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Abstract: Intelligent vehicles for search and rescue, whose mission is assisting emergency
personnel by visually exploring an unfamiliar building, require accurate localization. With GPS
not available, and approaches relying on new infrastructure installation, artificial landmarks,
or pre-constructed dense 3D maps not feasible, the question is whether there is an approach
which can combine ubiquitous prior map information with a monocular camera for accurate
positioning. Enter FloorVLoc—Floorplan Vision Vehicle Localization. We provide a means to
integrate a monocular camera with a floorplan in a unified and modular fashion so that any monocular
visual Simultaneous Localization and Mapping (SLAM) system can be seamlessly incorporated for
global positioning. Using a floorplan is especially beneficial since walls are geometrically stable,
the memory footprint is low, and prior map information is kept at a minimum. Furthermore,
our theoretical analysis of the visual features associated with the walls shows how drift is corrected.
To see this approach in action, we developed two full global positioning systems based on the
core methodology introduced, operating in both Monte Carlo Localization and linear optimization
frameworks. Experimental evaluation of the systems in simulation and a challenging real-world
environment demonstrates that FloorVLoc performs with an average error of 0.06 m across 80 m
in real-time.

Keywords: indoor positioning; mobile robotics; visual SLAM; search and rescue

1. Introduction

Indoor spaces are all around us—airports, malls, office buildings, museums, manufacturing
factories, homes—and constitute the environment in which the vast majority of our productive life
is spent. With the continued, rapid progress of integrating intelligent systems into the workflow of
search and rescue, security, and manufacturing, a prerequisite for all such applications is the ability to
autonomously navigate. While GPS/GNSS systems offer effective solutions in outdoor environments
when unobstructive line-of-sight to satellites is available, they are inadequate in indoor settings. This is
true even if high sensitivity receivers are used, due to the relatively large errors caused by multi-path.
Indoor localization continues to receive considerable attention and, due to the scope of the known
challenges associated with it, remains an open problem.

Indoor global localization comes in many flavors due to the assumptions which are made about
the environment and the type of platform and sensors that are used. However, the goals to achieve
global localization are clear: distances from the platform to landmarks in the scene must be determined
so that the resulting localization can be of a correct global scale; proper data associations must be
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formed between sensor measurements and prior map information; and pose drift must be handled for
long-term localization.

As with all open research problems, the goal is to develop a system with a maximal information
per cost ratio, thresholded at the minimum requirements for the problem’s solution. This paper does
just that, achieving global positioning using a trio of a monocular camera, floorplan, and robotic
vehicle as shown in Figure 1. A monocular camera as the main exteroceptive sensor is especially
desirable due to the large applicability, low cost, fast setup, and richness of information about the
environment that it provides. While a moving monocular camera can extract local motion and scene
structure, there exists a similarity transformation (rotation, translation, scale) with respect to the world,
and this is modulo any drift. It is through effectively incorporating the floorplan, which provides
global planar information, that the local camera information can be placed into a framework to perform
drift-free global positioning. Relying on loop closure can only work when the desired trajectory is a
loop, which can be a strict requirement for many real-world applications (e.g., emergency search and
rescue, security, etc.) [1–3]. In contrast to a quadcopter, utilizing a small robotic vehicle with a camera
mounted approximately 15 cm off of the ground means that there will be a “ground level viewpoint”.
Most obstacles in the scene will appear above the camera and will therefore occlude views of the
scene, including the walls, at various points in time. In addition, due to the nonholonomic constraints
inherent in using a robotic vehicle, the possible viewpoints of a scene will be limited. Therefore,
extracting the perceptual information which is beneficial to the positioning algorithms necessarily
becomes more challenging. It is through an effective integration of the monocular camera data and
global planar information from the floorplan presented in this paper that global positioning can be
achieved for the robotic vehicle, which:

• does not require the environment to be previously explored
• incorporates prior information which is readily available and easy to obtain
• effectively resolves the metric scale ambiguity
• provides a means to handle and correct drift in all degrees of freedom
• utilizes geometric map information of the environment structure which is stable and stationary

(without photometric reliance) and
• keeps the prior map information required at a minimum.

Figure 1. Floorplan Vision Vehicle Localization (FloorVLoc) provides the means to integrate any
monocular visual Simultaneous Localization and Mapping (SLAM) system with a floorplan for
real-time global positioning with a robotic vehicle, incorporating automatic scale calibration.

The main contributions of this paper are:

1. A modular core methodology which can integrate any monocular-based local scene reconstruction
with a floorplan to perform global localization, including automatic scale calibration.

2. A theoretical and experimental analysis of the conditions on the visual features associated with
the walls necessary for the localization to be uniquely recovered.
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3. Two full global positioning systems based on this methodology which perform continuous
positioning at real-time computation rates. One approach utilizes visual odometry in between
Floorplan Vision Vehicle Localization (FloorVLoc) linear optimization localization updates;
another approach formulates the system in a Monte Carlo Localization (MCL) framework with a
FloorVLoc measurement model, correcting motion based on whatever wall information is present
shown in Figure 2.

4. Experimental evaluation of the global positioning systems for indoor search and rescue
applications in a challenging real-world environment, as well as real and simulation testing
for a focused study of various aspects of the methodology.

Figure 2. The algorithm flow diagram for the FloorVLoc global positioning algorithms presented (with
the whole system in blue). A series of images taken by a moving monocular camera is processed
by an underlying monocular SLAM algorithm (shown in red) which outputs local motion and scene
structure. This paper provides two methods for performing this global positioning (shown in yellow
with a dashed line distinguishing the two)—one in a Monte Carlo Localization (MCL) framework
and the other via an optimization framework. The MCL framework combines the camera egomotion
with wheel encoders to form a motion model and relies on a FloorVLoc Core measurement model
to refine the localization. The optimization framework incorporates the local camera motion with
a floorplan-based scale estimate to provide visual odometry and solves for the refined poses via a
FloorVLoc Core optimization.

2. Literature Review

One rather immediate indoor alternative to GPS/GNSS would be based on radio frequency,
such as Wifi, Bluetooth, or Ultra-wideband (UWB), yet the requirement of new infrastructure
installation or deployable equipment prevents it from being a feasible solution in the context of the
present study [4–7]. Futhermore, due to the challenges associated with constructing and maintaining
the map and the accuracy issues associated thereof, there has been an effort to integrate other sensors
with radio frequency signals [8].

Image-Based Localization (IBL) [9–12] has broadly been a popular approach to localization due
to the amount of information that is provided by images. State-of-the-art algorithms for IBL have
continued to follow a 3D structure-based approach [13–20], where 2D-3D image point to 3D world
point correspondences are established for a query image, and then the camera pose is solved using an
n-point-pose (PnP) solver. Understandably, due to outliers in the data associations, the whole algorithm
is often placed inside a robust framework (e.g., RANSAC [21]). Alternatively, Deep Convolutional
Neural Networks have also been deployed in order to achieve Absolute Pose Regression (APR) where,
rather than relying on machine learning for extracting local features or handling outliers, the camera
pose is regressed directly from the network [22–28]. However, 3D structure-based approaches have
continued to significantly outperform the APR ones since APR approaches cannot guarantee to
generalize from the training data, and it has been shown that such approaches cannot outperform an
image retrieval algorithm [29]. Furthermore, there are some issues of brittleness as updating the map
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requires retraining the CNN network. Therefore, there is quite a bit of room for further research in
this area.

Similar IBL approaches have been used for indoors as well [18,30,31]. For example, fiducial
markers have been utilized in an indoor localization framework; by specifying the 3D locations of
such markers with respect to the indoor environment, the transformation between the marker and the
camera can be obtained when recognizing it in the image [32–34]. Scale is resolved through specifying
the size of the marker, and the orientation is computed based on the unique orientation of the marker
pattern with respect to the camera. Another type of map that has been used is a multi-channel raster
image of the building [35], where in addition to lines of the intersections between walls and the floor
(like a floorplan), information about the current status of the environment is inserted, such as the
contours of static objects and an occupancy grid map specifying information of available areas for
the robot to navigate. In a similar fashion, another approach has been to create a distance function
based map offline thereby providing information about both region occupancy and distances to the
occupied areas [36]. One of the main drawbacks to approaching localization in such a way is the
requirement to either install infrastructure in the environment or explore it before performing the
localization. In fact, constructing and extending a large-scale 3D model of the world prior to online
positioning often requires using a sensor of the same modality. Torii et al. investigated whether
such models are required in contrast to 2D image retrieval-based methods relying on a database of
geo-tagged images. Their experimentation shows that 3D large-scale models are not strictly required,
and approaches which can combine image-based methods with local reconstructions produce accurate
positioning solutions [37]. The focus on utilizing local reconstructions is the approach that is taken
in this paper, but rather rather than relying on any type of large-scale 3D model, using a floorplan
significantly alleviates the issue of map construction and maintenance, and further, it does not require
environments to be explored beforehand. The approach in this paper utilizes local reconstructions and
relates them to global planar information from the floorplan in order to achieve global positioning.
While a monocular camera could be coupled with another type of map (e.g., a 3D point cloud lidar
map) for localization by computing the similarity transformation between the local reconstruction
and the global map [38], there are several advantages in choosing a floorplan to perform the indoor
localization with this paper: First, from an application-context perspective, our method does not
require the scene to be previously explored; second, using a floorplan provides more flexiblity for data
association which is more critical in indoor settings where texture and features are not as prevalent as
in outdoor settings; third, our method uses the minimal amount of prior map information required for
global localization, an extra challenge which this paper solves.

