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Abstract: This paper combines interval type-2 fuzzy logic with adaptive control theory for the control
of a three degree-of-freedom (DOF) helicopter. This strategy yields robustness to various kinds of
uncertainties and guaranteed stability of the closed-loop control system. Thus, precise trajectory
tracking is maintained under various operational conditions with the presence of various types of
uncertainties. Unlike other controllers, the proposed controller approximates the helicopter’s inverse
dynamic model and assumes no a priori knowledge of the helicopter’s dynamics or parameters.
The proposed controller is applied to a 3-DOF helicopter model and compared against three other
controllers, i.e., PID control, adaptive control, and adaptive sliding-mode control. Numerical results
show its high performance and robustness under the presence of uncertainties. To better assess the
performance of the control system, two quantitative tracking performance metrics are introduced,
i.e., the integral of the tracking errors and the integral of the control signals. Comparative numerical
results reveal the superiority of the proposed method by achieving the highest tracking accuracy
with the lowest control effort.

Keywords: adaptive control; 3-DOF helicopter; uncertainties; type-2 fuzzy logic

1. Introduction

Helicopters are able to levitate and navigate in tight and hazardous locations. This requires a
robust controller to deal with numerous uncertainties such as, changes in mass and inertia, along
with other unpredictable factors like external disturbances. The motion of helicopters depends on
three independent axis controls; pitch, yaw and roll, which are nonlinear in nature and strongly
coupled together (Figure 1). These strong couplings make controlling helicopters a non-trivial task [1].
The 3-DOF helicopter’s motion along with the pitch, roll, and yaw axis is achieved by controlling two
rotors which makes it more fault-tolerant with respect to the classical helicopter that uses a single
main rotor. However, similar to other kinds of Unmanned Aerial Vehicles (UAVs) [2–5], the 3-DOF
helicopter has unstable open-loop dynamics. Its complex nonlinear dynamics, changing operating
conditions, high nonlinearities, and unpredictable disturbances are amidst the distinctive issues to
be faced.

Among many approaches that are proposed for controlling helicopters (i.e., classical, adaptive
and robust), two of the well-known controllers that are famous for their simplicity are, backstepping
and input–output linearization. Though, under the presence of high uncertainties, and sensitivity to
parameters variation, these methods do not guarantee stability and good performance. Therefore,
an alternative approach that can deal with different degrees of nonlinearities is required, specifically
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when the number of design requirements is very high and there is no accurate mathematical model
that can effectively describe the motion of the helicopter because of unpredictable factors [6–11].

There are different researches that have been done in the area of UAVs in general, including
strategies and approaches for designing helicopters’ controllers. Some of these researches are as
follows: a trajectory control problem of hovercraft with drift angle constraint and external disturbance
is addressed by combining finite time observer with adaptive sliding mode control [6]. The resultant
controller prevented the angle drift in real-time. Then, altitude control of the quadrotor is developed
using a simplified fuzzy controller [12]. A simulation model is used to demonstrate the effectiveness
of the proposed controller along with several performance indices such as rise time, settling time,
percentage overshoot, integral absolute error, central processing unit time, and energy consumption.
In [13], a proportional-derivative (PD) and a proportional-integral-derivative (PID) controller is used
to control a hovering small-scale helicopter. Moreover, a Lyapunov-based nonlinear controller is
designed and developed in [14] for a quadrotor to attain robust tracking. Along the same idea, a fuzzy
sliding mode controller based on sliding-mode control is combined with fuzzy logic to obliterate
the chattering is designed for regulation and trajectory control of quadrotor in [15]. The efficacy of
the controller is discussed and compared with the nonlinear controller based on the backstepping
technique. In [7], a robust controller is designed based on a linear quadratic regulator (LQR) with a
control feedback that approximates the altitude of a 3-DOF helicopter while coping with disturbances
and uncertainties. The LQR controller requires angular position measurement only. A robust reference
model-based adaptive controller is combined with LQR based on Kalman filtering is proposed in [16]
to deal with unmodelled dynamics, uncertainties, and disturbances. In [17], an optimal state feedback
controller based on model linearization along the desired trajectories is designed for a 3-DOF helicopter.
The effectiveness of the controller is demonstrated by experimental results. Additionally, a robust
nonlinear tracking is proposed for controlling a helicopter based on a second-order auxiliary system
that estimates the uncertainties and filters the errors with compensation to eliminate disturbances also
in proposed in [8], experimental results are presented to show the efficacy of the proposed controller.

