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Abstract: Various 3-UPU architectures feature two rigid bodies connected to one another through three
kinematic chains (limbs) of universal–prismatic–universal (UPU) type. They were first proposed in
the last decade of the 20th century and have animated discussions among researchers for more-or-less
two decades. Such discussions brought to light many features of lower-mobility parallel manipulators
(PMs) that were unknown until then. The discussions also showed that such architectures may be
sized into translational PMs, parallel wrists, or even reconfigurable (metamorphic) PMs. Even though
commercial robots with these architectures have not yet been built, the interest in them remains.
Consequently, a review of the literature on these architectures, highlighting their contribution to the
progress of lower-mobility PM design, is still of interest for the scientific community. This paper aims
at presenting a critical review of the results that have been obtained up until now.

Keywords: parallel manipulators; lower mobility; reconfigurable mechanism; singularity locus;
constraint singularities; structural singularity

1. Introduction

The most common parallel manipulators with three degrees of freedom (DOF) are constituted by
two rigid bodies, the end effector (platform) and the frame (base), joined by three kinematic chains
(limbs) with the same topology and connectivity1 equal to five. Among these parallel manipulators
(PMs), 3-UPU architectures2 (Figure 1) are those with three limbs of UPU type. Such architectures are
special cases of the 3-UTU ones, where T denotes a generic single-DOF kinematic pair that makes the
axes of the two intermediate R-pairs of the limb translate with respect to one another. A T pair, over a
P pair, could be, for instance, an R-pair with axis parallel to the two that have to translate with respect
to one another (see Figure 2). Even though most of the literature refers to 3-UPU, the presented results
hold for any 3-UTU.

In 1996, Tsai [2] proposed a translational 3-UPU. The Tsai 3-UPU (Figure 1c) had the three R-pair
axes fixed in the base (in the platform) in a coplanar arrangement. In [2], Tsai solved, in explicit form,
the direct (DPA) and inverse (IPA) position analyses of this translational PM (TPM), which gave two
DPA solutions and one IPA solution. Such results made him conclude that the translational 3-UPU
was simple to manufacture and to control.

Following Tsai’s proposal, Park built a prototype, named SNU 3-UPU [3–5] (Figure 1d), which had
the three R-pair axes fixed in the base (in the platform) in a coplanar arrangement and with a common

1 According to [1], here, we use the term “limb connectivity” to denote the DOF number the platform would have if it were
connected to the base only through that limb.

2 Hereafter, U, S, R, and P stand for universal joint, spherical pair, revolute pair, and prismatic pair, respectively. Also, the
underscore denotes an actuated kinematic pair.
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intersection point. In 2001 [3], he presented the prototype and highlighted that the SNU 3-UPU
exhibited an unforeseen extra mobility at the home position, which made the platform orientation
change. Such strange behavior started animated discussions [3–9] that, in 2002, identified the constraint
singularities [3,6] as the main cause of the strange behavior and as a negative feature that occurs in
most of the lower-mobility PMs.

In the meantime, Parenti-Castelli et al. [10–16] studied more general families of TPMs that included
both the Tsai 3-UPU and the SNU 3-UPU. In 1998, Di Gregorio and Parenti-Castelli [10] showed that a
PM of 3-RRPRR type becomes a TPM if it is manufactured and assembled out of particular singular
configurations (later called constraint singularities [6]), so that, in each RRPRR limb,

(i) the axes of the two intermediate R-pairs are parallel to one another, and
(ii) the axes of the two ending R-pairs are parallel to each other.

Then, from 1999 to 2000, together with Bubani, Di Gregorio and Parenti-Castelli studied in depth
the whole family of translational 3-UPUs with the three R-pair axes fixed in the base (in the platform)
in a coplanar arrangement. In [11], Di Gregorio and Parenti-Castelli presented the general expressions
of the singularity loci of any translational 3-UPU and demonstrated that, in the above-mentioned case
of coplanar axes, the rotation (constraint) singularity locus is constituted by a right circular cylinder
(Figure 3), which could degenerate [11,12] (Figure 4) for particular platform (base) geometries, and a
plane. In the SNU 3-UPU (Figure 1d), the cylinder equation, reported in [11], becomes the equation
of a line perpendicular to the base plane and passing through the home position, which explains the
strange behavior found by Park. These results were exploited by Parenti-Castelli et al. to build a
prototype [13,14] of the Tsai 3-UPU that worked correctly. Later, the same results together with an
in-depth analysis of the joint-clearance effects allowed for Bhutani and Dwarakanath [17,18] to build a
“high-precision” Tsai 3-UPU that could be used as a measuring machine.

