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Abstract: Task allocation for specialized unmanned robotic agents is addressed in this paper. Based on
the assumptions that each individual robotic agent possesses specialized capabilities and that targets
representing the tasks to be performed in the surrounding environment impose specific requirements,
the proposed approach computes task-agent fitting probabilities to efficiently match the available
robotic agents with the detected targets. The framework is supported by a deep learning method
with an object instance segmentation capability, Mask R-CNN, that is adapted to provide target
object recognition and localization estimates from vision sensors mounted on the robotic agents.
Experimental validation, for indoor search-and-rescue (SAR) scenarios, is conducted and results
demonstrate the reliability and efficiency of the proposed approach.

Keywords: task allocation; multi-agent systems; specialized robots; probabilistic representation;
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1. Introduction

This paper introduces a mechanism that explores the concept of specializing individual robotic
agents to respond to constrained tasks. A formalism is designed for task allocation in the context of
a collaborative multi-robot swarm. Unlike previous works that consider heterogeneity among the
robotic agents mainly from their physical construction, here a specific definition of the individual
robots’ specialization is formulated. It leverages the embedded hardware and software characteristics
of each agent and the estimation of requirements imposed by specific target objects. As a result,
an advanced form of specialized labor division emerges in the swarm, which distributes the labor
among the individual agents based on best matching the tasks’ specific requirements to each robot’s
specialized capabilities. This form of task allocation can increase the net efficiency of the robotic
swarm. In this paper, a probabilistic approach is proposed to compute the fit of the individual agents
amongst the robotic swarm, based on matching their specialized capabilities with the corresponding
requirements imposed by the tasks. The latter take the form of visually recognized target objects in the
environment surrounding the robots.

For such a task allocation mechanism to be robust, recent developments in the field of artificial
intelligence are leveraged and a deep learning method named Mask R-CNN is adopted to recognize
and segment target objects in unstructured environments from vision sensors mounted on autonomous
robots. Reliable target object detection supports efficient and responsive automated task allocation for
specialized unmanned robotic systems.

The proposed approach addresses the problem of task allocation in swarm robotics in the specific
context where specialized capabilities of the individual agents are considered. It is based on the
assumption that each individual agent possesses specialized functional capabilities and that the
expected tasks, which are distributed in the surrounding environment, impose specific requirements.
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A task allocation mechanism is formulated to compute the specialty-based task allocation probabilities
of the individual agents, with the purpose to assign the qualified agents to the corresponding detected
tasks. The selection of an agent is based on the probabilistic matching between the individual agents’
specialized capabilities and the constraints (i.e., requirements) that are imposed by the detected targets.

The formulation of the proposed approach evolves through four stages of development.
First, a deep learning method using Mask R-CNN architecture serves to recognize target objects
in unstructured environments from vision sensors mounted on autonomous robots. It is implemented
to represent a robust target objects recognition stage. The output of the sensing layer drives the
proposed task allocation scheme. Second, a matching scheme is developed, to best match each agent’s
specialized capabilities with the corresponding detected tasks. At this stage, a binary definition of
agents’ specialization serves as the basis for task-agent association. Third, the task-agent matching
scheme is expanded to an innovative probabilistic specialty-based task-agent allocation framework
to exploit the potential of agents’ specialization consideration in a standardized format. Fourth,
a coordination scheme is implemented to coordinate the qualified individuals to respond to the
detected tasks. In this stage of development, the agents’ availability state is considered along with
their specialty, to improve the proposed system’s reliability to accomplish the mission goals even when
the most specialized agents that possess a high level of competences are not available or busy with
another task. In such case, the system is designed to show robustness and automatically substitute the
most qualified agents with other specialized agents that are available, even though the latter may offer
a lower level of competence. The proposed approach can allocate the specialized qualified agents to
the corresponding tasks with versatility, based on the requirements of the application, either with only
the most specialized agent considered or with all qualified agents when the intervention of a group of
agents is desirable.

2. Related Work

Previous literature extensively addressed multi-agent task allocation to map robotic agents to
corresponding tasks [1,2]. Jones and Mataric [3] proposed a task-agent assignment approach and built
a state transition probabilistic model to respond to changing tasks. A task allocation probabilistic grid
assignment algorithm was introduced in [4]. The approach partitions the targets environment to a grid
of cells, then assigns the available robots in each cell to allocate the targets that occupy the same cell.
Claes et al. [5] used a Markov decision process to address the task-agent assignment as a spatial task
planning problem. Yasuda et al. [6] introduced a probabilistic model based on a response threshold
to control the individual agents to perform food foraging processes. The proposed model allows for
the robots that have probabilities exceeding a specific threshold to leave the nest and search for food.
Recently, Wu et al. [7] proposed a task allocation probabilistic model based on environmental stimulus
and the agent’s response threshold. A general architecture of a task allocation approach for multi-agent
systems under uncertainty is also investigated through an empirical study in [8]. Four task-allocation
strategies are empirically compared to investigate the task allocation handling problem. The results
show that the task allocation is changing and the system’s overall performance is a function of noise.