While surprisingly somewhat rare, floorplans have been used as maps with localization systems
before, and when they are used, they are primarily coupled with sensors which provide depth
information (lidar or RGBD cameras). With regard to approaches using RGBD cameras, Ito et al. [39]
approached localization in a Bayesian state estimation framework using a particle filter (i.e., Monte
Carlo Localization) with an RGBD camera and IMU for visual-inertial odometry with the depth
information provided by the depth camera utilized in the measurement process using a beam sensor
model. Wifi signals were also integrated in order to help reduce multi-modality of the particle filter and
increase the convergence speed. Winterhalter et al. [40] similarly utilized an RGBD camera and IMU to
guide the proposal distribution, using the Google Tango Tablet platform where the depth data formed
the basis of the measurement model, and localization operated in an MCL framework. Ma et al. [41]
developed an RGBD Simultaneous Localization and Mapping (SLAM) system which combines direct
image alignment frame-to-keyframe with frame-to-plane alignment via a global graph optimization.
Coupling the local motion estimation with the global in the same optimization has the drawback
of not being modular to using any underlying visual SLAM algorithm. Chu et al. [42] approached
performing global localization using a monocular camera via full point cloud, line, and conservative
free space matching by using a scaled-version of the reconstruction (therefore similar output to what
one would get with an RGBD camera) from a semi-dense visual odometry algorithm. Computing the



Robotics 2020, 9, 69 5 of 29

scale offline and then using it for matching means that such an approach cannot be performed online as
it avoids automatic scale calibration, a critical issue which is solved in this paper. Mendez et al. [43,44]
approached the problem from a different perspective where semantic information is extracted from
the images and then matched to the floorplan to localize using the angular distribution of the semantic
labels. Similarly, Wang et al. focused on utilizing text from the names of stores and facade segmentation
in order to localize within a shopping mall [45]. With their approach, the text of store names was
determined via a Markov Random Field (MRF) and accuracy was limited to around 1–5 m. Further,
in situations when text was missing, the system suffered severely. Depth information of the scene
has also been acquired via lidar which can be integrated into a pose-graph optimization rather than a
filtering scheme. The data acquired by the lidar sensor can be utilized for odometry via scan-matching,
and then an ICP algorithm can be deployed in order to use the floorplan and provide an a priori
estimate on the pose, which is subsequently optimized according to the underlying pose graph [46,47].

Monocular SLAM/Visual Odometry (VO) has been researched somewhat extensively, including
approaches such as ORB-SLAM2 [48], SOFT-SLAM [49], LDSO [50], NID-SLAM [51], ROCC [52],
Fast-SeqSLAM [53], SVO [54], and PL-SVO [55]. Furthermore, the Bundle Adjustment algorithm
has consistently been a state-of-the-art approach for jointly inferring 3D structure, typically sparse
scene structure, and camera pose information from a series of images by minimizing the geometric
reprojection error, and many SLAM formulations have relied on it [56–60]. In light of this, due to
the known scale ambiguity issue, there has been a considerable amount of work to utilize monocular
cameras to acquire metric depth information either from Deep Convolutional Neural Networks [61–65]
or by relating visual cues to structural information in the scene for which metric scale can be known.
One approach is to take advantage of the objects present in the scene, known as Object-SLAM. The goal
is to recognize objects in the environment and compute the scale by utilizing priors on the sizes of
such objects [66–70]. In general, such a problem deals with both robust object detection and object
measurement [71–73]. Other geometric structures (e.g., the ground plane) have also been exploited to
help resolve the scale [74–78]. Lastly, the visual information has also been often integrated with other
sensors such as an IMU [79–82] or lidar [83–85].

In order to continuously provide global positioning so that local reconstructions can be properly
matched to the global structure, perceptual information should be integrated into a system which
fuses multiple sources of information effectively. Traditionally, Extended Kalman Filter approaches
were utilized [86–91] for localization, but more recently, approaches based on particle filters especially
for mobile robotics localization have been deployed [92–96], also known as Monte Carlo Localization
(MCL). More rarely, however, has Bundle Adjustment been utilized to integrate various sources
of external scene information with visual information into a formulation which can solve global
positioning. One way is to augment the cost function to include these external constraints, and thereby
perform a constrained Bundle Adjustment (BA) optimization [97–99]. Finally, one of the well-known
challenges to overcome with vision-based navigation is drift. In contrast to sensors which can measure
depth, monocular vision systems add another degree of freedom to drift over time with respect to scale.
Thus, drift correction becomes of vital importance, and is addressed in a variety of ways [100–102].
For example, in [103], per-frame global optimizations are performed over all current and past camera
poses while in other works techniques of loop closure or derivatives thereof have been required to
resolve it (e.g., [104]). This paper addresses the drift issue by deriving the relationship between the
vision-based data and the floorplan and explicitly providing mathematical criteria for showing when
global localization computations can be drift-free based on the geometrical structure in view. While a
floorplan typically offers more information, utilizing simply the planar information is sufficient to
localize effectively and accurately.

3. Global Localization: The FloorVLoc Core

To give an overview of the global localization: a series of images taken by a moving monocular
camera is processed by an underlying monocular SLAM algorithm which outputs local motion and
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scene structure. This paper provides two methods for performing this global positioning—one in
a Monte Carlo Localization framework and the other via an optimization framework. The MCL
framework combines the camera egomotion with wheel encoders to form a motion model and relies
on a FloorVLoc Core measurement model to refine the localization. The optimization framework
incorporates the local camera motion with a floorplan-based scale estimate to provide visual odometry
and solves for the refined poses via a FloorVLoc Core optimization.

This section presents the core methodology for integrating a monocular camera with a floorplan
to provide global localization. An emphasis is placed on the automatic scale calibration in an online
fashion—a feature which is necessary in order to be able to use any underlying monocular SLAM
system for online global positioning. In addition, an analysis is presented of the visual features
associated with the walls to ensure unique global localization, which intrinsically corrects drift.
The beauty of all of this comes from the fact that it can be derived from first principles and consequently
has significant ramifications.

Suppose that the platform is moving and an image is taken at time t by the camera located at
position p ∈ R3 with orientation denoted by R ∈ SO(3). Further, suppose features are extracted from
the image such that the i-th feature point has normalized homogeneous image coordinates of q̄i ∈ R3.
Then the true location Qi of the corresponding feature is

Qi = p + λiRq̄i (1)

where λi is referred to as the depth of the ith feature point. Consider the estimated position p̂ and
orientation R̂ by the localization algorithm at the same time instant. Then the 3D location Q̂i can be
expressed as:

Q̂i = p̂ + λ̂iR̂q̄i (2)

Assuming that q̄i is a feature on the jth wall of the floorplan, then both Q̂i and Qi are 3D points
which should lie on that wall. Let πj = (Nj, bj) denote the planar properties of such a wall where Nj
is the normal vector and bj is the distance from the plane to the world origin. While the true location
Qi is unknown, Q̂i can be estimated, and consequently the depth λ̂i, by using a ray-tracing algorithm.
Under this assumption, it directly follows that:

N>j (Q̂i −Qi) = 0 (3)

Applying this to (2) and left-multiplying by N>j , yields

λ̂i N>j R̂q̄i = N>j (Qi − p̂) (4)

Since bj = N>j Qi is the distance from the origin of the world coordinate system to the jth wall,
(4) can be simplified to

λ̂i N>j R̂qi = bj − N>j p̂ (5)

Consider next a sequence of images captured using the monocular camera and then processed
using a monocular vision Simultaneous Localization and Mapping (SLAM) algorithm where the local
motion and scene structure are recovered. Because depth computation is up to an unknown scalar s
which is common to all of the points, λ̄i =

1
s λ̂i Thus:

sλ̄i N>j R̂q̄i = bj − N>j p̂ (6)

Equation (6) can be used in either an optimization framework or integrated as a measurement
process in a filtering framework. Both approaches will be presented with a study of certain planar
criteria which must be met to uniquely compute the pose.
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3.1. Optimization Framework (FloorVLoc-OPT)