A robust controller is presented in [18] to track the trajectory of small-scaled unmanned helicopters
in the presence of the external disturbances in transient and steady-state without explicit knowledge
of the model’s parameters. An adaptive feedback controller that adapts to parametric uncertainties,
unmodeled dynamics, and known actuator characteristics is laid out. In [19], a controller and estimator
for a helicopter that estimates and adapts to transmit a hybrid continuous-discrete observed data
over a limited bandwidth of a communication channel developed in a Laboratory for analysis and
architecture of the system (LAAS). Adaptive backstepping tracking with online updated parameters is
also proposed in [9] and a backstepping control strategy is combined with artificial intelligence and
machine learning to approximate the online uncertainties to improve robustness of the model [20].
An approximating method with radial basis function of neural networks (RBFNNs) that approximate
unmodeled systems is detailed in [21]. In [22], an adaptive robust controller is also based on RBFNNs
and a nonlinear observer copes with uncertainties and unknown disturbances. The time-invariant
neural network tracking controller of the 3-DOF helicopter is introduced with input saturation [23]
and a control compensator based on genetic algorithm and frequency-domain of inputs and outputs is
proposed in [24]. Robust second-order consensus tracking controller that achieves tracking without
calculating the velocity of the target is established in [25]. In [26], a linear time-invariant controller is
designed to improve tracking and validation is done with experimentally. A model-based adaptive
controller with Riccati equations is investigated in [27].

A mathematically ill-defined designed controller that is subjected to various disturbances and
uncertainties can be approximated with computational intelligence tool, such as artificial neural
networks and fuzzy logic systems, since these intelligent tools with high accuracy can uniformly
approximate any real continuous function [28–31]. Hence, such an advancement in neural network,
can lead to modeling many complex models [11,12,32,33]. The conventional adaptive control strategies
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perform well with structured (parametric) uncertainties, but fail to achieve robustness in the presence
of unstructured (non-parametric) uncertainties like external disturbances.

An attempt on coping with both types of uncertainties was carried out using adaptive control
and a reference model [34]. In this work, disturbance rejection is achieved using the derivative of
the error which is noisy and limits the performance in practical applications. This shortcoming can
be addressed by using an advanced control method meant to cope with the uncertainties of higher
magnitudes (like disturbance). In [35], the adaptive type-2 fuzzy logic control approach is used for a
motor drive application. Similarly, this paper purposes a controller based on type-2 fuzzy logic and
adaptive control theory to track the 3-DOF helicopter’s motion in the presence of both structured
and unstructured uncertainties. The type-2 fuzzy logic consequent part adaptation is performed by
Lyapunov based adaptation law which guarantees the closed-loop system’s stability. To the best
authors’ knowledge, this work is one of the first attempts, if any, to cope with both structured and
unstructured uncertainties for the 3-DOF helicopter using adaptive type-2 fuzzy logic. The remaining
parts of the paper are organized as follow: Section 1 introduces the dynamic model of the helicopter
and present the problem statement, Section 2 outlines the adaptive control methodology, Section 3
deals with numeric results and discussion, and finally, Section 4 states the conclusion with comments
and recommendations for future work.
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Figure 1. The 3-DOF helicopter.

2. System Dynamics

The helicopter is a highly unstable 3-DOF rotary motion system with nonlinear and coupled
dynamics [1]. The operation of the 3-DOF helicopter is based on the rotation of the two rotors in
which the propellers coupled to the motors generate a force called lift, as well as direction control.
As mentioned, various linear/nonlinear control techniques have been studied for the control of a
3-DOF helicopter. In order to achieve a 3-dimensional movement, the helicopter performs three main
angular movements as it is shown in Figure 1. The variables of the mathematical model are the roll
angle (ε), the pitch angle (θ), the displacement angle (ψ), and the thrust forces of each of the motors,
i.e., front motor force (Ff ) and back motor force (Fb). There is a linear dependence between its three
main angles:
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• The roll angle (ε): The helicopter turns relative to the perpendicular axis (elevation angle). The total
force exerted on the system is the aggregation of the thrusts caused by the propellers powered by
the two engines and the moments exerted by the counterweight and the weight of the main beam.