On the other hand, environment monitoring systems have been combined with multi-agent
systems [9] to support realistic application of robots’ interaction with their surrounding environment.
Feature extraction and object class recognition on target objects that robotic agents encounter,
while exploring a workspace, play a critical role for a reliable estimation of the specialized agents’
qualification to intervene on the detected targets. The application of convolutional neural networks
(CNNs) to image recognition [10] and object localization [11] significantly improved the accuracy of
object detection. Alternative deep learning methods solving target object detection problems were
previously investigated as part of this research [12]. These include Faster R-CNN [13], which is a
region-based convolutional neural network that provides a class-level detection, and Mask R-CNN [14],
which detects specific instances of different classes of objects in an image and generates an image map
that highlights the pixel distribution of each instance.
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3. Proposed Framework

The central objective of this research is to leverage vision sensors embedded on unmanned
robotic agents to estimate the characteristics of target objects found in the environment and toward
which specific agents will be directed. The requirements imposed by a detected task to be performed,
associated with the physical characteristics of a given target object, should drive the response of
specific robotic agents possessing adequate physical construction characteristics or equipped with
specific embedded devices. The concept of specialization of the robotic agents forms the central
consideration around which the solution is designed, with the goal to systematically assign the most
competent agent to intervene in a given situation defined by a detected task, while benefitting from the
support of other robotic agents in a collaborative manner. Figure 1 provides a general overview of the
proposed framework.
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To achieve this objective, a probabilistic task allocation scheme to match the most qualified
specialized agents with the detected tasks is proposed and integrated with an object detection
convolutional neural network stage. The solution is experimentally investigated as a framework for
multi-agent robotic systems autonomous operation. The developments that are introduced in this
paper are presented in gray boxes in Figure 1. The low-level robotic swarm controller that tackles
the robots’ dynamics and navigation, and the swarm’s formation control, were introduced in [15],
while the automatic task selection unit (ATSU) was proposed in our previous work [16]. The latter is
responsible for the decision-making process, while remaining under high-level human supervision for
strategic guidance, as depicted in Figure 1.

This work expands on our previous design and efficiently merges the detection of target objects’
characteristics provided by modern deep learning recognition methods with original concepts for
the specialization of individual robotic agents that form the grounds of a robust probabilistic task
allocation process for multi-agent robotic systems.

4. Target Object Recognition

Target object detection aims at determining whether or not instances of objects from predefined
categories appear in an image collected by robotic agents and, if present, at estimating the spatial
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location and extent of each instance. The deep learning Mask R-CNN [14] architecture is selected
as a target object detection module because of its class-level detection combined with pixel-precise
mask segmentation capability that highlights the pixel distribution, and therefore the location, of each
recognized class instance in an image. This characteristic is a key advantage compared with general
target detectors. This provides significant benefits for autonomous robot navigation toward the target
objects considered for task allocation. Mask R-CNN is a state-of-the-art two-stage detection framework.
In the first stage, the region proposal network (RPN) [13] generates a set of regions of interests as
potential bounding box candidates. Then, the second stage classifies the proposals, refines the bounding
box and generates segmentation masks in parallel, where the mask prediction branch is a small fully
convolutional network (FCN) [17]. Figure 2 illustrates the detailed two-stage structure of the Mask
R-CNN architecture that was developed for our experiments on target object detection [12]. In this
work, the target object detection module becomes an integral component of the specialized robotic
agent task allocation process. Images are captured by vision sensors mounted on the robots and used
as input to the target object detection module. The latter supports the detection of object characteristics
with the CNN-deep learning network on every detected object. This network then serves as an input
to the task allocator (Figure 1).
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4.1. Deep Learning Network Training

Given that supervised learning is used to train and tune the CNN, only classes of objects that
are included in the training are expected to be detected. As a result, the training of the CNN can be
reconfigured and precisely adapted for various contexts of application. Targets objects considered in
this study relate to indoor search-and-rescue (SAR) operations. The five classes considered include
a person to be rescued, door to be opened, stairs to be climbed, posted signs or maps to be read to
support robots navigation, and fire to be extinguished.

A corresponding dataset is developed for such SAR scenarios. It is composed of three parts.
One part with 300 sample images is from the McIndoor20000 dataset [18] that contains sample images
with pre-labelled categories of objects covering 3 different classes (doors, signs, and stairs). The second
part with 195 additional sample images exemplifies persons and tv-monitors, which are here associated
with the “fire” class for safety reasons. These images are extracted from the Pascal VOC 2007 dataset [19]
that contains samples from 20 different classes. Sample images selected from that dataset are among the
632 items that also provide a bounding box and a segmentation mask annotation for the object instances.
The third part is formed of 50 sample images, describing relatively complex situations, such as a door
with a sign on it, and were captured by our team in real indoor environments. These additional samples
are added to alleviate the inherent limitation associated with sample images from the McIndoor20000
dataset, that exhibit only a single instance of object in every image. All sample images are manually
annotated with category label, bounding box and the corresponding segmentation mask information
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for each object instance through the LabelMe [20] annotation tool, except for images from the Pascal
VOC 2007 dataset, since these are already segmented and labelled. The segmentation mask of each
object instance is saved in the PNG image format. The bounding box coordinates are recorded in the
JSON format file with the category label. The dataset formation process leads to a dataset size of 545
images, with a fair balance of samples representing each of the five classes considered. Table 1 details
the number of samples in the training and validation datasets, for each of the five classes.

Table 1. Dataset samples distribution.

Category Number of Images Training Set Validation Set

Pre-labelled
(195)

person 101 80 21
tv-monitor (fire) 94 85 9

Manually labelled
(350)

door 125 98 27
sign 117 97 20

stairs 108 100 8

Total 5 classes 545 460 85

For the implementation of the Mask R-CNN framework, the backbone architecture used for
extracting features is ResNet-50 [21] and feature pyramid network (FPN) [22] with pre-trained weights
on the Microsoft COCO dataset [23]. The head branches of the network are further adjusted and
trained on the above dataset. Data augmentation, involving flipping, rotating, scaling, blurring,
changing contrast, and lightness, is included to extend the variety of input samples, which enables
to increase the generalization ability of the model. It helps to reduce the influence of input images’
orientation and scale. The training is performed in three stages, as shown in Figure 3, that consist of:
(i) fixing all layers except the head, and train the head part; (ii) unfreezing the layers in ResNet stage 4
and up, to train the region proposal part and head part; and (iii) unfreezing all layers and fine-tuning
the whole model. During the whole process, a stochastic gradient descent (SGD) optimizer is used,
with starting learning rate of 0.001, weight decay of 0.0001, momentum of 0.9, and gradient clip norm
of 5.0.