In 2000, Karouia and Hervè [19] identified the geometric conditions that make a 3-UPU architecture
become a parallel wrist3 (PW). In particular, by using group theory, they demonstrated that, out of
singular configurations, a 3-UPU architecture is a PW (Figure 1b), if

(a) the platform and the base are manufactured so that the three R-pair axes embedded in them have
a common intersection point;

(b) each UPU limb (Figure 5) is manufactured and assembled so that the axes of the two intermediate
R-pairs are parallel to one another; and

(c) the 3-UPU is assembled so that the axes of the six R-pairs adjacent to the base or to the platform
share a common intersection point (such point becomes the spherical motion center).

Karouia and Hervè [19] also advised that such conditions do not exclude the existence of
singular configurations where the platform locally acquires an additional translational DOF. Later, Di
Gregorio [20,21], by analyzing statics and kinematics of 3-UPU wrists, provided both the geometric
(Figure 6) and the analytic conditions that identify the translation (constraint) singularities of these
wrists. In [22], Ashith-Shyam and Ghosal presented a 3-UPU wrist prototype for sun tracking; and,
in [23,24], Huda and Takeda presented the prototype of a 3-URU wrist for a machine tool and the
adopted design methodology.

The consideration that translational 3-UPUs have rotation singularities and 3-UPU wrists have
translation singularities pushed Zlatanov et al. [6] to introduce the concept of “constraint singularity”
and to highlight that these singularities may occur in any lower-mobility PMs. A constraint singularity
is a configuration where a lower-mobility PM may change its operating mode. They may occur when
the limbs’ connectivity is higher than the DOF number of the PM. Also, Zlatanov et al. [25] illustrated

3 Parallel wrists (PWs) are PMs in which the relative motion between platform and base can only be a spherical motion with a
fixed center.
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this concept through the DYMO 3-URU prototype (Figure 7), which exploited its constraint singularities
to change its operating mode: It was able to become a TPM, a PW, or a 3-DOF planar PM. DYMO
showed for the first time that a 3-UTU can be a reconfigurable machine.

In particular, a 3-UTU can switch from TPM to PW and vice versa if it satisfies conditions (a) and
(b) from Karouia and Hervè [19] as stated above; whereas, it can switch from TPM or PW to 3-DOF
planar PM and vice versa, if in addition to satisfying conditions (a) and (b), the three R-pair axes fixed
in the base (in the platform) are coplanar. The central issue for actually getting a reconfigurable 3-UTU
is how to manage the passage through a singular configuration? In [26], Carbonari et al. bypassed
the problem by proposing a reconfigurable 3-URU (Figure 8) that could switch from TPM to PW and
vice versa at a given non-singular configuration through an ad-hoc-conceived device, which modifies
the geometry of the U-joints adjacent to the base. In the same line, Sarabandi et al. [27] presented a
particular 3-UPU geometry that can switch from TPM to PW and vice versa by simply turning the
platform assembly upside down. This 3-UPU could do the same switch by passing through a singular
configuration without disassembling the platform, but the authors did not propose any strategy to go
through the singularity.

Eventually, structural singularities of 3-UPU architectures were used to ideate a Shoenflies motion
generator [28] of 4-UPU type [29–32], and a rolling mechanism [33].
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This review paper aims at summarizing the relevant analytic and geometric aspects of the
above-mentioned results in a unique framework that should be useful for designers and researchers.
The paper is organized as follows. Section 2 gives some background concepts and presents the
adopted notations together with some general comments. Sections 3 and 4 analyze translational and
wrist architectures, respectively. Then, Section 5 analyzes reconfigurable and structurally singular
architectures, and Section 6 draws the conclusions.
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2. Background, Notations, and General Comments