Suppose that R̂ is a good approximation to the true orientation R so that

R = ∆ΨR̂ (7)

where ∆Ψ is a small rotation matrix (approximately equal to the identity matrix I). Using the
small angle approximation and the wedge operator (·)∧, which converts 3D vectors into 3 × 3
skew-symmetric matrices,

∆Ψ ≈ I + ∆ψ∧ (8)

with

∆ψ =


δφ

δθ

δψ

 (9)

δφ, δθ, and δψ being small angles. Using this approximation, (6) can be rewritten as

λ̄i N>j (I + ∆ψ∧)R̂q̄i =
1
s
(bj − N>j p) (10)

The estimate for the pose is obtained by scaling the camera egomotion from the underlying
monocular SLAM algorithm and transforming it based on a world reference pose. The world reference
pose is chosen to be the last one for which a global localization solution was computed or the initial
world pose. Defining p̄ = 1

s p̂ and after some algebra, (10) becomes

λ̄i N>j (R̂q̄i)
∧∆ψ +

1
s

bj − N>j p̄ = λ̄i N>j R̂q̄i (11)

which in matrix form looks like:

[
λ̄i N>j (R̂q̄i)

∧ bj −N>j
] 

∆ψ
1
s

p̄

 = λ̄i N>j R̂q̄i (12)

Note that (12) provides one constraint on the variables of the problem. Assuming that a sufficiently
large number of such equations are collected so that the associated matrices have full rank (more on
this later), the resulting linear system of equations can be solved efficiently. If required, the small
angle approximation can be relaxed by replacing R̂← ∆ΨR̂ after finding the angular perturbation and
performing a new iteration of the above algorithm to refine the solution. Here ∆Ψ should be formed as
the rotation matrix associated with ∆ψ and not its small-angle approximation.

3.2. Planar Motion

The constraints developed in the previous section can be used as the basis for global localization
for six degree of freedom platforms (e.g., quadcopters, mobile phones). However, because the platform
of interest for search and rescue is a small robotic vehicle, in this section we will elaborate on the
specialization to planar motion. Suppose then that a ground vehicle is used to carry the camera which
is furthermore assumed to be rigidly mounted. Using the assumption that changes in height and
roll and pitch angles are negligible, the orientation perturbation reduces to ∆ψ = (0, 0, δψ)> and by
defining cψ = cos (ψ) and sψ = sin (ψ) so that

αij = λ̄i Njx (sψqix + cψqiy) + Njy(sψqiy − cψqix )

γij = λ̄i Njx (cψqix − sψqiy) + Njy(sψqix + cψqiy) + Njz qiz

(13)
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where (·)x, (·)y, and (·)z denote the x, y, and z components of the vector, respectively, (11) becomes:

αij · δψ +
1
s

bj − N>j p̄ = γij (14)

Again, in matrix form:

[
αij bj −Njx −Njy

]


δψ
1
s

p̄x

p̄y

 = γij (15)

3.2.1. Data Association

One of the key components to effectively perform the global positioning is the data association.
Planar associations are found between the map points from the underlying SLAM algorithm
across some designated time horizon and the global planes πj provided by the building floorplan.
The associations are found by performing ray tracing. During the initial stage of the algorithm,
before any scale factor has been computed, all planar associations are kept; however, in subsequent
stages, once a scale factor has been computed, then associations undergo an outlier filtering process.
The planar fitting error ε

j
i derived from (6) is computed for every point-plane association (qi, πj):

ε
j
i = bj − N>j (sRq̄i + p̂) (16)

Note that qi are all the points across some time horizon (meaning points from the past are
propagated to the current pose coordinate frame). Associations are only kept when |εj

i | < τ where τ is
some threshold. For the experimentation in this paper, τ was chosen to be 30 cm. Because some points
have more error than others either due to triangulation error or due to obstacles in the environment,
the planar fitting error can be used to formulate a weight for each planar association and a weighted
least squares optimization can be performed using (15). The weights are defined to be:

wj
i = exp

(
−
(ε

j
i − µj)

2σ2
j

)
(17)

where µj and σj are the mean and standard deviation, respectively, of the planar fitting error for
all points on plane j. If there are fewer than 10 associated points to some plane, those points are
discarded to mitigate outliers. In addition, due to the fact that a robotic vehicle has planar motion,
only vertical planes constrain the localization, and thus only points on vertical planes are utilized
for the optimization. Lastly, in order to be more robust to incorrect solutions, pose computations
are only accepted if their corresponding positions and orientations are a weighted threshold away
from the a priori estimated poses, with weight proportional to the time since the last computed
localization solution.

3.2.2. Initialization

The vehicle starts from a known world pose but an estimate for the scale needs to be computed.
This is done by finding planar associations as described in Section 3.2.1 and obtaining a scale factor for
each association (qi, πj) by:

ŝi =
bj − N>j p

N>j Rqi
(18)
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The overall estimate is computed by taking the median of all scale factors:

ŝ = med ŝi (19)

Using the median is advantageous for handling potential outliers. In addition, here we consider
points on all planes including horizontal planes such as the ground or ceiling. While such points do
not affect the position or orientation for the vehicle, they can be used to compute the scale which is
necessary for initializing the system using the floorplan. So in this context, such points are useful to
include. This scale factor is then refined when the linear optimization is performed.

3.2.3. Uniqueness Criteria

In order to uniquely compute the pose of the camera using the planar associations, certain planar
criteria must be met which are manifested in the rank of matrix (12) for the general case and matrix (15)
for a vehicle. For the general case, (12) is a linear system of equations with seven unknowns, and hence
at least seven distinct visual features must used. To determine the requirements for computing a
unique camera pose based on planar criteria, let Aπ be the matrix of the k world planes that are in
view across the time horizon and be defined as follows:

Aπ =


b1 −N>1
b2 −N>2
...

bk −N>k

 (20)

Then the following result holds:

Lemma 1. A necessary and sufficient condition for computing a unique pose is that seven distinct feature points
are visible and the matrix Aπ has rank at least four.

Proof. See Appendix A.

In considering the uniqueness criterion for a robotic vehicle platform where planar motion occurs,
define the matrix Av

π to be:

Av
π =


b1 −N1x −N1y

b2 −N2x −N2y

...

bk −Nkx −Nky

 (21)

In this special case, the conditions in Lemma 1 can be reduced:

Lemma 2. A necessary and sufficient condition for computing a unique pose for a camera rigidly mounted onto
a robotic vehicle is that four distinct feature points are visible and the matrix Av

π has a rank of at least three.

Proof. See Appendix B.

3.3. Monte Carlo Localization Framework (FloorVLoc-MCL)

The second approach presented in this paper for monocular floorplan localization which can
utilize any underlying monocular SLAM algorithm is based on a Monte Carlo Localization (MCL) [105]
framework. MCL is achieved via the Bayesian recursive update, where each particle xt represents a
pose hypothesis and

bel(xt) ∝ p(zt|xt)
∫

X
p(xt|xt−1, ut)bel(xt−1)dxt−1 (22)
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where zt denotes the measurement and ut refers to the control, which in this context corresponds
to odometry. The particles are propagated according to a motion model p(xt|xt−1, ut) and then
re-weighted based on a measurement model p(zt|xt) in order to estimate the posterior belief of pose
xt. The particles are initialized uniformly using the a priori pose estimate and its uncertainty, and the
scale component of each particle is initialized using the method given in Section 3.2.2.

3.3.1. Motion Model

More specifically, because the particles are elements of the Lie Algebra sim(2) (position,
orientation, and scale), the scale of the scene must also be taken into account in the motion model so that
each particle can properly and effectively propagate the scale forward. The position and orientation
use a standard odometry motion model with Gaussian error terms in a three-vector parameterized
form. The odometry is obtained using the wheel encoders for distance and the camera egomotion
from the underlying SLAM algorithm for relative orientation. Let xt denote the estimated current pose
updated from the odometry motion model, xt−1 refer to the pose at the previous time step, and the
corresponding poses from the camera egomotion be ξt−1, ξt. The estimated scale for each particle is
computed by

st =
||xtr

t − xtr
t−1||

||ξtr
t − ξtr

t−1||
(23)

where (·)tr refers to the translation component of the pose vector. This way, the scale can be propagated
in a way that is coupled to the propagation of the position of each particle.