Robotics 2020, 9, x FOR PEER REVIEW 5 of 18 

 

The dataset formation process leads to a dataset size of 545 images, with a fair balance of samples 
representing each of the five classes considered. Table 1 details the number of samples in the training 
and validation datasets, for each of the five classes. 

Table 1. Dataset samples distribution. 

 Category Number of Images Training Set Validation 
Set 

Pre-labelled 
(195) 

person 101 80 21 
tv-monitor 

(fire) 
94 85 9 

Manually 
labelled 

(350) 

door 125 98 27  sign 117 97 20 
stairs 108 100 8 

Total 5 classes 545 460 85 

For the implementation of the Mask R-CNN framework, the backbone architecture used for 
extracting features is ResNet-50 [21] and feature pyramid network (FPN) [22] with pre-trained 
weights on the Microsoft COCO dataset [23]. The head branches of the network are further adjusted 
and trained on the above dataset. Data augmentation, involving flipping, rotating, scaling, blurring, 
changing contrast, and lightness, is included to extend the variety of input samples, which enables to 
increase the generalization ability of the model. It helps to reduce the influence of input images' 
orientation and scale. The training is performed in three stages, as shown in Figure 3, that consist of: 
i) fixing all layers except the head, and train the head part; ii) unfreezing the layers in ResNet stage 4 
and up, to train the region proposal part and head part; and iii) unfreezing all layers and fine-tuning 
the whole model. During the whole process, a stochastic gradient descent (SGD) optimizer is used, 
with starting learning rate of 0.001, weight decay of 0.0001, momentum of 0.9, and gradient clip norm 
of 5.0. 

All training processes are performed on an 8GB memory NVIDIA Tesla P4 GPU configured in 
virtual machine supported by Google Compute Engine. The trained weights of the detection model 
relevant with the SAR scenarios defined above is saved as .h5 file, which is easy to load offline. It 
enables the detection to be conducted separately from the GPU-based training network platform and 
run on an embedded CPU-based computer. This architecture makes it possible to integrate the 
detection and task allocation stages on the robotic platform and not remain dependent on a network 
connection.  

 
Figure 3. Three training stages. 

4.2. Target Objects Detection  

Figure 3. Three training stages.

All training processes are performed on an 8GB memory NVIDIA Tesla P4 GPU configured in
virtual machine supported by Google Compute Engine. The trained weights of the detection model
relevant with the SAR scenarios defined above is saved as .h5 file, which is easy to load offline. It enables
the detection to be conducted separately from the GPU-based training network platform and run on
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an embedded CPU-based computer. This architecture makes it possible to integrate the detection and
task allocation stages on the robotic platform and not remain dependent on a network connection.

4.2. Target Objects Detection

The inference results through the object detection module return the object class category and
corresponding detection score for every detected object, which serves as an input to the proposed
task allocator. The output information formed of the segmentation mask with bounding box on target
objects supports robots’ navigation and localization, which is introduced in our previous works [15,16],
but it is beyond the scope of this paper. In general, the output of the object detection module is given
by:

P̂T =
[

PC1 PC2 · · · PCF

]T
(1)

where P̂T represents an input to the proposed task allocator; F is the maximum number of features
(or constraints) to be detected on the expected target objects. For the proposed SAR scenarios, five
classes are considered: therefore, F = 5, leading to:

P̂TSAR =
[
PC1 , PC2 , PC3 , PC4 , PC5

]T
(2)

where Ck : k from 1 to F, respectively denote the classes of door, stairs, person, tv-monitor (fire),
and signs respectively; PC1 ∼ PC5 are the recognition confidence scores on a target object associated with
each class category. Table 2 shows examples of object detection estimates, along with the corresponding
specialized functionalities expected of the robotic agents to tackle each class of target objects.

Table 2. Object detection and confidence on visual features (target object class) matched with
related robots.

Input
Image Inference Results Detected Object Targets Detection Output Agent Specialized

Functionality
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as probabilities. The proposed task allocation matching scheme leverages the output of the target 
objects detection defined in Equation (1) and performs two functions: 1) to compute the probabilistic 
specialty fitting level of the individual agents, introduced in Sections 5.1 and 5.2; and 2) to coordinate 
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door (𝐶 ) 

 𝑃= [0.995,0,0,0,0] Open doors 

  

 
 
 

stairs (𝐶 ) 

 𝑃= [0,0.963,0,0,0] Climb stairs 

  

 
 
 

person (𝐶 ) 

 𝑃= [0,0,0.958,0,0] Assist people 

  

 
tv-mo 

 
nitor (fire) (𝐶 ) 

 𝑃= [0,0,0,0.954,0] Extinguish fire 

  

 
 
 

sign (𝐶 ) 