The instantaneous input–output relationship of a PM is a linear and homogeneous system
that relates the platform twist and the actuated-joint rates. In this relationship, the two coefficient
matrices (Jacobians) that multiply the platform twist, and the actuated-joint rates depend only on
the PM configuration. Singularities are PM configurations that makes either or both these Jacobians
rank-deficient. The PM configuration is not controllable at a singularity. In particular, singularities of
the Jacobian that multiplies the platform twist (named parallel singularities) occur inside the reachable
workspace, and make the platform gain one or more instantaneous DOFs locally (i.e., they are a
particular type of uncertainty configurations [1]). From a statics’ point of view [21], at a parallel
singularity, the platform is not able to carry external loads, even small ones, without overloading
at least one link (i.e., without breaking down at least one link). Consequently, parallel singularities
must be identified during design and avoided during operation by locating the useful workspace in
free-from-singularity regions of the operational space.

That is why the possibility of building a particular type of 3-UPU is related to the identification
of those geometries that provide wide free-from-singularity regions where the platform can perform
only one type of motion (spatial translation (TPMs) or spherical motion (PWs) or planar motion). The
following part of this paper illustrates the main results reported in the literature by analyzing the
input–output instantaneous relationships of these architectures.

Figure 1a shows a general 3-UPU architecture together with the adopted notations. With reference
to Figure 1a,

- Oxbybzb and Pxpypzp are two Cartesian references fixed to the base and the platform, respectively;
- Ai (Bi) for i = 1, 2, 3 are the centers of the U joints adjacent to the base (platform);
- in each UPU limb, the four R-pairs are numbered with an index, j, that increases by moving from

the base toward the platform;
- wji, for j = 1, . . . , 4, is the j-th R-pair axis’ unit vector of the i-th UPU limb, i = 1, 2, 3;
- w2i and w3i are perpendicular to the axis of the i-th limb (i.e., the line through Ai and Bi), for i = 1,

2, 3.

Moreover, the following parameters/vectors are defined:

- θji, for j = 1, . . . ,4, is the angular joint variable, counterclockwise with respect to wji, of the j-th
R-pair of the i-th UPU limb, i = 1, 2, 3;

- di = |Bi − Ai| is the linear joint variable of the P-pair (hereafter named “limb length”) of the i-th
UPU limb, i = 1, 2, 3;

- p = (P − O); bi = (Bi − O) = p + b0i with b0i = (Bi − P), for i = 1, 2, 3;
- ai = (Ai − O), for i = 1, 2, 3; ci = (b0i − ai) for i = 1, 2, 3; gi = (bi − ai)/di for i = 1, 2, 3;
- ri = w1i × w2i for i = 1, 2, 3; hi = w3i × w4i for i = 1, 2, 3; ni = [(bi − ai)·ri] hi for i = 1, 2, 3.

With these notations, the following instantaneous relationships can be written:

.
bi =

.
digi + di

( .
θ

1i
w1i +

.
θ2iw2i) × gi i = 1, 2, 3, (1a)

.
bi =

.
p +ω× (bi − p) i = 1, 2, 3, (1b)

ω =
∑
j=1,4

.
θjiwji i = 1, 2, 3, (1c)

where ω is the angular velocity of the platform, and
.
x denotes the time derivative of x. Equations

(1a), (1b), and (1c) are formally the same that appeared in [34] for the 3-nSPU manipulator and,
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with the same algebraic manipulations reported in [34], they yield the following instantaneous
input–output relationship: [

1
0

]
.
d =

[
G K
S J

]( .
p
ω

)
, (2)

where 1 and 0 are the 3 × 3 identity and null matrices, respectively;
.
d = (

.
d1,

.
d2,

.
d3)

T
is the vector

collecting the P-pairs’ joint rates, which are the instantaneous inputs, and

GT = (g1, g2, g3), KT = (k1, k2, k3), ST = (s1, s2, s3), JT = (j1, j2, j3) (3)

with

ki = (bi − p) × gi, si = hi × ri − [gi·(hi × ri)] gi, ji = (bi − p) × si − [(bi − ai)·ri] hi, i = 1, 2, 3. (4)
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System (2) holds for any 3-UPU no matter if it is a TPM or a PW. It becomes specific when the
above-mentioned geometric conditions that make the 3-UPU a TPM or a PW are inserted into it.
The last three equations of system (2) do not involve the input-joint rates and are general no matter
which input variables (i.e., the chosen actuated joints) are used; when their coefficient matrix (i.e., the
3 × 6 matrix [S J]) is rank-deficient, a constraint singularity occurs.