3.3.2. Measurement Model

The measurement model of MCL is used to integrate the global planar information provided by
the floorplan and the reconstructed local scene structure in order to re-weight the propagated pose
hypotheses. The general idea is to compute the planar fitting error for all of the points, placing them on
their respective walls, according to each specific pose hypothesis. This formulates the log-likelihood of
the measurement. In order to accomplish this, associations are established according to the method
described in Section 3.2.1 except no outlier filtering is performed here. The measurement log-likelihood
is then defined as,

log p(zt|xt) = −
1

2mσ2
z

m

∑
i=1

ρ
(

bj − N>j (sRqi + p)
)

(24)

where R is the rotation matrix corresponding to the orientation component of xt, p is the translation
component of xt, and s is the scale component of xt. Furthermore, ρ(·) is a robust kernel (e.g., Huber)
to help mitigate outliers and σz is a saturation term. In the experimentation presented in this paper,
the odometry between the previous and current poses, dt1→t2 , along with a constant κ were used to
define σz as:

σz =
κ

1 + dt1→t2

(25)

which effectively places less weight on measurements with small baselines. The justification for this is
that the accuracy of Bundle Adjustment (from Multi-View Geometry) increases with longer baselines.
The tuning parameter κ was chosen to be 100 for the experimentation presented later in the paper.

Each particle is then updated by the following weight policy, which experimentally was verified
to work well:

w =
1

1− log p(zt|xt)
(26)

After re-weighting the particles, then all of the particles are re-sampled using stochastic universal
resampling, and the process repeats recursively according to (22).
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4. Experimental Evaluation

In order to evaluate the performance of our proposed approach, we collected data using a robotic
vehicle equipped with the uEye IDS monocular camera (IDS Imaging Development Systems GmbH);
the camera was forward facing and mounted at a height of about 15 cm off the ground. The external
odometry was based on wheel encoders, and the vehicle sensor array also included an Odroid XU4
(Ameridroid High-Performance Electronics) onboard computer and an Arduino Nano. The odometry
from the wheel encoders was somewhat poor, yielding an error of about 5%. The on-board camera
provided up to 57 fps at full resolution of 3.2 MP with a field of view of 65.6 × 51.6 degrees. The length
of the vehicle was 53.5 cm and its width was 28.1 cm—which is important to note in light of the
accuracy of the systems. For the tests presented, the vehicle was used for data acquisition, and the
positioning systems were run offline on a laptop computer. Two types of image resolutions were
experimented with when running the local monocular SLAM system [48] which was used for all of
the experimentation: The optimization framework used 2056× 1542, and the MCL framework used
640× 480. For both systems, the initial ground-truth pose in the floorplan was given. Note that the
floorplan, which was obtained from building managers, contained the ceiling height. Details on how
ground truth was obtained are given in Appendix C.

4.1. Comparison to Related Methods

The positioning algorithms presented in this paper, FloorVLoc-OPT and FloorVLoc-MCL, which
correspond to the optimization and MCL frameworks, respectively, were compared to each other as
well as to a state-of-the-art SLAM algorithm, ORB-SLAM. Because ORB-SLAM is a monocular SLAM
algorithm, the map built is with respect to the initial camera pose and the trajectory is without scale.
We align ORB-SLAM’s initial pose with the ground truth initial world pose and scale the trajectory via
two different ways: The first way computes the ratio of the distance between two known ground-truth
positions and the corresponding unscaled distance between two ORB-SLAM positions.

s1 =
||(xGT

t2
)tr − (xGT

t1
)tr||

||(ξt2
)tr − (ξt1

)tr|| (27)

The second way uses the distance obtained from the external odometry provided by the wheel
encoders rather than the translation between two ground truth poses.

s2 =
dt1→t2

||(ξt2
)tr − (ξt1

)tr|| (28)

where dt1→t2 is the wheel encoder odometry between two selected poses used for the scale computation.
Note that the latter can be implemented in real-time while the former is useful for experimentation.

The results for the FloorVLoc-MCL and FloorVLoc-OPT global positioning systems as well as the
comparison approaches are given in Table 1.

Table 1. Results for the FloorVLoc global positioning systems across a trajectory of about 8000 cm.
The errors are found by taking the error vector between each pose and its corresponding ground truth
and computing the mean error vector (ē) and the covariance matrix from which the standard deviation
σ̄ is obtained.

Method ēpos (cm) σ̄pos (cm) ēori (rad) σ̄ori (rad)

ORB-SLAM with Odometry Scale (151.31, 43.66) (202.65, 34.58) 0.0088 0.019

ORB-SLAM with GT Scale (23.67, 37.46) (249.59, 42.24) 0.0088 0.019

FloorVLoc-OPT (5.86, 8.00) (10.90, 19.34) 0.00035 0.046

FloorVLoc-MCL (5.92, 3.37) (40.10, 7.86) 0.00066 0.080
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Trajectories for both FloorVLoc algorithms are shown in Figure 3a,b. The vehicle started in a
more open area and then proceeded down a long corridor, making a loop around an island of offices
containing rather narrow corridors and very tight turns, and then returning to the open area. During
the execution, there were dynamic obstacles (e.g., people walking in front of the vehicle at multiple
instances, sometimes right in front) as well as static obstacles (e.g., cabinets) and other challenging
aspects such as significant illuminance variation due to sunlight entering windows. Handling dynamic
obstacles is usually a front-end task and one which has been directly tackled in the literature [106,107],
and its negative result is typically manifested in tracking difficulty or reconstructed points which
need to be treated as outliers for floorplan-based localization. Due to the modular design of the global
positioning systems in this paper, the focus on dealing with dynamic obstacles was placed on properly
handling outliers in the reconstructed scene as discussed in Section 3.2.1.

(a) Trajectory for FloorVLoc-MCL. (b) Trajectory for FloorVLoc-OPT.

Figure 3. Real-data experimentation trajectories for the full FloorVLoc global positioning algorithms,
spanning about 8000 cm. The world coordinate axes are also shown along with the floorplan
scale. The vehicle started in an open area and then traversed down a long corridor with dynamic
obstacles—multiple people walked around the vehicle. The end of the corridor had significant glare
coming from sunlight entering the building. Additionally, the loop around the offices required tight
turns by the vehicle to enter and exit. The localization results demonstrate robust localization handling
these challenges.

First of all, it can be seen that the FloorVLoc algorithms significantly outperformed the ORB-SLAM
transformed trajectories. Whereas both ORB-SLAM ones expectedly suffered from drift significantly,
the FloorVLoc approaches properly handled the drift as shown in Figure 4, which was one of the main
benefits of incorporating the floorplan into the global positioning. It can also be seen that the main
sources of error were in the X direction, which is related to the fact that this was the direction of the
corridor, and consequently, the majority of the motion was in the X direction. Furthermore, it can also
be seen that the motion in the Y direction was properly constrained as the error was quite small and
relatively consistent throughout despite the trajectory containing a loop around the island of offices.
Even though there were people that walked around the moving vehicle at three separate instances
throughout the execution, it can be seen that the error was still low, with standard deviation even less
than the length of the vehicle itself.

One of the interesting places in the experimentation happened around frame 1534 where in
Figure 5 we can see the uncertainty of the underlying monocular SLAM algorithm The vehicle was in
the process of turning out of the island of offices and encountered a situation where there was primarily
a white wall and the floor—a classic place for tracking failure—and indeed tracking often did at this
point. Figure 5 also shows a rise in the uncertainty in the Bundle Adjustment optimization during
that time period. Figure 5 is a plot of the pose inverse Hessian norm of the local Bundle Adjustment
optimization the last time that a particular frame was part of the optimization. Understandably,
the uncertainty could not be directly related to global pose uncertainty because of the correlations
which existed between camera poses and due to the fact that the uncertainty for the poses in the local
BA were with respect to the keyframes, which were fixed to handle the gauge freedom. Nevertheless,
it was indicative of places in the trajectory when the underlying local SLAM had more difficulty.
In fact, errors in the local reconstruction from the windowed BA optimization will propagate to the
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global positioning system similar to how sensor errors propagate into the error of any localization
system. This is inherent to the design of the system which was done in order to keep modularity
so that any underlying SLAM algorithm could be used and computational cost could be kept at a
minimum. The important point to note is that while SLAM systems have to deal with long-term drift,
the FloorVLoc methods provide the means to correct drift and localize with respect to the building.

Figure 4. A plot of the position errors in the X and Y direction for the FloorVLoc positioning systems
and the comparison approaches across the 80 m trajectory. It can be seen that in contrast to the
compared approaches, the FloorVLoc systems effectively handled drift and maintained a low error.
The standard deviation of the position error for both FloorVLoc systems was smaller than the length
of the vehicle. The FloorVLoc-OPT method consistently remained within 0.09 m error whereas the
ORB-SLAM based methods rose to over 7 m in the X direction.

Figure 5. A plot of the Bundle Adjustment (BA) uncertainty which is used for the analysis of the
FloorVLoc positioning systems. More specifically, it specifies the norm of the pose inverse Hessian
of the local Bundle Adjustment optimization the last time that a particular frame was included in
the optimization. This plot provides quantitative indications of places in the trajectory when the
underlying local SLAM algorithm had more difficulty.