 𝑃= [0,0,0,0,0.983] Read signs 

5. Probabilistic Task Allocation Scheme 

Specialized agents are expected to be allocated and respond to detected tasks when a given 
agent’s specialty represents a sufficient fitting level to match with the detected task’s requirements. 
The latter correspond to the confidence level estimated by the target object detection stage. However, 
a given agent can qualify to be allocated to different tasks but with different fitting levels, encoded 
as probabilities. The proposed task allocation matching scheme leverages the output of the target 
objects detection defined in Equation (1) and performs two functions: 1) to compute the probabilistic 
specialty fitting level of the individual agents, introduced in Sections 5.1 and 5.2; and 2) to coordinate 

stairs (C2) P̂TSAR = [0, 0.963, 0, 0, 0] Climb stairs
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door (𝐶 ) 

 𝑃= [0.995,0,0,0,0] Open doors 

  

 
 
 

stairs (𝐶 ) 

 𝑃= [0,0.963,0,0,0] Climb stairs 

  

 
 
 

person (𝐶 ) 
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sign (𝐶 ) 

 𝑃= [0,0,0,0,0.983] Read signs 

5. Probabilistic Task Allocation Scheme 

Specialized agents are expected to be allocated and respond to detected tasks when a given 
agent’s specialty represents a sufficient fitting level to match with the detected task’s requirements. 
The latter correspond to the confidence level estimated by the target object detection stage. However, 
a given agent can qualify to be allocated to different tasks but with different fitting levels, encoded 
as probabilities. The proposed task allocation matching scheme leverages the output of the target 
objects detection defined in Equation (1) and performs two functions: 1) to compute the probabilistic 
specialty fitting level of the individual agents, introduced in Sections 5.1 and 5.2; and 2) to coordinate 
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door (𝐶 ) 

 𝑃= [0.995,0,0,0,0] Open doors 

  

 
 
 

stairs (𝐶 ) 

 𝑃= [0,0.963,0,0,0] Climb stairs 

  

 
 
 

person (𝐶 ) 

 𝑃= [0,0,0.958,0,0] Assist people 

  

 
tv-mo 

 
nitor (fire) (𝐶 ) 

 𝑃= [0,0,0,0.954,0] Extinguish fire 

  

 
 
 

sign (𝐶 ) 

 𝑃= [0,0,0,0,0.983] Read signs 

5. Probabilistic Task Allocation Scheme 

Specialized agents are expected to be allocated and respond to detected tasks when a given 
agent’s specialty represents a sufficient fitting level to match with the detected task’s requirements. 
The latter correspond to the confidence level estimated by the target object detection stage. However, 
a given agent can qualify to be allocated to different tasks but with different fitting levels, encoded 
as probabilities. The proposed task allocation matching scheme leverages the output of the target 
objects detection defined in Equation (1) and performs two functions: 1) to compute the probabilistic 
specialty fitting level of the individual agents, introduced in Sections 5.1 and 5.2; and 2) to coordinate 

person (C3) P̂TSAR = [0, 0, 0.958, 0, 0] Assist people
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sign (𝐶 ) 
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5. Probabilistic Task Allocation Scheme 

Specialized agents are expected to be allocated and respond to detected tasks when a given 
agent’s specialty represents a sufficient fitting level to match with the detected task’s requirements. 
The latter correspond to the confidence level estimated by the target object detection stage. However, 
a given agent can qualify to be allocated to different tasks but with different fitting levels, encoded 
as probabilities. The proposed task allocation matching scheme leverages the output of the target 
objects detection defined in Equation (1) and performs two functions: 1) to compute the probabilistic 
specialty fitting level of the individual agents, introduced in Sections 5.1 and 5.2; and 2) to coordinate 
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door (𝐶 ) 

 𝑃= [0.995,0,0,0,0] Open doors 

  

 
 
 

stairs (𝐶 ) 

 𝑃= [0,0.963,0,0,0] Climb stairs 

  

 
 
 

person (𝐶 ) 

 𝑃= [0,0,0.958,0,0] Assist people 

  

 
tv-mo 

 
nitor (fire) (𝐶 ) 

 𝑃= [0,0,0,0.954,0] Extinguish fire 

  

 
 
 

sign (𝐶 ) 

 𝑃= [0,0,0,0,0.983] Read signs 

5. Probabilistic Task Allocation Scheme 

Specialized agents are expected to be allocated and respond to detected tasks when a given 
agent’s specialty represents a sufficient fitting level to match with the detected task’s requirements. 
The latter correspond to the confidence level estimated by the target object detection stage. However, 
a given agent can qualify to be allocated to different tasks but with different fitting levels, encoded 
as probabilities. The proposed task allocation matching scheme leverages the output of the target 
objects detection defined in Equation (1) and performs two functions: 1) to compute the probabilistic 
specialty fitting level of the individual agents, introduced in Sections 5.1 and 5.2; and 2) to coordinate 

tv-monitor (fire)
(C4) P̂TSAR = [0, 0, 0, 0.954, 0] Extinguish fire
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5. Probabilistic Task Allocation Scheme 

Specialized agents are expected to be allocated and respond to detected tasks when a given 
agent’s specialty represents a sufficient fitting level to match with the detected task’s requirements. 
The latter correspond to the confidence level estimated by the target object detection stage. However, 
a given agent can qualify to be allocated to different tasks but with different fitting levels, encoded 
as probabilities. The proposed task allocation matching scheme leverages the output of the target 
objects detection defined in Equation (1) and performs two functions: 1) to compute the probabilistic 
specialty fitting level of the individual agents, introduced in Sections 5.1 and 5.2; and 2) to coordinate 
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door (𝐶 ) 

 𝑃= [0.995,0,0,0,0] Open doors 

  

 
 
 

stairs (𝐶 ) 

 𝑃= [0,0.963,0,0,0] Climb stairs 
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5. Probabilistic Task Allocation Scheme 