The first three equations of system (2) relate the input-joint rates to the platform twist; in these
equations, when the coefficient matrix that multiplies the platform twist (i.e., the 3 × 6 matrix [G K]) is
rank deficient, the platform can perform elementary motions without changing its operating mode,
even though the actuated joints are locked. These three equations vary together with the associated
singularity conditions if the input variables are changed. Nevertheless, if the actuated joints just control
the limb lengths, the changes involve only the left-hand sides of these equations, leaving the 3 × 6
matrix [G K] unchanged together with the associated singularities. For instance, with reference to
Figure 2, if the actuated P-pair of the i-th limb is replaced by an actuated R-pair with an axis parallel to
w2i and w3i, the following relationships hold

d2
i = e2

i + f2
i − 2eifi cosϕi i = 1, 2, 3 (5)
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whose 1st time derivatives are

.
di =

eifi sinϕi√
e2

i + f2
i − 2eifi cosϕi

.
ϕi i = 1, 2, 3. (6)

Thus, the simple substitution of the right-hand side of Equation (6) for
.
di, i = 1, 2, 3 into the

left-hand side of system (2) transforms the instantaneous input–output relationship of a 3-UPU into
the one of a 3-URU.

3. Translational 3-UTU

The geometric conditions, (i) and (ii), for getting a TPM, with the adopted notations, become
(i) w2i = ±w3i and (ii) w1i = ±w4i for i = 1, 2, 3, which yield hi = ±ri, si = 0 and ji = ±[(bi − ai)·hi] hi.
Consequently, the instantaneous input–output relationship (2) becomes[

1
0

]
.
d =

[
G K
0 J

]( .
p
ω

)
. (7)

3.1. Rotation (Constraint) Singularities

By canceling the coefficients ±[(bi − ai)·hi]4 the last three equations of system (7) become [12]

hi·ω = 0 i = 1, 2, 3. (8)

Equation (8) admits a non-null solution for ω (i.e., a rotation (constraint) singularity occurs) if
and only if

h1·(h2 × h3) = 0. (9)

From a geometric point of view, Equation (9) is satisfied when the three vectors hi, for i = 1, 2, 3,
are coplanar (i.e., when all the intersections among the planes parallel to the U-joints’ cross links are
parallel lines). Consequently, if the unit vectors w1i (w4i), for i = 1, 2, 3, are all parallel, this geometric
condition is always satisfied5 and a structural rotation (constraint) singularity occurs [29–31].

From an analytic point of view [11], Equation (9) is an algebraic equation, whose unknowns
are the coordinates of a platform point6 measured in Oxbybzb, which represents a surface (rotation
(constraint) singularity locus) in Oxbybzb (the operational space) whose points locate the singular
configurations where the platform can rotate. The deduction of this algebraic equation is as follows7:

w3i =
w4i × (bi − ai)∣∣∣w4i × (bi − ai)

∣∣∣ = w1i × [p + (b0i − ai)]∣∣∣w1i × [p + (b0i − ai)]
∣∣∣ = w1i × p + ci∣∣∣w1i × p + ci

∣∣∣ i = 1, 2, 3 (10)

which yields

hi = w3i ×w4i =
(w1i × p + ci) ×w1i∣∣∣w1i × p + ci

∣∣∣ =
p− (w1i · p)w1i + ci ×w1i∣∣∣w1i × p + ci

∣∣∣ i = 1, 2, 3 (11)

4 Since this coefficient has no effect on the value of ω when it is different from zero, the value of ω as this coefficient goes to
zero is unchanged. Therefore, the zeroing of this coefficient does not affect the angular velocity of the platform and does not
identify a rotation (constraint) singularity.