Therefore, it can be seen that the orientation error shown in Figure 6, particularly for
FloorVLoc-MCL, increased during that time; however, the error subsequently decreased utilizing the
walls of the floorplan to guide its correction. For that area, the orientation error for FloorVLoc-OPT
increased but not as much. Note that the OPT approach uses a larger horizon when computing the
pose, whereas the MCL approach used the current points that the camera views for updating the
motion in the measurement model. One of the benefits of using a larger horizon is that challenging
tracking situations can be handled more effectively, as can be seen by the results. However, it should be
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noted that as the horizon increased, the influence of drift naturally also increased since technically drift
was only eliminated when only the points in the current BA optimization were used. FloorVLoc-OPT
used a horizon of 15 keyframes which provided a nice balance. Overall, while both FloorVLoc
approaches performed very well for the challenging dataset, the optimization-based approach tended
to outperform the MCL approach.

Figure 6. A plot of the orientation errors for the FloorVLoc positioning systems and the comparison
approaches across the 80 m trajectory. It can be seen that the FloorVLoc-OPT method consistently
performed with an orientation error below 3.8◦.

For the MCL approach, the initial pose was assumed to be known with an uncertainty modeled
by zero-mean Gaussian noise with a standard deviation of 10 cm in the position and 10 degrees in the
orientation. Ten runs of the algorithm were performed in order to incorporate the stochastic nature,
and the results were averaged. Figures 4 and 6 plot the averaged results for the position and orientation
errors. In Figure 7, the average error as well as the standard deviation of the error across all runs
are plotted.

4.2. Ablation Study

4.2.1. FloorVLoc-MCL

In this section, we perform an ablation study of the localization algorithms under more controlled
simulation environments. In order to further test specifically the MCL approach, which is probabilistic
in nature, we constructed an indoor building in simulation using Unreal Engine 4 and Microsoft
Airsim. Refer to Figure 8 for a view of the indoor simulation environment. The environment was
built to emulate specific characteristics of indoor buildings. Obstacles such as a cabinet and bookshelf
were placed to serve as planar obstacles and other obstacles such as a sofa and a chair were added
to provide exposure to non-planar obstacles. The simulation building also contained windows with
sunlight glare, a door, a lamp hanging from the ceiling, and other features so that the environment
provided a reasonably realistic scenario for additional testing. Odometry was simulated by taking
the ground-truth positions, computing the distance between them and accumulating a 5% error on
the distance, similar to what happens with the wheel encoders in the real data testing. The vehicle’s
trajectory was designed so that the vast majority of the environment could be in view at some point.
The camera parameters of the simulation camera were chosen to be similar to the ones with the real
IDS camera. The camera was also placed at a similar height (15 cm). Ten runs of the algorithm were
performed in order to incorporate the stochastic nature of the MCL framework and the positioning
results were subsequently averaged. The initial pose was perturbed from the ground truth with a
position error of 7.07 cm and an orientation error of 0.02 rad.
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Figure 7. A plot of the position and orientation errors for the FloorVLoc-MCL method. A total of
10 runs were performed to incorporate the stochastic nature of the algorithm. In this plot, the average
errors along with the shaded-in standard deviation are plotted across the runs. The average position
error is (0.06, 0.03) m with a standard deviation of (0.40, 0.08) m in the (x,y) directions across the 80 m
trajectory. The average orientation error is 1.98◦ excluding the orientation checkpoint at frame 1512
where it rose to 14◦ due to underlying uncertainty in the Bundle Adjustment where tracking was
challenged by a tight turn with white walls. Despite this, the FloorVLoc method successfully managed
to reduce the orientation error, using the floorplan to guide it, down to an orientation error of 1◦ by the
end of the trajectory.

Figure 8. View of the Unreal Engine and Microsoft Airsim indoor simulation environment built for
additional experimentation of the FloorVLoc-MCL global localization algorithm. Various objects were
placed in the environment such as a cabinet, bookshelf, sofa, and chair etc. to model characteristics of
typical indoor buildings and provide a more realistic means for performing focused testing.

The trajectory along with the floorplan of the environment are shown in Figure 9. The average
position error in the X and Y directions was 13.94 cm and 12.59 cm, respectively. The average standard
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deviation of the errors in the X and Y directions was 10.29 cm and 18.57 cm, respectively. The average
orientation error was 0.086 rad and the standard deviation of the orientation error was 0.080 rad.
The trajectory length was about 1570 cm. As the results demonstrate, there is consistency in the
magnitude of error between the real data results and the simulation results, which is nice to observe.

Figure 9. Trajectory for FloorVLoc-MCL in Tech-S-2. The trajectory was specified so that the vast
majority of the environment could be in view at some point. The positioning accuracy is similar to that
for the real-world testing which demonstrates nice consistency between performance in simulation
and in the real building.

4.2.2. FloorVLoc-OPT

In this section, we perform controlled experiments for single camera localization based on
the planarity in the scene and study the effect of various sources of error including noise due to
triangulation of points, data associations, and estimated prior camera pose.

The synthetic dataset used in this section, Tech-S-1, was generated with various environments and
artificial floorplans (refer to Figure 10), according to a number of varying parameters. More specifically,
all of the points were perturbed with some artificial pixel noise, ranging from± half a pixel according to
a uniform distribution. For the various synthetic tests, parameters varied across the initial orientation
error, the number or percentage of incorrect correspondences, the number of planes in the scene
(which sometimes included a planar obstacle such as a cabinet), the number of points per plane,
the structure of the synthetic environment, the magnitude of the error resulting from the incorrect
correspondences, artificial scale factor noise, and whether a robust estimation framework was set in
place to handle the outliers. All of these details along with the localization results are summarized
in Table 2. Note that the position error refers to the magnitude of the position error vector, and the
symbols “X” and “-” correspond to a specific parameter being present or absent, respectively.

Table 2. Results of synthetic tests of FloorVLoc Core.

Parameters Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9

Synthetic Environment 1 1 1 5 2 2 4 1 3
Init Ori Error (rad) 0 0 0 0.04 0 0.02 0 0 0

Incorrect Correspondences 0 1 1 1 53.3% 53.3% 50 40% 30
Single Incorrect Corres. Error (cm) - 3.6 193.2 - - - - - -

Num Planes 3 3 3 3 5 5 5 3 4
Num Points/Plane 30 30 30 5 30 30 30 30 30
Robust Estimation - - - - X X X X X

Pixel Noise [–0.5, 0.5] px X X X X X X X X X
Scale Factor Noise 0 0 0 0 0 0 0 1 +N (0, 0.12) 0

Position Error (cm) (–0.05, –0.15) (–0.19, 0.49) (–23.2, 31.2) (0.267, 6.36) (0.88, 0.49) (–0.49, 0.62) (0.05, –0.07) (0.32, 7.6) (0.44, 0.16)
Orientation Error (rad) 0.0001 0.0006 0.074 0.01468 0.0016 0.001 0.0041 0.0002 0.0017
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(a) Synthetic environment 1.
(b) Synthetic environment 2.

(c) Synthetic environment 3. (d) Synthetic environment 4.

(e) Synthetic environment 5.

Figure 10. The Tech-S-1 synthetic environments used for the focused testing of the localization
algorithm presented in FloorVLoc Core. Variations in the initial orientation error, number of incorrect
correspondences, magnitude of error from incorrect correspondence, number of planes present in the
scene, number of points per plane, whether a robust estimation framework was used, pixel noise,
and scale factor noise were set forth to study the resulting effect on the localization accuracy.

Test 1 serves as an initial benchmark to present the accuracy under somewhat ideal conditions.
Here, the noise introduced into the system resulted only from the artificial pixel noise. In tests 2
and 3, a single data misassociation was made to investigate its effect on the localization. The results
show the correlation between the position accuracy and the error of the misassociation projected
along the plane’s normal. In test 2, the error resulting from the misassociation was relatively low
(3.6 cm) and the position accuracy matched that, whereas in test 3, the error from the incorrect
association was quite large (193.2 cm), and this caused the position accuracy to degrade somewhat.
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Test 4 examined what happened when the misassociation was on a wall which had a normal vector
orthogonal to the wall it should be on. The results indicated that the orthogonal normal vector did
not have a significant, negative effect on the positioning accuracy as long as the distance from the
misassociated point to its correct wall was sufficiently close, which in this case was less than 10 cm.
In tests 5–9, the localization algorithm from FloorVLoc Core was placed into a Random Sample
Consensus (RANSAC) [21] framework in order to observe the effect of a significant increase in outliers.
In test 5, 53.3% of the data had incorrect correspondences; in test 6, the same percentage of incorrect
correspondences was coupled with initial orientation error; and in test 7, the outliers on the walls
are shown in Figure 10d. Test 8 introduced perturbations in the scale for 40% of the data where the
error was multiplicative Gaussian. More specifically, the depth for each point λi was perturbed to
be λ̃i = (1 + δλ)λi where δλ ∼ N (0, 0.12). Lastly, in test 9, a planar obstacle (simulating a cabinet
for example) was introduced into the environment. Note that according to the localization criteria
from Section 3.2.3 a positioning solution was still viable even with the planar obstacle, due to the
geometrical properties of the walls, provided that the outliers from the planar obstacle could be
handled (which they were in this test).

