 19 respectively. As seen in the figures, the proposed approach
is very robust even in the existence of a very severe uncertainty.
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4.2. Anthropomorphic Robot Arm

The second numerical simulation used to test the developed continuous second order sliding
mode-based adaptive inverse kinematics strategy (CSOSM-AIK) is the anthropomorphic arm shown
in Figure 20 [26].Robotics 2020, 9, x FOR PEER REVIEW 17 of 28 
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Figure 20. Anthropomorphic robot manipulator [26].

The direct kinematics equation for this arm can be deduced as follows [1,2]:

xe =


xe

ye

ze

 = k(q) =


c1(a2c2 + a3c23)

s1(a2c2 + a3c23)

a2s2 + a3s23

 (47)

The analytical Jacobian can be given by [1,2]:

JA(q) =
∂k(q)
∂q

=


−s1(a2c2 + a3c23) −c1(a2s2 + a3s23) −a3c1s23

c1(a2c2 + a3c23) −s1(a2s2 + a3s23) −a3s1s23

0 a2c2 + a3c23 a3c23

 (48)

The manipulator is assumed to be at the initial posture q(0) =
[
π
6
π
6
π
6

]T
rad corresponding to the

end-effector initial pose (in the task space) of p(0) = [x(0) y(0) z(0)]T = [6.3 3.6 4.4]T m. It is desired
to move the end effector in the Cartesian space on the circular trajectory illustrated in Figure 21. The
desired motion trajectory in the Cartesian space is defined as [26]:
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Robotics 2020, 9, 4 17 of 26

Robotics 2020, 9, x FOR PEER REVIEW 18 of 28 

 

The parameters of the various types of the competing inverse kinematics approaches are set as 
given in Table 3. 

Table 3. Inverse kinematics parameters for anthropomorphic robot arm. 

Algorithm Parameters 

TIK { }500,500,500diagK p =  and { }600,600,600diagKd =   

SOSMIK 

{ }500,500,500diagK p = , { }400,400,400diagKd = , 

{ }500,500,500diagKi = , { }150,150,1501 diagK =  

{ }900,900,900diagK r =   

CSOSM-MIK 
{ }500,500,500diagK p = , { }400,400,400diagKd = , 

{ }500,500,500diagKi =  and { }150,150,1501 diagK =   

Figures 22–24 illustrate the resulting position trajectories for joint 1, 2 and 3 respectively. Figures 
25–27 depict the tracking position errors in the X, Y and Z coordinates respectively. The resulting 
tracking position trajectories in in the X, Y and Z coordinates are shown in Figures 28–30 respectively. 
The trajectory of the end-effector is shown in Figure 31. A comparison of tracking response 
characteristics of all presented inverse kinematics methodologies is shown in Table 4. The integral of 
the absolute error (IAE) and the integral of time-weighted absolute error (ITAE) are used as two 
performance metrics. It is obvious from Table 4 that the proposed continuous second order sliding 
mode -based adaptive inverse kinematics strategy (CSOSM-AIK) provides a superior trajectory 
tracking performance with a very small error. 

 
Figure 21. Desired circular trajectory for anthropomorphic manipulator. 

6.05
6.1

6.15
6.2

6.25
6.3

6.35

3.7
3.8

3.9
4

4.1
4

4.1

4.2

4.3

4.4

 

x-axis (m)y-axis (m)
 

z-
ax

is
 (m

)
Desired circular trajectory

Figure 21. Desired circular trajectory for anthropomorphic manipulator.

In order to check the robustness of the proposed CSOSM-AIK inverse kinematics methodology,
large severe uncertainties are simulated. This can be represented by an unpredicted variation of the
Jacobian matrix (∆JA(q)) at t = 4.0 s, which is set to:

∆JA(q) =


−s1(2.75 c2 + 1.5 c23) −c1(2.75 s2 + 1.5 s23) −1.5 c1s23

c1(2.75 c2 + 1.5 c23) −s1(2.75 s2 + 1.5 s23) −1.5 s1s23

0 2.75c2 + 1.5 c23 1.5 c23

 (50)

The parameters of the various types of the competing inverse kinematics approaches are set as
given in Table 3.

Table 3. Inverse kinematics parameters for anthropomorphic robot arm.

Algorithm Parameters

TIK Kp = diag{500, 500, 500} and
Kd = diag{600, 600, 600}

SOSMIK Kp = diag{500, 500, 500}, Kd = diag{400, 400, 400},
Ki = diag{500, 500, 500}, K1 = diag{150, 150, 150}

Kr = diag{900, 900, 900}

CSOSM-MIK
Kp = diag{500, 500, 500}, Kd = diag{400, 400, 400},

Ki = diag{500, 500, 500} and
K1 = diag{150, 150, 150}

Figures 22–24 illustrate the resulting position trajectories for joint 1, 2 and 3 respectively.
Figures 25–27 depict the tracking position errors in the X, Y and Z coordinates respectively. The
resulting tracking position trajectories in in the X, Y and Z coordinates are shown in Figures 28–30
respectively. The trajectory of the end-effector is shown in Figure 31. A comparison of tracking
response characteristics of all presented inverse kinematics methodologies is shown in Table 4. The
integral of the absolute error (IAE) and the integral of time-weighted absolute error (ITAE) are used
as two performance metrics. It is obvious from Table 4 that the proposed continuous second order
sliding mode -based adaptive inverse kinematics strategy (CSOSM-AIK) provides a superior trajectory
tracking performance with a very small error.
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Figure 22. Position of joint 1 (rad).
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Figure 23. Position of joint 2 (rad).