5 Indeed, in this case, all the intersections among the cross-links’ planes are lines parallel to the unit vectors w1i (w4i).
6 In TPMs, the coordinates of a platform point are sufficient to identify the platform pose in the operational space since the

platform translates with respect to the base.
7 Note that, in a TPM, the above-defined vectors ci (= b0i − ai), i = 1, 2, 3, are constant vectors since the platform translates.
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and
h1 · (h2 × h3) =

[p−(w11·p)w11+c1×w11]·{[p−(w12·p)w12+c2×w12]×[p−(w13·p)w13+c3×w13]}

|w11×p+c1||w12×p+c2 ||w13×p+c3 |
. (12)

Since the denominator of expression (12) is constituted by the product of vector magnitudes, it
does not provide zeros of Equation (9); hence, in Equation (9), it can be eliminated to give the following
algebraic equation of the singularity locus:

[p− (w11 ·p)w11 + c1×w11] ·
{
[p− (w12 · p)w12 + c2 ×w12] × [p− (w13 · p)w13 + c3 ×w13]

}
= 0 (13a)

whose expansion yields

(w12 · p) (w13 · p) [(w12 × w13) · p] − (w12 · p){[w12 × (c3 × w13)] · p} − (w13 · p) {[(c2 × w12) × w13] · p} +

+ {[(c2 × w12) × (c3 × w13)] · p} + (w11 · p) {[(w13 · p)w13 − (w12 · p)w12 − (c3 × w13) + c2 × w12] × w11} · p +

− (w11 · p) (w12 · p) (w13 · p) [(w12 × w13) · w11] + (w11 · p) (w12 · p) [w12 × (c3 × w13)] · w11 +

+ (w11 · p) (w13 · p) [(c2 × w12) × w13] · w11 - (w11 · p) [(c2 × w12) × (c3 × w13)] · w11 − {[(w13 · p)w13 +

− (w12 · p)w12 − (c3 × w13) + c2 × w12] × (c1 × w11)} · p + (w12 · p) (w13 · p) [(w12 × w13) · (c1 × w11)] +

− (w12 · p) {[w12 × (c3 × w13)] · (c1 × w11)} − (w13 · p) {[(c2 × w12) × w13] · (c1 × w11)} +

+ [(c2 × w12) × (c3 × w13)] · (c1 × w11) = 0.

(13b)

Equation (13) is cubic in the coordinates of point P (see Figure 1a). Since the coefficients that appear
in Equation (13) depend on the shape of the platform and base, the rotation (constraint) singularity
locus depends only on the platform and base geometries.
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In the SNU 3-UPU (Figure 1d), the base (platform) triangle A1A2A3 (B1B2B3) is an equilateral
triangle, and the unit vectors w1i (w4i), i = 1, 2, 3, lie on three R-pair axes that have the center of this
triangle as a common intersection. By choosing this center as origin O (P), and the triangle plane as the
xbyb (xpyp) coordinate plane for Oxbybzb (Pxpypzp), it is easy to realize that, in Equation (13a), the
vectors ci ×w1i, for i = 1, 2, 3, are all null vectors since ci is parallel to w1i. Consequently, when P lies
on the line through O perpendicular to the base triangle A1A2A3 (i.e., the SNU 3-UPU is at its home
position), the dot products (w1i · p), for i = 1, 2, 3, are equal to zero and the left-hand side of Equation
(13a), which becomes p ·(p × p), is identically equal to zero, that is, the platform can rotate.

In the Tsai 3-UPU (Figure 1c), the base (platform) triangle A1A2A3 (B1B2B3) is an equilateral
triangle, but the i-th unit vector w1i (w4i), i = 1, 2, 3, is parallel to the base-triangle (platform-triangle)
side opposite to the vertex Ai (Bi), which the corresponding R-pair axis passes through. For this



Robotics 2020, 9, 5 8 of 14

geometry, Equation (13) yields, as a singularity locus, a cubic surface (see [14]), that is the product
of the base-triangle plane by a right circular cylinder whose generatrix is a line perpendicular to the
base-triangle plane. The analytic expression of this cylinder is reported in [14].