Specialized agents are expected to be allocated and respond to detected tasks when a given 
agent’s specialty represents a sufficient fitting level to match with the detected task’s requirements. 
The latter correspond to the confidence level estimated by the target object detection stage. However, 
a given agent can qualify to be allocated to different tasks but with different fitting levels, encoded 
as probabilities. The proposed task allocation matching scheme leverages the output of the target 
objects detection defined in Equation (1) and performs two functions: 1) to compute the probabilistic 
specialty fitting level of the individual agents, introduced in Sections 5.1 and 5.2; and 2) to coordinate 

sign (C5) P̂TSAR = [0, 0, 0, 0, 0.983] Read signs

5. Probabilistic Task Allocation Scheme

Specialized agents are expected to be allocated and respond to detected tasks when a given
agent’s specialty represents a sufficient fitting level to match with the detected task’s requirements.
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The latter correspond to the confidence level estimated by the target object detection stage. However,
a given agent can qualify to be allocated to different tasks but with different fitting levels, encoded as
probabilities. The proposed task allocation matching scheme leverages the output of the target objects
detection defined in Equation (1) and performs two functions: 1) to compute the probabilistic specialty
fitting level of the individual agents, introduced in Sections 5.1 and 5.2; and Section 2) to coordinate
task allocation to match the detected tasks with the most qualified and available agents, as detailed in
Sections 5.3 and 5.4.

5.1. Specialization Definition and Coding

A swarm of robots {Ri, i = 1, 2, . . . , a} consists of a, specialized individual agents, Ri, and provides
F different specialized capabilities (i.e., in this case, the agents’ specialized capabilities are considered
equal to the number of constraints, or target object classes, F, that can be detected). The definition
of an agent’s specialization describes the presence or absence of specific hardware, or particular
physical construction, that is essential to completing a given task (e.g., robotic hand to open a door,
or stretcher for rescuing a person). The agent’s specialty is encoded in an agent’s specialty binary
vector, Si : {sk, k = 1, 2, . . . , F}, where, Si ∈ R

1×F. Each entry defined as sk = 1 means that the robot
possesses the corresponding capability; sk = 0 indicates that the robot is not equipped with the
corresponding capability to tackle a given requirement, Xk. Every requirement is meant to correspond
to a given class, Ck, among F of them. Table 3 summarizes the characteristics of a group of seven robotic
agents considered to experimentally evaluate the proposed approach in simulated SAR scenarios.

Table 3. Formulation of robotic agents’ specialization for SAR test scenarios with 5-class target objects.

Agent
ID#

Robots Specialized Functionalities:
1 ≡ Possesses Functionality; 0 ≡ Does Not Possesses Functionality

Specialty
Vector

Open
Doors

Climb
Stairs

Assist
People

Extinguish
Fire

Read
Signs

R1 S1 1 1 0 0 0
R2 S2 0 1 1 0 0
R3 S3 0 1 0 1 0
R4 S4 0 1 0 0 1
R5 S5 0 0 1 0 0
R6 S6 0 0 0 1 0
R7 S7 0 0 0 0 1

5.2. Agents Fitting Probabilities Computation

The goal of the allocation scheme is to maximize the task-agent specialty fitting level defined as a
probability. The estimated fitting probabilities of the individual swarm members are defined as:

ϕ̂Ri = SiP̂T (3)

where ϕ̂Ri ∈ R
1×1 represents the estimated specialty collective score achieved by an individual agent,

Ri, inferred from the confidence levels, P̂T ∈ R
F×1, on detected features on the target object, Equation (2).

The fitting probabilities of Equation (3) are used to compute the swarms’ cumulative probabilistic
specialty fitting diagonal matrix, Q ∈ Ra×a, that consists of the specialty fitting probabilities of all team
members and is given as:

Q = diag
[

ϕ̂R1
ϕR1

ϕ̂R2
ϕR2

· · ·
ϕ̂Ra
ϕRa

]
(4)

ϕRi ∈ R
1×1, is the agent’s maximum expected collective score that results when all of the agent’s

specialized capabilities are matched with their corresponding detected target. To define ϕRi ,
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the maximum number of specialized capabilities that are built in each individual agent are considered
and ϕRi , of agent Ri, can be defined as:

ϕRi = Sipmax (5)

where,

pmax =
[
pC1max pC2max · · · pCFmax

]T
(6)

pCimax is the maximum expected confidence level on the detected target object for each class. As an
example, based on object detection confidence levels shown in Table 2, the maximum expected detection
score, pCimax, among all classes would be � 0.995.

5.3. Qualified Agents Coordination

Beyond their specialty, the respective agents’ availability information is also essential because an
agent may not always be available when called in service. Therefore, the proposed scheme involves an
agent’s availability status, along with the agent’s specialty fitting probabilities, Q, Equation (4), for the
coordination of qualified responders. As a result, the most qualified and available agent among the
team is allocated to the detected task, even though it may not be the very best one (i.e., a less competent
but available qualified agent at the moment of target object discovery may be selected). To provide this
flexibility, an availability vector, ϑAS ∈ R

a×1, is defined as a current internal state for each robot. At the
time of swarm deployment, the internal flag of the deployed agents raises to “available”, while the
internal flag of agents that are not available is set to “withdrawn”. Then, whenever the system finds an
“available” agent that is qualified to allocate to a detected task, the availability state keeps the agent’s
specialty fitting probability active. The detected task is then assigned to the agent that is closer to the
estimated location of the detected target object, provided that it is qualified to respond to the task.
When an available and qualified agent is assigned to a given task, its availability state is changed to
“busy”, making this agent not available for any other assignment until completion of the current task
assigned. On the other hand, the fitting probabilities of agents with an internal flag “withdrawn” or
“busy” are deactivated, triggering the system to search for other “available” agents among the swarm.
The availability vector of the team members, ϑAS ∈ R

a×1, is defined as:

ϑAS =


1
di
{Ri is “available” & di > rtask

1 {Ri is “available” & di ≤ rtask
0

{
Ri is “withdrawn” or “busy”

(7)

di is the Euclidean distance between robot’s Ri current location, (xi, yi), and the detected target location,
(xt, yt), in the shared 2-D plane, and is given by:

di = |

√
(xi − xt)

2 + (yi − yt)
2
| (8)

Υ is a control variable that takes a binary value 1 or 0 to activate or eliminate the impact of the distance
to the target’s location; rtask is a predefined radius of the task zone that surrounds any detected target
object [16]. Consequently, the coordination scheme is formulated as:

Ψ = QϑAS (9)

where Ψ ∈ Ra×1 returns the fitting probabilities of the “available” robots, weighted by the inverse to
their distance from the target, and 0′s for the “withdrawn” and “busy” units, when a target object is
recognized as a task to be performed with a related confidence level, P̂T.
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5.4. Human in the Loop

For increased safety and strategic management of the swarm’s operation, a minimum task-agent
fitting threshold (MFT), η, is also considered as a safety measure to guarantee a minimum level of
qualification below which no agent will be allocated to any task. To adapt this parameter in a strategic
manner according to operational conditions, a human operator is given access to the task allocation
framework at a high level to supervise the swarm. This way, a provision is made for the human
supervisor to share his skills with the robots and provide situational awareness, by dynamically
adjusting the MFT that conditions the minimum expected confidence level on the recognition of target
objects for the robotic agents to intervene.

The desired MFT, η, is selected by setting η ∈ (0 1] over two predefined ranges: a low specialty
fitting level (LSFL) and a high specialty fitting level (HSFL). The minimum limit of LSFL, η ∈ (A B]
drives the task-agent allocation scheme to match the very minimum specialized capabilities of the
available agents to respond to the detected targets. However, in many applications, it is desired to
ensure a higher level of confidence in the specialty-based task allocation to more selectively fit the
capabilities of the available agents’ with most of the requirements of the detected task. In such a
case, the task allocator is enforced by the human supervisor to work in the HSFL range, η ∈ (B C],
by setting η above a specific level B to ensure that only robots with a higher level of competence can
intervene, where: {

LSFL : A < η ≤ B
HSFL : B < η ≤ C

(10)

Therefore, Ψ, defined in Equation (9), is further refined to only consider the probabilities of
the available agents that achieve the desired MFT. The task allocation probabilities of the available
responders, among the swarm of a agents, ΨMFT ∈ R

a×1, are given by:

ΨMFT = [ΨMFT1, ΨMFT2, · · · , ΨMFTa]
T (11)

where ΨMFTi =

{
Ψi,

∣∣∣ Ψi ≥ η : Ψi ∈ Ψ

0,
∣∣∣Ψi < η : Ψi ∈ Ψ

(12)

with {Ψi, i = 1, 2, . . . , a}. Accordingly, the qualified available agents are automatically selected and
allocated to the detected tasks considering the human’s strategic guidance. For each detected target,
the identification index, i, of the best-suited and available agent with a specialty fitting level above
MFT among the swarm of robots, {Ri, i = 1, 2, . . . , a}, is given by:

∅BEST RESPONDER INDEX = i | i ∈ max{ΨMFT} (13)

6. Experimental Results

A number of real test images were acquired with a camera while patrolling different sectors of
a building with a ground mobile robot. Images were then processed to retrieve every instance of
the five classes of target objects considered, as defined in Table 2. The maximum expected detection
confidence, pCimax, among all classes is fixed to � 0.995. The robotic team is assumed to navigate on
the ground floor of a building when the target object detection system recognizes a first instance of
one of the predefined classes, e.g., stairs, as shown in Figure 4a. In this test case, the target objects are
detected within the predefined task zone, which leads to, ϑASi = 1, in Equation (7). The target object’s
detection confidence level is processed through the task allocation scheme to compute the individual
robots’ probabilistic fitting level, Equation (11), in order to assign the most qualified agents using
Equation (13), to the detected task. Figure 4b shows that the confidence in robots R1, R2, R3, R4 being
qualified to proceed and climb the stairs is beyond the desired MFT, while robots R5, R6, R7 are not
qualified. The robots’ availability status is also presented in Figure 4b, with available agents shown as
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green squares and withdrawn agents as red squares. The detailed target detection confidence scores
and the corresponding robots’ task allocation fitting probabilities are reported in Table 4.
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Table 4. Swarm members fitting probabilities to climb stairs in SAR scenario in indoor workspace.

Target Objects
Detection Confidence Robot ID#

Availability
1: Available

0: Withdrawn

Available Agents
Fitting Probabilities

User Set
MFT

Door: 0.00
Stairs: 0.96

Person: 0.00
Fire: 0.00
Sign: 0.00

R1 1 0.48

0.4

R2 1 0.48
R3 1 0.48
R4 1 0.48
R5 1 0.00
R6 1 0.00
R7 1 0.00

Next, the selected swarm members, R1, R2, R3, R4, get over the stairs and begin navigate the
open space on the second floor. Then, a door is detected as shown in Figure 5a. The system computes
the individual agents’ specialty fitting probabilities, Equation (11), as shown in Figure 5b, to assign
the most qualified agent, using Equation (13), to open the detected door. The availability state of the
swarm members indicate that agents, R1, R2, R3, R4, are still available, whereas agents R5, R6, R7,
are withdrawn, as these agents were not qualified to initially climb the stairs and reach to the current
task location corresponding to the detected door, which resulted in ϑAS5,6,7= 0, as defined in Equation (7).
The results show that the fitting probability of agent R1 with the detected door equals 0.49 (Table 5).
As R1, which is also the only agent with the capability to open a door, according to Table 3, has the
highest fitting probability, which also exceeds the MFT, and is available, it is assigned to open the
detected door.
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Table 5. Individual agents’ fitting probabilities to open a detected door in SAR scenario in
indoor workspace.