Robotics 2020, 9, x FOR PEER REVIEW 19 of 28 

 

 
Figure 22. Position of joint 1 (rad). 

 
Figure 23. Position of joint 2 (rad). 

 
Figure 24. Position of joint 3 (rad). 

0 1 2 3 4 5 6 7 8
0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Time (sec.)

Po
si

tio
n 

of
 jo

in
t 1

 (r
ad

.)

 

 

TIK
SOSMIK
CSOSM-AIK

0 1 2 3 4 5 6 7 8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Time (sec.)

Po
si

tio
n 

of
 jo

in
t 2

 (r
ad

.)

 

 

TIK
SOSMIK
CSOSM-AIK

0 1 2 3 4 5 6 7 8

0.6

0.8

1

1.2

1.4

1.6

Time (sec.)

Po
si

tio
n 

of
 jo

in
t 3

 (r
ad

.)

 

 

TIK
SOSMIK
CSOSM-AIK

Figure 24. Position of joint 3 (rad).



Robotics 2020, 9, 4 19 of 26Robotics 2020, 9, x FOR PEER REVIEW 20 of 28 

 

 
Figure 25. Tracking position error in x Coordinate (m). 

 
Figure 26. Tracking position error in y Coordinate (m). 

 
Figure 27. Tracking position error in Z Coordinate (m). 

0 1 2 3 4 5 6 7 8
-1

-0.5

0

0.5

Time (sec.)

Po
si

tio
n 

er
ro

r i
n 

X
 c

oo
rd

in
at

e 
(m

)

 

 

TIK
SOSMIK
CSOSM-AIK

7.2 7.4 7.6 7.8

-0.08

-0.06

-0.04

-0.02

 

 

0 1 2 3 4 5 6 7 8
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Time (sec.)

Po
si

tio
n 

er
ro

r i
n 

Y
 c

oo
rd

in
at

e 
(m

)

 

 

TIK
SOSMIK
CSOSM-AIK

1.8 1.9 2 2.1 2.2
-0.03

-0.02

-0.01

0

 

 

TIK
SOSMIK
CSOSM-AIK

0 1 2 3 4 5 6 7 8
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Time (sec.)

Po
si

tio
n 

er
ro

r i
n 

Z 
co

or
di

na
te

 (m
)

 

 

TIK
SOSMIK
CSOSM-AIK

Figure 25. Tracking position error in x Coordinate (m).
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Figure 26. Tracking position error in y Coordinate (m).
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Figure 27. Tracking position error in Z Coordinate (m).
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Figure 28. Position in X Coordinate (m).
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Figure 29. Position in Y Coordinate (m).
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Table 4. Performance indices of the different algorithms for the second simulations.

Algorithm
IAE ITAE

X axis Y axis Z axis X axis Y axis Z axis

TIK 8.9885 9.5896 8.9884 13.8687 13.4564 13.6091
SOSMIK 4.6553 4.5142 5.9203 8.2853 7.5632 8.6541

CSOSM-AIK 2.6988 2.4674 2.2541 3.6554 3.1592 3.5628

4.3. Comparison between CSOSM-AIK and Other Approaches

In [40], the authors addressed the rigid robot manipulator (RRM) tracking control problem in
the Cartesian space in the presence of uncertainties. To compare and assess the control behavior of
our proposed scheme (CSOSM-AIK) with the controller proposed in [40], computer simulations of the
adopted CSOSM-AIK controller have been conducted to consider the tracking problem of the same
rigid two-link planar robot manipulator shown in Figure 32.
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As reported in [40], a circular path is assigned to the end-effector as depicted in Figure 33. The
desired motion trajectory in the Cartesian space is defined as [40]:

pd(t) =
[

xd(t)
yd(t)

]
=

[
1 + 0.6 cos(πt

5 )

1 + 0.6 sin(πt
5 )

]
(51)
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The manipulator is assumed at the initial posture q(0) =
[
0 π

2

]T
rad. corresponding to the

end-effector initial pose in the task space as: p(0) = [x(0) y(0)]T = [1.6 1]T m. The parameters of the
rigid two-link revolute robot manipulator are set as in [40].

In order to investigate the robustness of the proposed methodology, the simulation is
carried out with kinematic uncertainties. It is assumed that the size of the two links varies as
(l1 = 1.2 + 0.1 sin(2πt)) and (l2 = 1.3 + 0.1 sin(2πt)).

Figure 34 shows the trajectory tracking performance of the two-link manipulator by the algorithm
proposed in [40]. Also, the tracking error in X and Y coordinates are shown in Figures 35 and 36 [40].
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Robotics 2020, 9, 4 24 of 26

Robotics 2020, 9, x FOR PEER REVIEW 25 of 28 

 

 

. 