In addition to performing these localization tests using synthetic data, real data from our Tech-R-1
dataset were used to further investigate and understand the algorithms that could result from
FloorVLoc Core. The reconstructed unscaled point cloud shown in Figure 11 and corresponding
floorplan shown in Figure 12. The real data were collected by our robotic platform and subsequently
processed by a monocular SLAM algorithm [48]. For the tests presented below, in order to handle
the outliers which existed in the real data, the localization was performed inside an MSAC robust
estimator [108] augmented with a regularization term. This was motivated by the fact that sometimes
an obstacle in view contained a high number of features compared with the surrounding walls. In these
cases, an estimation solution treating such obstacle points as belonging to nearby walls would have a
comparatively lower cost due to the large support from the high number of features. The effect was that
the position solution would be incorrect while the orientation solution could still potentially be correct.
In order to handle this, a regularization term was incorporated utilizing a weighting parameter γ:

L = (1− γ)∑
i

ρ(ei)
2 + γ|| p̂− p̄||2 (29)

where p̄ is the estimated a priori position. In the real testing above, γ was chosen to be 0.5, and here
ρ(·) refers to the MSAC robust estimator kernel.

Figure 11. Tech-R-1 real environment unscaled reconstructed point cloud. To perform single camera
localization tests, first Bundle Adjustment was run on all of the images of the sequence to obtain the
scene reconstruction. The local sparse reconstruction was then transformed into the coordinate frame
of the initial pose. Perturbations on the a priori estimated global pose as well as scale factor were
performed to observe how well the FloorVLoc Core approach could properly correct the localization.
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Figure 12. The floorplan for the Tech-R-1 real environment with coordinate axes and floorplan scale.
The point cloud shown in Figure 11 corresponds to the reconstruction of the environment viewed from
a camera facing in the negative Y direction.

4.2.3. Test 1—Scale Perturbation

In this test, the scale factor was perturbed with Gaussian multiplicative noise while the initial
orientation and position were unperturbed at their correct values. More specifically, s̃ = (1 + δs)s
where δs ∼ N (0, 0.12). The localization algorithm was run 30 times with different scale factors each
time, and the position and orientation solution values were averaged across all of the runs before
computing the error. For all of the tests in this section, the position error refers to the magnitude of the
error vector. The average position error was 0.26 cm and the average orientation error was 0.013 rad.

4.2.4. Test 2—Initial Orientation Perturbation

For this test, the initial orientation was perturbed with Gaussian noise using a standard deviation
of about 7 degrees while the initial position and scale were unperturbed at their correct values. In other
words, ψ̃0 ∼ N (ψ0, 0.12222). Thirty iterations were run with different initial orientations each time.
The average position error was 1.03 cm and the average orientation error was 0.030 rad.

4.2.5. Test 3—Initial Position Perturbation

In this test, the initial position was perturbed with Gaussian noise using a standard deviation of
30 cm in both the X and Y directions while the initial orientation and scale were unperturbed at their
correct values.

Thus,
[

x̃0 ỹ0

]>
∼ N

([
x0 y0

]>
,
[
302 302

]>)
. Fifty iterations were run with different

starting positions each time. The average position error was 7.90 cm and the average orientation error
was 0.003 rad.

4.2.6. Test 4—All Perturbation

In this test, the initial position, initial orientation, and scale were all perturbed each run of the
algorithm, and fifty runs of the algorithm were performed. The distribution of noise for each variable
had the same parameters as specified in the three tests above. The average position error was 2.71 cm
and the average orientation error was 0.027 rad.

4.3. Runtime

For all experimentation, a 6-core 2.8 GHz (with a 4.7 GHz turbo boost) Intel Xeon CPU was
used. The average runtime for the MCL update was (40 ± 15) ms (i.e., approximately 25 Hz) and
the average runtime for the optimization framework update was (0.14 ± 0.09) ms. In addition,
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the windowed Bundle Adjustment optimizations with the underlying SLAM system ran on average
for (129 ± 86) ms. This was measured for the 640 × 480 image resolution. As mentioned above
and shown in Figure 13, the additional processing time for providing global positioning was very
low, especially with the optimization framework, which was 0.1% the computational time of the
BA algorithm. This shows that these global positioning modules ran in real time to provide online
global positioning.

Figure 13. The runtime in milliseconds for positioning updates with the MCL approach (left), the OPT
approach (right), and the windowed Bundle Adjustment optimizations (center) for the Tech-R-2 dataset.
The FloorVLoc global positioning with the optimization framework performed with a computational
overhead of 0.1% compared to the underlying BA algorithm, and the MCL framework updated about
three times as fast as the BA optimization. This shows that these global positioning modules run in
real-time to provide online global positioning.

5. Conclusions

In this work, we address vision-based indoor exploration by presenting a core methodology which
combines a monocular camera with a floorplan to perform global positioning for a robotic vehicle.
The main advantage of our approach is its modular nature: our method integrates any monocular-based
local scene reconstruction with a floorplan to perform global localization, incorporating a means
to automatically calibrate the scale. This means that any state-of-the-art monocular visual SLAM
system can be directly utilized for the global positioning. A detailed theoretical and experimental
analysis is presented for the conditions on the visual features associated with the walls necessary for
the localization to be uniquely recovered. Furthermore, we developed two full global positioning
systems based on the core methodology which perform continuous positioning. One approach utilizes
visual odometry in between FloorVLoc linear optimization localization updates; another approach
formulates the system in an MCL framework with a FloorVLoc measurement model, correcting motion
based on whatever wall information is present. We demonstrate the effectiveness of FloorVLoc with
experimental evaluation in the real world as well as in simulation, using Unreal Engine and Microsoft
Airsim. Results for a challenging real-world dataset demonstrate robust, reliable, and accurate
positioning with an average error of 0.06 m across a mission covering 80 m. Furthermore, we show
that the FloorVLoc computational time is 0.1% the update time of the underlying monocular SLAM
algorithm, thus operating in real-time. Based on these results, we conclude that FloorVLoc can be
effectively deployed on an intelligent vehicle for the indoor search and rescue application of interest.
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Appendix A. Proof of Lemma 1

Proof. Let qi1 , qi2 , . . . , qik each correspond to a subset of the m total feature points where each are
associated with the k unique world planes π1, π2, . . . , πk, respectively. Let matrix A be defined by
re-organizing the data in (12) according to the world planes for all of the points:

A =



λ̄i1 N>1
(
R̂qi1

)∧ b1 −N>1
. . .

λ̄i2 N>2
(
R̂qi2

)∧ b2 −N>2
. . .

λ̄ik N>k
(
R̂qik

)∧ bk −N>k


m×7

(A1)

Rearranging the rows of the matrix so that the first k rows contain k feature points viewed on k
unique planes, denoted q1, q2, . . . , qk, yields:

A1 ∼



λ̄1N>1
(
R̂q1

)∧ b1 −N>1
λ̄2N>2

(
R̂q2

)∧ b2 −N>2
. . .

λ̄k N>k
(
R̂qk

)∧ bk −N>k
. . .


(A2)

Given that the combined position and scale contain four degrees of freedom and the upper-right
submatrix, which is Aπ from (20), left-multiplies the vector containing the inverse scale and unscaled
position (s−1, p̄)>, it follows that in order to uniquely compute the position and scale, Aπ must be a
rank of at least four.

To address uniquely computing the orientation, consider the situation of only a single wall being
in view:

A1 =


λ̄1N>1

(
R̂q1

)∧ b1 −N>1
λ̄2N>1

(
R̂q2

)∧ b1 −N>1
...

λ̄mN>1
(
R̂qm

)∧ b1 −N>1


m×7

(A3)

Subtracting the first row from the remaining ones:

A1 ∼



λ̄1N>1
(
R̂q1

)∧ b1 −N>1
N>1

(
λ̄2R̂q2 − λ̄1R̂q1

)∧ 0 0
...

N>1
(
λ̄mR̂qm − λ̄1R̂q1

)∧︸ ︷︷ ︸
Aψ

0 0


(A4)

It can be seen from the matrix A1 that the bottom-left submatrix Aψ has a rank of at most two.
This is due to the fact that right-multiplying by N1 gives 0. This implies that using a single plane allows
the orientation to be recovered up to a rotation about the N1 vector. Therefore, a single plane cannot
uniquely recover the orientation but two planes with linearly independent normal vectors is sufficient.
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Because computing the position and scale requires that matrix Aπ has a rank of at least
four, which corresponds to having four distinct planes with at least three of them having linearly
independent normal vectors, the orientation can be uniquely computed under this same criterion.