• The pitch angle (θ): This is a movement which is due to the imbalance of forces between the pair
of motors, or an inclination of one relative to the other, taking as a pivot the end of the arm which
contains them.

• The yaw angle (ψ): The forces acting on the axis of movement are due to the difference between
the thrusts of the two motors.

As it is illustrated in Figure 1, all axes intersect at the same point (origin of the global coordinate
frame) and the yaw angle (ψ) and roll angle (ε) are perpendicular. The behavior of movements of
the 3-DOF helicopter system can be described, using Euler–Lagrange formulation, by the following
dynamic mathematical model [1]:

Jε ε̈ = G cos ε + La cos θu1 (1a)

Jψψ̈ = La cos ε sin θu1 (1b)

Jθ θ̈ = Lhu2 (1c)

with, u1 = Ff + Fb, u2 = Ff − Fb , G = g(MhLa −MwLw). It is important to note that this model has
been used and validated experimentally in [1]. Table 1 shows the physical values of the mathematical
model used to validate the proposed control strategy.

Table 1. Physical values of the mathematical model of a 3-degree of freedom (DOF) helicopter [1].

Parameter Helicopter Unit

Helicopter body mass (Mh) 1.42 (kg)

Counterweight mass (Mw) 1.87 (kg)

Distance between the elevation axis and the center of mass (La) 0.66 (m)

Distance between the lifting axis and the counterweight (Lw) 0.66 (m)

Distance between the pitch axis and each motor (Lh) 0.17 (m)

Gravitational constant (g) 9.81 (m·s2)

Moment of inertia on the axis of roll (ε) 1.0348 (kg·m2)

Moment of inertia on the axis of pitch (θ) 0.0451 (kg·m2)

Moment of inertia on the axis of yaw (ψ) 1.0348 (kg·m2)

Remark 1. The studied 3-DOF helicopter in this paper is an underactuated system. In other words, the control
of the three states (the pitch angle θ, the roll angle ε and the yaw angle ψ) is achieved with only two input forces.

3. Adaptive Interval Type-2 Fuzzy Logic Control

The fact that a single input u1 can control simultaneously the system’s motion along the roll and
yaw axes, i.e., ε and ψ, makes the control of the 3-DOF helicopter challenging. To achieve decoupling,
the autopilot control structure, depicted in Figure 2, is considered. For that, define the virtual inputs
v1, and v2 as [6],

v1 = cos θu1 (2a)

v2 = cos ε sin θu1 (2b)
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By replacing the virtual inputs v1, and v2 in Equation (1), the dynamic Equation (1) become:

Jε ε̈ = G cos ε + Lav1 (3a)

Jψψ̈ = Lav2 (3b)

Jθ θ̈ = Lhu2. (3c)

Using (2), the input u1 can be written as [1],

u2
1 = v2

1 +
v2

2
cos2 ε

. (4)

In this study, the autopilot is based on the fact that the decoupling can be carried out providing
that the virtual inputs v1 and v2 given in Equation (2) are satisfied. From this, the equation of control
u1 can be expressed as [1],

u1 = S ·

√
v2

1 +
v2

2
cos2 ε

, (5)

where

S =

{
sgn(v1), if v1 6= 0

0, if v1 = 0

To realize the decoupling of system, it’s necessary to force the angle θ, by the control input u2,
to track the following desired trajectory [1],

θ∗(t) = tan−1 v2

cos εv1
. (6)

The objective is to design a control law v1, v2, and u2 to drive the 3-DOF helicopter’s states ε, ψ,
and θ to their time-dependent pre-defined respective reference trajectories ε∗, ψ∗, and θ∗ under the
presumption of unknown system’s dynamics. All system’s parameters, La, Lw, Lh, Mh, Mw, g, Jψ, Jθ ,
and Jε are listed in Table 1; but they are assumed to be unknown to the proposed controller.

Adaptive Fuzzy 
Logic Yaw & Roll

Controller

Pitch & Thrust 
Calculation

Adaptive 
Fuzzy Logic 

Pitch Control

3-DOF 
Helicopter

𝜖𝜖,𝜃𝜃,ψ
𝑣𝑣1, 𝑣𝑣2

𝜃𝜃∗

𝑢𝑢1

𝑢𝑢2

𝜖𝜖∗,ψ∗

̇𝜖𝜖∗, ψ̇∗

Figure 2. Autopilot scheme.