The set of all the 3-UPUs with the axes of the three R-pairs, adjacent to the base (platform), that
lie on the plane of the base (platform) triangle contains both SNU and Tsai 3-UPUs. This set was
studied in [12]. The introduction of the geometric conditions that identify this set into Equation (13)
shows that [12] the rotation (constraint) singularity locus of all these 3-UPUs is always the product
of the base-triangle plane by a right circular cylinder whose generatrix is a line perpendicular to the
base-triangle plane. By choosing A1 (B1) as origin O (P), and the base-triangle (platform-triangle)
plane as xbyb (xpyp) coordinate plane for Oxbybzb (Pxpypzp), the analytic expression of this cylinder is
reported in [12] together with the simple geometric construction shown in Figure 3, which allows to
draw immediately the singularity cylinder. The construction of Figure 3 relies on the fact that three
points are sufficient to identify a circle, and that three singularities, B1’, B1” and B1”’ in Figure 3, are
easy to find. The same construction highlights (Figure 4) that, when any two R-pair axes (together with
the corresponding unit vectors w1i) are parallel, the singularity cylinder degenerates into a singularity
plane (see [12] for details).

3.2. Translation Singularities

Out of rotation singularities, the platform angular velocity, ω, is a null vector. Thus, the first three
equations of system (7) become [12]:

gi ·
.
p =

.
di i = 1, 2, 3. (14)
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When the actuators are locked, Equations (14) admit a non-null solution for
.
p (i.e., a translation

singularity occurs) if and only if
g1·(g2 × g3) = 0. (15)

From a geometric point of view, Equation (15) is satisfied when the three unit vectors gi, for i = 1,
2, 3, are parallel to a plane (i.e., when all the limb axes are parallel to a unique plane). If the base and
platform triangles are equal, this condition is always satisfied and a structural translation singularity
occurs [2,12].
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From an analytic point of view [11], Equation (15) is an algebraic equation, whose unknowns
are the coordinates of a platform point measured in Oxbybzb, which represents a surface (translation
singularity locus) in Oxbybzb whose points locate the singular configurations where the platform
translation is not controllable by the actuators. The deduction of this algebraic equation is as follows:

g1 · (g2 × g3) =
(p + b01 − a1) · [(p + b02 − a2) × (p + b03 − a3)]

d1d2d3
. (16)

Since the denominator of expression (16) is constituted by the product of the limb lengths, it does
not provides zeros of Equation (15); hence, in Equation (15), it can be eliminated to give the following
algebraic equation of the singularity locus

(p + b01 − a1) · [(p + b02 − a2) × (p + b03 − a3)] = 0 (17a)

whose expansion is

p·{[(b03 − a3) × (b01 − a1)] + [(b01 − a1) × (b02 − a2)] + [(b02 − a2) × (b03 − a3)]} + (b01 − a1) · [(b02 − a2) × (b03 − a3)] = 0. (17b)

Equation (17b) is linear in the coordinates of P. Therefore, the translation singularity locus is
always a plane [11], which is perpendicular to the vector in curly brackets that dot multiplies p in
Equation (17b). By choosing A1 (B1) as origin O (P), and the base-triangle (platform-triangle) plane
as the xbyb (xpyp) coordinate plane for Oxbybzb (Pxpypzp), it is easy to realize that, if the base and
platform triangles are equal, the vectors (b0i − ai), for i = 1, 2, 3, are all null vectors. Consequently, the
left-hand side of Equation (17b) is identically null (i.e., a structural singularity occurs). Also, in the
case of the 3-UPUs with the axes of the three R-pairs, adjacent to the base (platform), that lie on the
plane of the base (platform) triangle, it is easy to realize that the singularity plane is the base-triangle
plane [12]. Indeed, in this case, the vectors (b0i − ai), for i = 1, 2, 3, are all parallel to the base plane,
which implies that, in Equation (17b), the mixed product (b01 − a1) · [(b02 − a2) × (b03 − a3)] is equal to
zero and the vector in curly brackets is perpendicular to the base-triangle plane.

4. 3-UTU Wrist

The geometric condition (a) for getting a PW, allows for the choice of the point O (P), see Figure 1a,b,
coincident with the common intersection point of the three axes of the R-pairs adjacent to the base
(platform). Such a choice makes ai (bi) parallel to w1i (w4i), for i = 1, 2, 3. In addition, condition (b)
yields w2i = ±w3i; whereas, condition (c) implies that O coincides with P (i.e., p = 0). Consequently,
ki = bi × gi, si = hi × ri since gi is perpendicular to hi × ri, and ji = 0, for i = 1, 2, 3 (see Equation (4)).
These formulas allow for the conclusion that ki and si are both parallel to w2i and w3i (see Figure 5),
which are unit vectors perpendicular to the plane of the triangle AiBiP.