Appendix B. Proof of Lemma 2

Proof. As before, let qi1 , qi2 , . . . , qik each correspond to a subset of the m total feature points where each
are associated with k unique planes π1, π2, . . . , πk, respectively. Defining αij as given in (14), construct
Av as follows:

Av =



αi1 b1 −N1x −N1y

. . .

αi2 b2 −N2x −N2y

. . .

αik bk −Nkx −Nky


M×7

(A5)

Rearranging the rows of the matrix so that the first k rows contain k feature points viewed on k
unique planes yields:

Av ∼



α11 b1 −N1x −N1y

α22 b2 −N1x −N1y

. . .

αkk bk −Nkx −Nky

. . .


(A6)

Given that the position and scale contain three degrees of freedom and the upper-right submatrix,
which is Av

π from (21), left-multiplies the vector containing the inverse scale and unscaled position
(s−1, p̄x, p̄y)>, it follows that in order to uniquely compute the position and scale, Av

π must be rank at
least three. Note that if (Njx , Njy , bj) = (0, 0, bj), corresponding to a horizontal plane, then even though
the row in matrix Av does not constrain the position or orientation, it does constrain the inverse scale.

With regard to the orientation, consider a single wall in view:

Av
1 =


α11 b1 −N1x −N1y

α21 b1 −N1x −N1y

. . .

αm1 b1 −N1x −N1y

 (A7)

which is equivalent to

Av
1 ∼



α11 b1 −N1x −N1y

α21 − α11 0 0 0
...

αm1 − α11︸ ︷︷ ︸
Av

ψ

0 0 0


(A8)

This means that the orientation can be uniquely found as long as matrix Av
ψ has a rank of at least 1.

This will occur when αi1 are not all zero. Geometrically, this happens when the points in view lie on
any non-horizontal plane. Due to the rank constraint of Av

ψ being at most one, the stricter constraint
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for the position and scale supercedes, and the criterion for computing a unique solution remains the
case when Av

π has a rank of at least three.

Appendix C. Process for Obtaining Ground Truth for the Tech-R-2 Dataset

For a moving robotic vehicle in a large indoor environment, acquiring ground truth at a relatively
high-level of accuracy is a well-known challenge. One of the interesting and helpful features of the
environment where the above positioning systems were tested is the tiling which exists on the floor.
Two such tiles are used consistently across the floor: a large tile which is 40 cm × 40 cm and a small
tile which is 20 cm × 20 cm (refer to Figure A1).

Figure A1. Example tiling on the floor used for ground-truth computation.

This can be utilized for two purposes: a natural coordinate system and a means to provide ground
truth. Directions for the positive X and Y axes can be set according to the orthogonal directions given
by the tiles. The ground-truth labeling can be obtained in a manual way by forming associations
between 3D points on the ground and 2D image points. The 3D points can be known based on the grid
formed by the tiles. Upon forming these 2D-3D associations, the camera pose can be computed using a
Perspective-N-Point (PnP) algorithm. Specific checkpoints along the vehicle trajectory were selected
for ground-truth computation. In situations where the keyframes used in the global positioning
systems were between ground-truth selected frames, then as long as the discrepancy was within two
frames, the error was computed via a weighted average between the ground-truth pose compared to
the keyframe poses before and after. Two frames correspond to a somewhat small displacement as the
vehicle traveled at about 0.3 m/s and the frames were acquired at about 16 Hz. Overall, for the results
presented in this section, a total of 15 ground-truth checkpoints were used.
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49. Cvišić, I.; Ćesić, J.; Marković, I.; Petrović, I. SOFT-SLAM: Computationally efficient stereo visual
simultaneous localization and mapping for autonomous unmanned aerial vehicles. J. Field Robot. 2018,
35, 578–595. [CrossRef]

50. Gao, X.; Wang, R.; Demmel, N.; Cremers, D. LDSO: Direct sparse odometry with loop closure. In Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 2198–2204.

51. Pascoe, G.; Maddern, W.; Tanner, M.; Piniés, P.; Newman, P. Nid-slam: Robust monocular slam using
normalised information distance. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1435–1444.

52. Buczko, M.; Willert, V. Monocular outlier detection for visual odometry. In Proceedings of the 2017 IEEE
Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 739–745.

53. Siam, S.M.; Zhang, H. Fast-SeqSLAM: A fast appearance based place recognition algorithm. In Proceedings
of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June
2017; pp. 5702–5708.

54. Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; Scaramuzza, D. SVO: Semidirect visual odometry for
monocular and multicamera systems. IEEE Trans. Robot. 2016, 33, 249–265. [CrossRef]

55. Gomez-Ojeda, R.; Briales, J.; Gonzalez-Jimenez, J. Pl-svo: Semi-direct monocular visual odometry by
combining points and line segments. In Proceedings of the 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4211–4216.

56. Indelman, V.; Roberts, R.; Dellaert, F. Incremental light bundle adjustment for structure from motion and
robotics. Robot. Auton. Syst. 2015, 70, 63–82. [CrossRef]

57. Mur-Artal, R.; Tardós, J.D. Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based
Monocular SLAM. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015;
Volume 2015.

58. Salehi, A.; Gay-Bellile, V.; Bourgeois, S.; Chausse, F. Improving constrained bundle adjustment through
semantic scene labeling. In Proceedings of the European Conference on Computer Vision, Amsterdam,
The Netherlands, 8–16 October 2016; pp. 133–142.

59. Urban, S.; Wursthorn, S.; Leitloff, J.; Hinz, S. MultiCol bundle adjustment: A generic method for pose
estimation, simultaneous self-calibration and reconstruction for arbitrary multi-camera systems. Int. J.
Comput. Vis. 2017, 121, 234–252.

60. Zhao, L.; Huang, S.; Sun, Y.; Yan, L.; Dissanayake, G. Parallaxba: Bundle adjustment using parallax angle
feature parametrization. Int. J. Robot. Res. 2015, 34, 493–516. [CrossRef]

61. Godard, C.; Mac Aodha, O.; Firman, M.; Brostow, G.J. Digging into self-supervised monocular depth
estimation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea,
27 October–3 November 2019; pp. 3828–3838.

62. Chen, P.Y.; Liu, A.H.; Liu, Y.C.; Wang, Y.C.F. Towards Scene Understanding: Unsupervised Monocular Depth
Estimation With Semantic-Aware Representation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–21 June 2019; pp. 2619–2627.

http://dx.doi.org/10.1016/j.robot.2018.11.003
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1002/rob.21762
http://dx.doi.org/10.1109/TRO.2016.2623335
http://dx.doi.org/10.1016/j.robot.2015.03.009
http://dx.doi.org/10.1177/0278364914551583


Robotics 2020, 9, 69 27 of 29

63. Wang, R.; Pizer, S.M.; Frahm, J.M. Recurrent Neural Network for (Un-)Supervised Learning of Monocular
Video Visual Odometry and Depth. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–21 June 2019; pp. 5550–5559.

64. Chen, W.; Qian, S.; Deng, J. Learning Single-Image Depth From Videos Using Quality Assessment Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 15–21 June 2019; pp. 5604–5613.

65. Gur, S.; Wolf, L. Single Image Depth Estimation Trained via Depth From Defocus Cues. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–21 June 2019; pp. 7675–7684.

66. Frost, D.; Prisacariu, V.; Murray, D. Recovering Stable Scale in Monocular SLAM Using Object-Supplemented
Bundle Adjustment. IEEE Trans. Robot. 2018, 34, 736–747. [CrossRef]

67. Parkhiya, P.; Khawad, R.; Murthy, J.K.; Bhowmick, B.; Krishna, K.M. Constructing Category-Specific
Models for Monocular Object-SLAM. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018. [CrossRef]

68. Gálvez-López, D.; Salas, M.; Tardós, J.D.; Montiel, J. Real-time monocular object slam. Robot. Auton. Syst.
2016, 75, 435–449. [CrossRef]

69. Murthy, J.K.; Sharma, S.; Krishna, K.M. Shape priors for real-time monocular object localization in dynamic
environments. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1768–1774.

70. Pillai, S.; Leonard, J. Monocular slam supported object recognition. arXiv 2015, arXiv:1506.01732. Available
online: https://arxiv.org/abs/1506.01732 (accessed on 6 September 2020).

71. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

72. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 2117–2125.

73. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 91–99.

74. Wang, X.; Zhang, H.; Yin, X.; Du, M.; Chen, Q. Monocular Visual Odometry Scale Recovery Using
Geometrical Constraint. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 988–995. [CrossRef]

75. Bullinger, S.; Bodensteiner, C.; Arens, M.; Stiefelhagen, R. 3d vehicle trajectory reconstruction in monocular
video data using environment structure constraints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 35–50.