The control objective in this paper is to track the errors eε = ε− ε∗, eψ = ψ− ψ∗, and eθ = θ − θ∗

to zero. Thus, each adaptive type-2 fuzzy controller must drive its corresponding error e• to zero
by adjusting its weights to approximate the 3-DOF helicopter’s system inverse dynamics and thus,
achieve a precise tracking. The symbol • can be ψ, θ or ε. The control scheme is depicted in Figure 2.

Type-2 fuzzy sets are very useful in situations where it is difficult to determine an exact function
due to uncertainties since they are particularly suitable for time-variant systems with unknown
time-varying dynamics. Unlike the type-1 fuzzy system which is incapable of directly modeling
higher types of uncertainties, type-2 fuzzy system is able to model and minimize the effects of
such uncertainties. In fact, the footprint of uncertainty (FOU) provides the type-2 fuzzy system
with additional degrees of freedom, making its membership functions three-dimensional. Hence,
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type-2 fuzzy sets can handle more types of uncertainties with higher magnitudes than their type-1
counterparts. For this reason, type-2 fuzzy sets are adopted in this paper.

Similar to a type-1 fuzzy system, a typical type-2 consists of a fuzzifier which must transform the
crisp input values into type-2 fuzzy sets. After this procedure, the inference rules are combined and the
inputs of the type-2 fuzzy set are mapped into output sets, through the inference engine. The rule base
of type-2 is the same as that of type-1. A fuzzy inference engine results in a type-2 fuzzy set which is
the combination of several output sets and each type-2 fuzzy output set is the result of activating a rule.
The inference engine is the central block of the fuzzy logic controller. A type reducer is necessary to
transform the inference block output set into a type-1 fuzzy set, by producing left most and right most
points, ylk and yrk, respectively. Using the centroid method, the center-of-sets type reduction reduces
the resulting type-2 fuzzy sets to an interval type-1 fuzzy set [yi

lk, yi
rk] for each rule i. The inferred

interval type-1 fuzzy set is then defined by [ylk, yrk], such as:

ylk =
∑n

i=1 f i
l yi

lk

∑n
i=1 f i

l
(7)

yrk =
∑n

i=1 f i
ryi

rk

∑n
i=1 f i

r
, (8)

where f i
l , f i

r are the firing strengths corresponding to yi
lk and yi

rk of rule i and n is the total number of
rules. In the last stage, the defuzification process is carried out, where the fuzzy set is transformed into
real information (crisp) by calculating the center, which is equivalent to finding the weighted average
of the outputs of all type-1 fuzzy sets that make up the type-2 fuzzy set. The defuzzified output for
each output k is formulated as [36]:

Yk(x) =
ylk + yrk

2
.

Considering the error and its derivative (e•, ė•) as inputs, the fuzzy logic controller (FLC) applies
a suitable control action to drive both errors to zero following a set of pre-defined rules: (i) the FLC
applies a large control input when both errors are far from zero; (ii) when these errors start decreasing
in their way to approaching zero, the control input is reduced gradually for a smoother approach;
(iii) once errors reach zero, then the control input is also set to zero. Inputs signals are quantized into
seven levels represented by a set of linguistic variables: Negative Large (NL), Negative Medium (NM),
Negative Small (NS), Zero (Z), Positive Small (PS), Positive Medium (PM), and Positive Large (PL).
Details about the fuzzy rule base can be found in [35]. The choice of the fuzzy rules and membership
functions are chosen and refined further to ameliorate the tracking performance. This choice can
reduce the magnitude of the abrupt variations in the system’s response. However, unlike in type-1
FLC where good performance is achieved at the cost of a heavy empirical tuning procedure of the rules
and the input membership functions, type-2 FLC does not require such extensive tuning thanks to
its third dimension that captures better the membership functions uncertainties and knowledge base
imprecision. In this study, defuzzification is achieved using the center-of-area technique. As shown
in [35], an adaptive fuzzy logic system consists of the antecedent part of the fuzzy rules (fuzzification)
and the consequent part (defuzzification) liking the fuzzy rules with the output. As such, the adaptive
type-2 FLC’s output is expressed by,

Y = ΦTW + σ = Φ̂TŴ. (9)

where, Φ̂ ∈ Rn = Φ̂l+Φ̂r
2 is the n-dimensional vector of known functions (regressor) of the interval

type-2 fuzzy logic antecedent part defined as,
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Φ̂l =
f i
l

∑n
i=1 f i

l
(10)

Φ̂r =
f i
r

∑n
i=1 f i

r
. (11)

and W ∈ Rn is the weight vector of the fuzzy logic consequent part, with n as the number of fuzzy
logic rules. As such, σ = Φ̂TŴ − ΦTW is the fuzzy logic output error. The symbol •̂ denotes the
parameter estimate.