Therefore, the instantaneous input–output relationship (2) for the 3-UPU wrist becomes[
1
0

]
.
d =

[
G K
S 0

]( .
p
ω

)
. (18)

4.1. Translation (Constraint) Singularities

The last three equations of system (18) become

si ·
.
p = 0 i = 1, 2, 3. (19)

Equations (19) admit a non-null solution for
.
p (i.e., a translation (constraint) singularity occurs) if

and only if
s1 · (s2 × s3) = 0, (20a)
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which, since si is parallel to w2i for i = 1, 2, 3, can be simplified as follows [20,21]:

w21 · (w22 × w23) = 0. (20b)

Equation (20b) is satisfied when the three vectors w2i, for i = 1, 2, 3, are all parallel to a unique
plane, that is, when the planes of the three triangles AiBiP, for i = 1, 2, 3, have a line as a common
intersection (Figure 6) [20]. Also, it is worth noting that each unit vector w2i is indeterminate when the
triangle AiBiP is flattened (i.e., the points Ai, Bi, and P are aligned); in this case (see Figure 5), a simple
inspection of the flattened limb reveals that the i-th limb can freely rotate around its axis.

A general analytic expression of Equation (20b) has been deduced in [21] where, by using the
Rodrigues parameters [35] to parameterize the platform orientation, a fourth-degree polynomial
equation in the three Rodrigues parameters has been obtained.

Robotics 2020, 9, x FOR PEER REVIEW 4 of 14 

 

 
Figure 4. Case with two parallel R-pair axes: The circular directrix of the singularity cylinder 
degenerates into a linear directrix (i.e., the cylinder degenerates into a plane). 

In 2000, Karouia and Hervè [19] identified the geometric conditions that make a 3-UPU 
architecture become a parallel wrist3 (PW). In particular, by using group theory, they demonstrated 
that, out of singular configurations, a 3-UPU architecture is a PW (Figure 1b), if 

(a) the platform and the base are manufactured so that the three R-pair axes embedded in them 
have a common intersection point; 

(b) each UPU limb (Figure 5) is manufactured and assembled so that the axes of the two 
intermediate R-pairs are parallel to one another; and 

(c) the 3-UPU is assembled so that the axes of the six R-pairs adjacent to the base or to the platform 
share a common intersection point (such point becomes the spherical motion center). 

 
Figure 5. The i-th limb of a 3-UPU wrist. 

Karouia and Hervè [19] also advised that such conditions do not exclude the existence of singular 
configurations where the platform locally acquires an additional translational DOF. Later, Di Gregorio 
[20,21], by analyzing statics and kinematics of 3-UPU wrists, provided both the geometric (Figure 6) 
and the analytic conditions that identify the translation (constraint) singularities of these wrists. In [22], 
                                                 
3  Parallel wrists (PWs) are PMs in which the relative motion between platform and base can only be a spherical 

motion with a fixed center. 

Figure 5. The i-th limb of a 3-UPU wrist.

Robotics 2020, 9, x FOR PEER REVIEW 5 of 14 

 

Ashith-Shyam and Ghosal presented a 3-UPU wrist prototype for sun tracking; and, in [23,24], Huda 
and Takeda presented the prototype of a 3-URU wrist for a machine tool and the adopted design 
methodology. 

 
Figure 6. Singular configuration of a 3-UPU wrist. 

The consideration that translational 3-UPUs have rotation singularities and 3-UPU wrists have 
translation singularities pushed Zlatanov et al. [6] to introduce the concept of “constraint singularity” 
and to highlight that these singularities may occur in any lower-mobility PMs. A constraint singularity 
is a configuration where a lower-mobility PM may change its operating mode. They may occur when 
the limbs’ connectivity is higher than the DOF number of the PM. Also, Zlatanov et al. [25] illustrated 
this concept through the DYMO 3-URU prototype (Figure 7), which exploited its constraint singularities 
to change its operating mode: It was able to become a TPM, a PW, or a 3-DOF planar PM. DYMO 
showed for the first time that a 3-UTU can be a reconfigurable machine. 