Figure 37. The end-effector circular trajectory for CSOSM-AIK. 

 
Figure 38. Tracking position error of circular path in X coordinate (m). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

X coordinate (m)

Y
 c

oo
rd

in
at

e 
(m

)

 

 

Desired path
CSOSM-AIK

0.395 0.4 0.405 0.41 0.415 0.42 0.425 0.43 0.435 0.44
0.7

0.8

0.9

1

1.1

1.2

X coordinate (m)

Y
 c

oo
rd

in
at

e 
(m

)

 

 

Desired path
CSOSM-AIK

0 2 4 6 8 10 12 14 16 18 20
-0.01

-0.005

0

0.005

0.01

0.015

Time (sec.)

Po
si

tio
n 

er
ro

r i
n 

X
 c

oo
rd

in
at

e 
(m

)

Figure 38. Tracking position error of circular path in X coordinate (m).Robotics 2020, 9, x FOR PEER REVIEW 26 of 28 

 

 
Figure 39. Tracking position error of circular path in Y coordinate (m). 

As seen in Figures 36 and 37 for the work proposed in [40], the tracking position errors ranges 
from approximately −0.01 to 0.01 m while as seen in Figures 38 and 39 (the proposed approach), the 
tracking position errors ranges from approximately −0.002 to 0.002 m. Thus, the proposed CSOSM-
AIK approach can proficiently fulfill the trajectory tracking performance.  

5. Conclusions  

In this paper, an adaptive inverse kinematics approach based on continuous second order 
sliding mode strategy (CSOSM-AIK) is designed for serial robot manipulators with uncertain 
Jacobian matrix. In this proposed strategy, an adaptation law is addressed to compensate for the 
unknown uncertainty of the Jacobian matrix parameters of the robot manipulators. The robustness 
of the proposed approach to uncertainties has been analytically proven. Also, the chattering effect 
has been totally canceled in the proposed approach by using a continuous second order sliding mode 
strategy. The global stability of the closed-loop system is proven using the Lyapunov theorem and 
both trajectory tracking error and error rate are further proven to converge to zero. Matlab 
simulations are presented to show the effectiveness of the proposed approach. Working towards 
implementing the proposed work on actual robots is highly considered in our future plan 

Author Contributions: Conceptualization, W.M.A., A.E. and Y.B.; methodology, A.E., W.M.A. and Y.B.; 
software, A.E., W.M.A. and Y.B.; validation, A.E., W.M.A. and Y.B.; formal analysis, A.E., W.M.A. and Y.B.; 
investigation, A.E., W.M.A. and Y.B.; writing—review and editing, A.E., W.M.A. and Y.B.; project 
administration, A.E.; funding acquisition, A.E. All authors have read and agreed to the published version of the 
manuscript.  

Acknowledgments: The authors would like to acknowledge the support of the Deanship of Scientific Research 
at Prince Sattam Bin Abdulaziz University, Saudi Arabia. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics, Modeling, Planning and Control; Springer: 
Berlin/Heidelberg, Germany, 2009. 

2. Siciliano, B.; Sciavicco, L.; Khatib, O. Springer Handbook of Robotics; Springer-Verlag: Berlin/Heidelberg, 
Germany, 2008. 

3. Kütük, M.; Taylan, M.; Canan, L. Forward and Inverse Kinematics Analysis of Denso Robot. In Proceedings 
of the International Symposium of Mechanism and Machine Science, Baku, Azerbaijan, 11–14 September 
2017. 

4. Xie, M. Fundamentals of Robotics: Linking Perception to Action; World Scientific Publishing, Co., Pte, Ltd.: 
Singapore, 2003. 

0 2 4 6 8 10 12 14 16 18 20
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time (sec.)

Po
si

tio
n 

er
ro

r i
n 

Y
 c

oo
rd

in
at

e 
(m

)

Figure 39. Tracking position error of circular path in Y coordinate (m).

As seen in Figures 36 and 37 for the work proposed in [40], the tracking position errors ranges
from approximately −0.01 to 0.01 m while as seen in Figures 38 and 39 (the proposed approach), the
tracking position errors ranges from approximately −0.002 to 0.002 m. Thus, the proposed CSOSM-AIK
approach can proficiently fulfill the trajectory tracking performance.

5. Conclusions

In this paper, an adaptive inverse kinematics approach based on continuous second order sliding
mode strategy (CSOSM-AIK) is designed for serial robot manipulators with uncertain Jacobian matrix.
In this proposed strategy, an adaptation law is addressed to compensate for the unknown uncertainty
of the Jacobian matrix parameters of the robot manipulators. The robustness of the proposed approach
to uncertainties has been analytically proven. Also, the chattering effect has been totally canceled in
the proposed approach by using a continuous second order sliding mode strategy. The global stability
of the closed-loop system is proven using the Lyapunov theorem and both trajectory tracking error
and error rate are further proven to converge to zero. Matlab simulations are presented to show the
effectiveness of the proposed approach. Working towards implementing the proposed work on actual
robots is highly considered in our future plan.
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