Formulation (3) can be expressed as:

v1 =
1
La

(Jε ε̈− G cos ε) (12a)

v2 =
1
La

Jψψ̈ (12b)

u2 =
1
Lh

Jθ θ̈. (12c)

Thus, the desired dynamics of the helicopter’s inverse dynamics can be expressed using a
regression model:

1
La

(Jε ε̈r − G cos ε) = ΦT
ε Wε (13a)

1
La

Jψψ̈r = ΦT
ψWψ (13b)

1
Lh

Jθ θ̈r = ΦT
θ Wθ . (13c)

With W• and Φ• representing the vector of unknown parameters and known functions (regressor),
respectively, which are defined as follows:

Φε = [ε̈r − cos ε]T , Wε =

[
Jε

La

G
La

]
(14a)

Φψ = ψ̈r, Wψ =
Jψ

La
(14b)

Φθ = θ̈r, Wθ =
Jθ

Lh
(14c)

where, •̈r = •̈∗ + Kd ė• + Kpe•, with Kd and Kp being positive constant gains, which correspond to the
desired time constant of the error dynamics. Setting the control law as ΦTŴ leads to,

ΦT
ε Ŵε =

1
La

(Jε ε̈r − G cos ε) (15a)

ΦT
ψŴψ =

1
La

Jψψ̈r (15b)

ΦT
θ Ŵθ =

1
Lh

Jθ θ̈r (15c)

Using the linear regression model in (13) leads to,

ë• + Kd ė• + Kpe• = η̂• ΦT
• W̃• (16)

where, W̃ = W − Ŵ, η̂• is the estimate of η• which is defined as, η• =
1

µ•
, with,
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µε =
Jε

La
(17a)

µψ =
Jψ

La
(17b)

µθ =
Jθ

Lh
. (17c)

The adaptive FLC uses only an approximation of the regression vector Φ• since this vector is
assumed to unknown, thus, the error dynamics equation can be written as:

ë• + Kd ė• + Kpe• = η̂• σ•, (18)

where σ• = Φ̂T
• Ŵ• − ΦT

•W• from (9). Since the system’s dynamics can be written in the form of a
regression model ΦT

•W•, there exists a set of Φ̂• and Ŵ• such as Φ̂T
• Ŵ• ≈ ΦT

•W•, i.e., σ• ≈ 0. It is
noteworthy that the solution is not unique and there exists several combination of Φ̂T

• Ŵ• that leads to
an accurate approximation of the nonlinear system’s dynamics ΦT

•W•. This can be written in a state
space form Ė = AE + Bσ, where E ∈ R2 = [e•, ė•]T is the state vector. A ∈ R2×2 is a stable matrix,
and B ∈ R2, are given by:

A =

[
0 1
−Kp −Kd

]
, B =

[
0
η̂

]
The control law is defined as:

v1 = Φ̂T
ε Ŵε (19a)

v2 = Φ̂T
ψŴψ (19b)

u2 = Φ̂T
θ Ŵθ . (19c)

Theorem 1. Consider a nonlinear system in the form (1)–(3) with the control law (19). The closed-loop system’s
stability is achieved with the following adaptation law:

˙̂W = −ΓΦ̂BT PE, (20)

where Γ = diag(γ1, γ2, . . . , γj) and γl is a positive constant, l = 1, . . . , j. P is a symmetric positive definite
matrix chosen to satisfy the following Lyapunov equation:

AT P + PA = −Q (21)

with Q > 0.