Target Objects
Detection

Confidence
Robot ID#

Availability
1: Available

0: Withdrawn

Available Agents
Fitting Probabilities

User
Set

MFT

Door: 0.98
Stairs: 0.00

Person: 0.00
Fire: 0.00
Sign: 0.00

R1 1 0.49

0.4

R2 1 0.0
R3 1 0.0
R4 1 0.0
R5 0 —-
R6 0 —-
R7 0 —-

Once the previously allocated robot,R1, opens the door, then the remaining swarm
members, R1, R2, R3, R4, access the workspace and the object detection stage conducts a new
survey to detect additional target objects. A fire (tv-monitor) and a human victim in the vicinity of
the fire are detected, as shown in Figure 6a. The detection results are leveraged by the task allocation
scheme to determine the specialty fitting probabilities, Equation (11), among the still available agents,
as shown in Figure 6b, and detailed in Table 6. The most competent and available agents, R2, R3,
are assigned respectively, based on Equation (13), to each of the detected tasks.
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Table 6. Agents fitting probabilities to respond to two simultaneously detected tasks in SAR scenario.

Target Objects
Detection

Confidence
Robot ID#

Availability
1: Available

0: Withdrawn

Available Agents
Fitting Probabilities

User
Set

MFT

Door: 0.00
Stairs: 0.00

Person: 0.84
Fire: 0.99
Sign: 0.00

R1 1 0.00

0.4

R2 1 0.42
R3 1 0.49
R4 1 0.00
R5 0 —-
R6 0 —-
R7 0 —-

As a result, while guaranteeing a minimum confidence level (MFT) in the allocation process
to ensure the safety of the operation, task allocation is successfully performed on unique or
multiple detected targets throughout the scenario with the most qualified and available agents
being automatically assigned as responders to the detected targets.
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7. Quantitative Analysis of Performance

In order to generalize the evaluation of performance for the proposed integrated task allocation
framework, Table 7 summarizes experimental results obtained for target object recognition over 140
captured images with instances of the five classes considered in the simulated SAR scenario. This test
set contains images that were not considered as part of the training and validation datasets, detailed in
Table 1. The target object detection overall precision over all classes is 92.9%, which indicates that the
trained detection model can correctly recognize over 90% of object instances in these images (true
positives), while the overall recall is 66.6%, indicating that over 30% of the instances failed to be
detected (false negatives).

Table 7. Object recognition performance on captured images from a testing set.

Person Fire Door Sign Stairs Overall

Precision (%) 98.2 87.5 91.2 94.7 86.4 92.9
Recall (%) 81.2 45.5 67.4 66.7 95.0 66.6

The 140 test cases were considered to support task allocation for seven specialized robots as
defined in Table 3. Over these test cases, the object recognition stage failed to recognize any object and
resulted in no agent allocation in 12 cases (8.6%), similar to case 15 in Table 8. Additionally, out of
the 140 test cases, 9 (6.4%) presented a misclassification error. For example, the lines on the floor are
classified as stairs in case 8 of Table 8. In cases 5, 8, and 11 of Table 8, one of the detected targets is
not allocated to an agent because of the low confidence level on the target object detection which is
below the set MFT. Also, in cases 7 and 8 the last target is not allocated because all of the available
corresponding specialized agents are busy with their allocation to another task. The proposed task
allocator was successful in 93.6% of the trials to allocate proper agents to the detected corresponding
targets. In all successful cases, the framework assigned the most specialized and available agents
that achieved the minimum MFT on the probabilistic match between the available agent’s specialized
capabilities and the constraints imposed by the detected target. In situations where no objects were
detected or a low confidence level on the target object detection was achieved, the correct response
was to perform no allocation. This approach is also highly efficient computationally. When considered
independently from the recognition stage, it took on average 0.078 s to allocate agents over all 140 test
cases. Therefore, the task allocation framework brings no computational bottleneck, considering that
object recognition running on GPUs necessitated 0.22 s per image to detect target objects.

Table 8. Sample images containing less confident targets’ recognition among the five classes considered,
and automatically assigned robotic agents for detected target(s) by the proposed approach. MFT = 0.4.

No.
Input Image with Segmented

Detected Target(s)
Recognized Target Object

Confidence Level

Assigned Agents

Agent Fitting Probability

1
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Table 8. Cont.

No.
Input Image with Segmented

Detected Target(s)
Recognized Target Object

Confidence Level

Assigned Agents

Agent Fitting Probability

3
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Table 8. Cont.

No.
Input Image with Segmented

Detected Target(s)
Recognized Target Object

Confidence Level

Assigned Agents

Agent Fitting Probability
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8. Comparison

Many factors are considered in this study to design a specialty-based task allocation approach that
maximizes the task execution efficiency, and to expand the range of potential applications. The function
considered here is to maximize a task-agent specialty fitting probability, while matching detected
features on target objects with the respective robotic agents’ specialized capabilities. In this section,
the essence of the proposed approach is compared with four alternative task allocation mechanisms
proposed in the literature for service and exploration robots. It highlights the main conceptual
differences with previous literature and demonstrates how the original framework proposed and
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experimentally validated in this paper contributes an innovative path to address the task allocation
problem in multi-robot systems.