 
Figure 7. DYMO 3-URU: (a) 3D model, (b) translational parallel manipulator (TPM) operating mode, 
(c) parallel wrist (PW) operating mode, (d) 3-DOF planar  PM operating mode. Figures downloaded 

Figure 6. Singular configuration of a 3-UPU wrist.

4.2. Rotation Singularities

Out of the translation singularities,
.
p is a null vector. Thus, the first three equations of system (18)

become [20]:



Robotics 2020, 9, 5 11 of 14

ki · ω =
.
di i = 1, 2, 3. (21)

When the actuators are locked, Equation (21) admit a non-null solution for ω (i.e., a rotation
singularity occurs) if and only if

k1·(k2 × k3) = 0, (22a)

which, since ki is parallel to w2i for i = 1, 2, 3, can be simplified as follows [20,21]:

w21 · (w22 × w23) = 0. (22b)

Equation (22b) coincides with Equation (20b). Thus, the locus of the rotation singularities coincides
with that of the translation (constraint) singularities in a 3-UPU wrist.

5. Reconfigurable and Structurally Singular 3-6UTUs

The presence of constraint singularities in 3-UTUs allows for the building of reconfigurable PMs,
that is, machines that can change their operating mode. In [25], Zlatanov et al. presented DYMO
(Figure 7a), a 3-URU that is able to become a TPM (Figure 7b), a PW (Figure 7c), or a 3-DOF planar PM
(Figure 7d). DYMO (Figure 7a) satisfies geometric conditions (a) and (b), and has the three R-pair axes
fixed in the base (in the platform) in a coplanar arrangement. So, the constraint singularity that occurs
when the intersection of the three R-pair axes fixed in the platform coincides with the intersection of
the three R-pair axes fixed in the base is present in all the three operating modes and can be exploited
to change the operating mode.
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(c) parallel wrist (PW) operating mode, (d) 3-DOF planar PM operating mode. Figures downloaded
from http://www.parallemic.org/Reviews/Review008.html and reproduced with the permission of
the authors.

Unfortunately, the platform pose is out of control at a constraint singularity, and this simple
method for reconfiguring the machine cannot be implemented. Carbonari et al. [26] bypassed the
problem by proposing a reconfigurable 3-URU that could switch from TPM to PW and vice versa at a
given non-singular configuration. Their 3-URU (Figure 8) satisfies conditions (a) and (b), and adopts an
ad-hoc-conceived device, which modifies the geometry of the U-joints adjacent to the base. In the same

http://www.parallemic.org/Reviews/Review008.html
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line, Sarabandi et al. [27] presented a particular 3-UPU geometry that satisfies conditions (a) and (b)
and can switch from TPM to PW and vice versa by simply turning the platform assembly upside down.
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The rotation (constraint) structural singularity (see Section 3.1) that occurs in translational 3-UPUs
when (Figure 1) the unit vectors w1i (w4i), for i = 1, 2, 3, are all parallel makes the platform able to
rotate around axes parallel to these unit vectors. Such additional finite DOF allows for the introduction
of one more UPU limb to control the platform rotation. The resulting 4-UPU is a Shoenflies motion
generator [28]. It was presented in [29] and studied in [30–32].

Eventually, in a translational 3-UPU, if, over the above-mentioned structural singularity, the
structural translation singularity (see Section 3.2) that occurs when the platform and base triangles are
equal is introduced, the resulting 3-UPU acquires two additional finite DOFs: one rotation and one
translation. Such a geometry has been used in [33] to conceive a 5-DOF rolling mechanism able to
move on the floor.

6. Conclusions

A critical review of the extensive literature on 3-UTU architectures has been presented.
The presented review allows for the following conclusions: The study of these architectures contributed
to the mechanism theory by revealing the presence of “constraint singularities” in most of the
lower-mobility PMs. All the design tools have been developed for both translational 3-UPUs and
3-UPU wrists. Even though commercial robots with these architectures are not present on the market,
prototypes that work correctly have been built, and the structural singularities of these architectures
have been exploited. The majority of the published works on the translational 3-UTUs refer to the set
of 3-UTUs with coplanar axes of the three R-pairs adjacent to the base (platform).

Possible future research on these architectures should investigate translational 3-UTUs with base
and platform geometries in which the R-pair axes are not coplanar and strategies to pass through a
constraint singularity.
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