Proof. Choose the following Lyapunov candidate:

V =
1
2

ET PE +
1
2

W̃TΓ−1W̃. (22)

Taking the derivative of V:

V̇ =
1
2

ĖT PE +
1
2

ET PĖ + W̃TΓ−1 ˙̂W. (23)

Substitute Ė:
V̇ = −1

2
ETQE + σTE1 + W̃TΓ−1 ˙̂W, (24)

where E1 = BT PE.
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Add and subtract Φ̂TW from σ = Φ̂TŴ −ΦTW,

σ = Φ̂TW − Φ̂TŴ + ΦTW − Φ̂TW. (25)

Therefore,
σ = Φ̂TW̃ + Φ̃TW. (26)

Substitute σ in (24):

V̇ = −1
2

ETQE + Φ̃TWE1 + W̃T
[
Φ̂E1 + Γ−1 ˙̂W

]
. (27)

Setting the adaptation law as
˙̂W = −ΓΦ̂E1 (28)

implies that

V̇ = −1
2

ETQE + Φ̃TWE1. (29)

Therefore,

V̇ ≤ −1
2

ETQE + |Φ̃TWE1|. (30)

Setting Kp > 0 and Kd > 0 makes V̇ ≤ 0 possibly omitting the region of E = 0 [35]. Consequently,
the system is stable in the sense of Lyapunov. The region of E = 0 is defined by the fuzzy logic
approximation error Φ̃ and gets smaller as Φ̃→ 0.

Remark 2. Due to the iterative nature of adaptation mechanisms and because of the high complexity of the
3-DOF helicopter’s model, the controller may take a relatively long time to converge which may lead to an
unstable behavior. To overcome this issue, the control gains Kp and Kd should be large enough to achieve stability
at start-up.

4. Results and Discussion

4.1. Setup

This section is dedicated to the analysis of the performance of the 3-DOF helicopter whose
physical parameters and control gains are defined in Tables 1 and 2, respectively. All controllers
have the same singleton fuzzy logic input membership functions for e• and ė• that are set to
[−1 · 10−2,−5 · 10−3, 0, 5 · 10−3, 1 · 10−2] and [−2, 0.5, 0, 0.5, 2], respectively. In order to assess
the performance and robustness of the closed-loop control system, the 3-DOF helicopter model is
implemented in MATLAB/Simulink R© by MathWorks Inc. Numerous tests are essential to validate the
proposed controller’s ability to cope with various uncertainties.

Table 2. Control gains of a 3-DOF helicopter.

Parameter Gains

ηε, ηψ, ηθ 40, 12, 16

Kε, Kψ, Kθ 25, 2.5, 3

Γε = Γψ [0.75, 0.5, 0.3, 0.2, 0.3, 0.5, 0.75]T

Γθ [0.5, 0.4, 0.2, 0.1, 0.2, 0.4, 0.5]T

Sampling frequency (Hz) 100

Natural frequency wn (rad/s) 5
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Figure 3 shows the desired trajectory for all angles, which is considered as a step response of a
critically damped second order system with a natural frequency wn = 5 rad/s. In each test, the tracking
angle errors e• and control signals v1, v2, and u2 are taken into account in the study of the helicopter
system response under various operating conditions.

0 1 2 3 4 5
Time (s)

0

0.2

0.4

0.6

0.8

1

D
es

ir
ed

 t
ra

je
ct

o
ry

 (
ra

d
)

Figure 3. Desired trajectory for ε and ψ angles.

4.2. Results

The helicopter’s tracking errors e• and the control signals v1, v2, and u2 were used to study
the system’s response under various operating conditions. First, the adaptive interval type-2 fuzzy
logic control strategy was validated on the helicopter in the nominal case. Results are reported in
Figure 4. As it is revealed, the motion tracking errors converge gradually to zero after approximately 2 s.
The ability of the proposed controller in achieving high tracking accuracy was clearly demonstrated by
the low magnitude of the tracking errors. A saturation of control signals at ±20 observed in Figure 4b
due to a fast change in the system’s trajectories. It is important to note the controller remains stable
under such condition. As it is shown in Figure 5, the fuzzy logic weights converge to finite limit
after transient.
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Figure 4. Time response in nominal case: (a) tracking errors; and (b) control signals.
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Figure 5. Fuzzy logic weights in nominal case: (a) Yaw; (b) Pitch; and (c) Roll.

Next, the controller was tested under parametric uncertainties. For that, the mass of the system
was changed by a factor of two and in another case by half. The tracking errors, reported in Figure 6,
were kept within a similar magnitude as in the nominal case and converge to zero around the same
time. This shows the controller’s resilience in presence of parametric uncertainties. The control efforts
(especially u2) increased when the mass of the system is doubled and decreased when it is cut in half,
which is expected to adjust to the mass change.