8.1. Interface Delay Task Allocation (IDTA)

The task allocation approach presented in [24] partitions the foraging task into simpler subtasks
called harvesting and storing subtasks. These two subtasks are sequentially inter-dependent,
which means that the execution of one sub-task is conditioned by the execution of the other one. As a
result, an item is transported from a source position to a task interface area by a harvesting agent.
Next, the harvesting agent waits for an available agent that is involved in the storing subtask to deliver
the item to that agent, which will pass it to the nest area. Similarly, a storing agent waits at the task
interface border for an available agent that is engaged in the harvesting subtask to pick up the item.
This task allocation technique is introduced based on a waiting time that is measured by the agents
at the task’s interface. It enables a swarm of service robots to dynamically partition the agents into
two specialized groups. The individual agents work autonomously based on a decentralized control
strategy, similar to the proposed approach in this paper. However, this task allocation scheme does not
require the agents to communicate, whereas each individual agent switches between the harvesting
and storing subtasks using the locally measured information about the time that the robot must wait
to transfer the item at the task interface. The interface delay task allocation method might be an
efficient approach to enable the robotic agents to move between two subtasks; however, it does not
offer an efficient approach for a swarm that has a wide variety of functionalities involved in allocating
tasks with different requirements that demand specific agents’ functionalities. It also imposes the
existence of a formal interface in between the agents where their role is transformed, a constraint that
the proposed specialty-based task allocation scheme does not bring into the formulation, therefore
providing superior flexibility into the definition of tasks and the freedom of movement for every agent.

8.2. Multiple Travelling Salesman Assignment (MTSA)

This task allocation approach selects the next navigational goal using the famous travelling
salesman problem (TSP) distance cost [25]. The latter is defined as the travelled distance on the shortest
path that connects the robot position with the candidate goals. This task allocation mechanism is
developed for a single robot exploration that navigates many goal points and from which the exploration
mission can cover all frontier cells. This task allocation approach is optimal for a single robot mission
to perform exploration tasks; however, the problem of computing the optimal distance between
the robot position and a set of goals only considers the shortest travelling distance. In comparison,
the proposed specialty-based task allocation method deals with an indefinite and flexible number of
agents; it optimizes the selection of agents beyond just the travelling distance; and it easily adapts to a
wide range of robot’s specialization considerations according to the nature of the tasks to be performed
and the type of physical resources involved in addressing a situation. Moreover, it allows strategic
input and guidance from a human supervisor when needed, while a travelling salesman optimization
approach does not offer such a flexibility.

8.3. Taxonomy of Multi-Agent Task Allocation (An Optimization Approach)

A formal taxonomy of multi-robot task allocation problems is introduced in [26]. This study
classifies previous solutions for multi-robot task allocation problems based on an optimization theory.
The authors of this work propose an architecture-independent taxonomy with the goal to optimize task
allocation. The problem is addressed at three levels: First, the robot level, which captures the capability
for a robot to execute either a single task or multiple tasks. Second, the task level, which defines
whether the task requires a single robot or multiple robots to be completed. Third, the task allocation
time level which determines whether the task should be executed instantaneously with no planning for
future assignments, or a set of tasks should be assigned over time. Finally, task allocation is processed
as an optimization approach to improve the performance of the system while assuming that each robot
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can estimate its capability to perform each task based on two factors: 1) the task execution quality,
and 2) the expected cost in terms of resources. The formulation is general and can adapt to a variety of
application contexts. However, the solution does not construct a formal model to capture the agents’
heterogeneous functionalities, formulated as specializations in our work, to be formally matched with
explicit constraints monitored on the task to be performed.

8.4. Task-Allocation Algorithms in Multi-Robot Exploration

The multi-robot task allocation problem is also investigated in [27] to allocate navigational goals to
multiple robots in exploration tasks. In this work, the task allocation problem is addressed as a classical
distance cost and the proposed approach essentially guides the robot to the nearest navigational goal.
However, a formal correspondence of the task constraints and the resources available on the robotic
agents is not considered in this approach.

9. Conclusions

The design of a formal representation for specializing individuals of a robotic swarm and forming
an association with corresponding characteristics on visually detected target objects is introduced in
this paper. A target object detection using Mask R-CNN technique is integrated with the proposed task
allocation approach. The framework is validated with real images collected in indoor environments
and involving simulated mobile robot navigation scenarios. The specialized capabilities of individual
robotic agents are modeled and matched to corresponding visual features recognized on target objects
with a quantified confidence level. That confidence level is associated with specific task requirements
and is used to tune the task-agent probabilistic matching scheme. Specialized individual agents are
coordinated with corresponding tasks while considering the agents availability state along with their
probabilistic specialty fitting level. The framework also supports strategic guidance from a human
operator to refine the task assignment process with situational awareness. The process is designed to
keep human’s cognitive load low while adjusting the system’s operational conditions at a high level of
coordination only, which results in safer and more selective task allocation operation. Experimental
results demonstrate that the proposed approach is successful at properly assigning specialized
agents to corresponding tasks that require specific mechanical or instrumentation characteristics
from autonomous robots. Future developments of the proposed framework will encode the agents’
specialization vector in a non-binary form to modulate the agents’ specialized functionalities based
on the robustness of their hardware and software implementation and to capture different levels of
suitability of the specializations to different tasks.
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