To further demonstrate the robustness of the control scheme in handling uncertainties, unexpected
sudden step disturbances of 1 rad are applied to the yaw, roll, and pitch at time 2 s, 3 s, and 4 s,
respectively. Results depicted in Figure 7 reveal the controller’s capability in decaying tracking errors
to zero without oscillations or unstable behavior. The benefit behind the use of intelligent control is
shown by this test.

The adaptive interval type-2 fuzzy logic controller’s performance was contrasted against classical
PID control, adaptive control presented in [34], and the adaptive sliding-mode control (SMC) method
suggested in [37]. The tracking errors and the control efforts are depicted in Figure 8. It is revealed that
both the intelligent and the PID controllers, unlike sliding-mode control and adaptive control, are able
to decay the tracking errors to zero over time. However, the proposed controller was able to decay
the errors faster than PID control with a lower error magnitude and control effort. Adaptive control
needs persistent excitation for parameters’ convergence; and hence, high tracking accuracy may take
relatively long time to achieve. In theory, sliding-mode is reached by discontinuous control at infinite
switching frequency. Though, switching frequency is finite in real-world applications which yields
discretization chattering phenomenon as it is shown in Figure 8. To deal with this problem, a boundary
solution uses a saturation function to approximate the sign function in the sliding-mode manifold
boundary layer. This alternative conserves in part the sliding-mode invariance property where states
are confined to a small vicinity of the manifold. Thus, convergence to zero is not guaranteed since
robustness is achieved only when sliding mode truly occurs. To quantitatively adjudge the trajectory
tracking performance, two performance metrics are introduced. First, the integral of the tracking error
ζe was calculated over a single run. The second performance index ζc consists of the integral of the
control signals. These metrics are calculated as follow:

ζe =
∫ t f

t0

(e2
ε + e2

ψ + e2
θ) dt (31a)

ζc =
∫ t f

t0

(v2
1 + v2

2 + u2
2) dt, (31b)

where t0 and t f are initial and final time instants, respectively. The obtained numerical values for both
performance metrics are displayed in Table 3. The proposed FLC method yielded the lowest tracking
performance index and control effort. Adaptive control and PID control show similar performance,
which is mainly due to the fact that adaptive control needs time for parameters’ adaptation and
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convergence. On the other hand, the adaptive SMC achieves the highest tracking performance index
and control effort due to its inherent chattering phenomenon.
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Figure 6. Tracking errors under the helicopter’s mass change: (a) doubled mass; (b) half mass;
(c) control signals for doubled mass; and (d) control signals for half mass.
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Figure 7. Under disturbances: (a) tracking errors; (b) Yaw; (c) Pitch; (d) Roll; and (e) control signals.
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Figure 8. Nominal case: (a–d) tracking errors; and (e–h) control signals.

Table 3. Performance comparison.

Proposed Method PID Control Adaptive Control Adaptive SMC

ζe 0.03 0.08 0.08 1.34

ζc 1.10 · 104 1.16 · 104 1.25 · 104 5.42 · 105

5. Conclusions

In this paper, an adaptive interval type-2 fuzzy logic controller is designed for a 3-DOF helicopter.
The control design uses an adaptation law to approximate the system’s inverse model. Consequently,
no a priori parameters knowledge is required. Therefore, the control scheme achieves accurate
tracking by a Lyapunov-based adaptation law in the presence of both structured and unstructured
uncertainties. Unlike other control techniques, the system’s closed-loop stability is guaranteed by the
Lyapunov direct method. The controller is tested under various operating conditions to assess its
robustness against numerous uncertainties. Results illustrate that the 3-DOF helicopter’s motion can
be tracked with a high precision. Comparison is carried out against three other controllers, i.e., PID
control, adaptive control, and adaptive sliding-mode control. To better assess the performance of
these controllers, two quantitative tracking performance metrics are introduced, i.e., the integral of the
tracking errors and the integral of the control signals. Comparative results reveal the superiority of the
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proposed control method in achieving high tracking performance with a low control effort. Future
work may envision conducting the comparative study under various operating conditions on the
physical Quanser 3-DOF helicopter.
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