76. Song, S.; Chandraker, M. Robust scale estimation in real-time monocular SFM for autonomous driving.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
23–28 June 2014; pp. 1566–1573.

77. Zhou, D.; Dai, Y.; Li, H. Reliable scale estimation and correction for monocular visual odometry.
In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gotenburg, Sweden, 19–22 June
2016; pp. 490–495.

78. Dragon, R.; Van Gool, L. Ground plane estimation using a hidden markov model. In Proceedings of the
2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 4026–4033.

79. Liu, H.; Chen, M.; Zhang, G.; Bao, H.; Bao, Y. Ice-ba: Incremental, consistent and efficient bundle adjustment
for visual-inertial slam. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 1974–1982.

80. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator.
IEEE Trans. Robot. 2018, 34, 1004–1020. [CrossRef]

81. Von Stumberg, L.; Usenko, V.; Cremers, D. Direct Sparse Visual-Inertial Odometry using Dynamic
Marginalization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, QLD, Australia, 21–25 May 2018. [CrossRef]

http://dx.doi.org/10.1109/TRO.2018.2820722
http://dx.doi.org/10.1109/ICRA.2018.8460816
http://dx.doi.org/10.1016/j.robot.2015.08.009
http://dx.doi.org/10.1109/ICRA.2018.8462902
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/ICRA.2018.8462905


Robotics 2020, 9, 69 28 of 29

82. Quan, M.; Piao, S.; Tan, M.; Huang, S.S. Map-Based Visual-Inertial Monocular SLAM using Inertial assisted
Kalman Filter. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, QLD, Australia, 21–25 May 2018.

83. Shin, Y.S.; Park, Y.S.; Kim, A. Direct visual SLAM using sparse depth for camera-lidar system. In Proceedings
of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 1–8.

84. Graeter, J.; Wilczynski, A.; Lauer, M. Limo: Lidar-monocular visual odometry. In Proceedings of the 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 7872–7879.

85. Giubilato, R.; Chiodini, S.; Pertile, M.; Debei, S. Scale Correct Monocular Visual Odometry Using a LiDAR
Altimeter. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, Spain, 1–5 October 2018; pp. 3694–3700.

86. Alatise, M.B.; Hancke, G.P. Pose estimation of a mobile robot based on fusion of IMU data and vision data
using an extended Kalman filter. Sensors 2017, 17, 2164. [CrossRef] [PubMed]

87. Bloesch, M.; Burri, M.; Omari, S.; Hutter, M.; Siegwart, R. Iterated extended Kalman filter based visual-inertial
odometry using direct photometric feedback. Int. J. Robot. Res. 2017, 36, 1053–1072. [CrossRef]

88. Gamage, D.; Drummond, T. Reduced dimensionality extended kalman filter for slam in a relative formulation.
In Proceedings of the 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 1365–1372.

89. Ko, N.Y.; Youn, W.; Choi, I.H.; Song, G.; Kim, T.S. Features of invariant extended Kalman filter applied to
unmanned aerial vehicle navigation. Sensors 2018, 18, 2855. [CrossRef]

90. Teng, C.H. Enhanced outlier removal for extended Kalman filter based visual inertial odometry.
In Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba,
Japan, 13–17 April 2018; pp. 74–77.

91. Wen, S.; Zhang, Z.; Ma, C.; Wang, Y.; Wang, H. An extended Kalman filter-simultaneous localization and
mapping method with Harris-scale-invariant feature transform feature recognition and laser mapping for
humanoid robot navigation in unknown environment. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417744747.
[CrossRef]

92. Jo, H.; Cho, H.M.; Jo, S.; Kim, E. Efficient Grid-Based Rao–Blackwellized Particle Filter SLAM With
Interparticle Map Sharing. IEEE/ASME Trans. Mechatronics 2018, 23, 714–724. [CrossRef]

93. Ma, K.; Schirru, M.M.; Zahraee, A.H.; Dwyer-Joyce, R.; Boxall, J.; Dodd, T.J.; Collins, R.; Anderson, S.R. Robot
mapping and localisation in metal water pipes using hydrophone induced vibration and map alignment
by dynamic time warping. In Proceedings of the 2017 IEEE International Conference on Robotics and
Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2548–2553.

94. Rormero, A.R.; Borges, P.V.K.; Pfrunder, A.; Elfes, A. Map-aware particle filter for localization. In Proceedings
of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada,
20–24 May 2018; pp. 2940–2947.

95. Taniguchi, A.; Hagiwara, Y.; Taniguchi, T.; Inamura, T. Online spatial concept and lexical acquisition with
simultaneous localization and mapping. In Proceedings of the 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 811–818.

96. Valls, M.I.; Hendrikx, H.F.; Reijgwart, V.J.; Meier, F.V.; Sa, I.; Dubé, R.; Gawel, A.; Bürki, M.; Siegwart, R.
Design of an autonomous racecar: Perception, state estimation and system integration. In Proceedings of the
2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May
2018; pp. 2048–2055.

97. Noonan, J.; Rotstein, H.; Geva, A.; Rivlin, E. Vision-Based Indoor Positioning of a Robotic Vehicle with a
Floorplan. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation
(IPIN), Nantes, France, 24–27 September 2018; pp. 1–8.

98. Noonan, J.; Rotstein, H.; Geva, A.; Rivlin, E. Global Monocular Indoor Positioning of a Robotic Vehicle with
a Floorplan. Sensors 2019, 19, 634. [CrossRef]

99. Geva, A. Sensory Routines for Indoor Autonomous Quad-Copter. Ph.D. Thesis, Technion, Israel Institute of
Technology, Haifa, Israel, 2019.

100. Slavcheva, M.; Kehl, W.; Navab, N.; Ilic, S. Sdf-2-sdf registration for real-time 3d reconstruction from RGB-D
data. Int. J. Comput. Vis. 2018, 126, 615–636.

http://dx.doi.org/10.3390/s17102164
http://www.ncbi.nlm.nih.gov/pubmed/28934102
http://dx.doi.org/10.1177/0278364917728574
http://dx.doi.org/10.3390/s18092855
http://dx.doi.org/10.1177/1729881417744747
http://dx.doi.org/10.1109/TMECH.2018.2795252
http://dx.doi.org/10.3390/s19030634


Robotics 2020, 9, 69 29 of 29

101. Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time dense
SLAM and light source estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [CrossRef]

102. Kähler, O.; Prisacariu, V.A.; Murray, D.W. Real-time large-scale dense 3D reconstruction with loop closure.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October
2016; pp. 500–516

103. Dai, A.; Nießner, M.; Zollhöfer, M.; Izadi, S.; Theobalt, C. Bundlefusion: Real-time globally consistent 3d
reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. (ToG) 2017, 36, 76a. [CrossRef]

104. Xie, X.; Yang, T.; Li, J.; Ren, Q.; Zhang, Y. Fast and Seamless Large-scale Aerial 3D Reconstruction using
Graph Framework. In Proceedings of the ACM 2018 International Conference on Image and Graphics
Processing, Hong Kong, China, 24–26 February 2018; pp. 126–130.

105. Dellaert, F.; Fox, D.; Burgard, W.; Thrun, S. Monte carlo localization for mobile robots. In Proceedings of the
1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA,
10–15 May 1999; Volume 2, pp. 1322–1328.

106. Sun, Y.; Liu, M.; Meng, M.Q.H. Motion removal for reliable RGB-D SLAM in dynamic environments.
Robot. Auton. Syst. 2018, 108, 115–128. [CrossRef]

107. Sun, Y.; Liu, M.; Meng, M.Q.H. Improving RGB-D SLAM in dynamic environments: A motion removal
approach. Robot. Auton. Syst. 2017, 89, 110–122. [CrossRef]

108. Torr, P.H.; Zisserman, A. MLESAC: A new robust estimator with application to estimating image geometry.
Comput. Vis. Image Underst. 2000, 78, 138–156. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0278364916669237
http://dx.doi.org/10.1145/3054739
http://dx.doi.org/10.1016/j.robot.2018.07.002
http://dx.doi.org/10.1016/j.robot.2016.11.012
http://dx.doi.org/10.1006/cviu.1999.0832
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Global Localization: The FloorVLoc Core
	Optimization Framework (FloorVLoc-OPT)
	Planar Motion
	Data Association
	Initialization
	Uniqueness Criteria

	Monte Carlo Localization Framework (FloorVLoc-MCL)
	Motion Model
	Measurement Model


	Experimental Evaluation
	Comparison to Related Methods
	Ablation Study
	FloorVLoc-MCL
	FloorVLoc-OPT
	Test 1—Scale Perturbation
	Test 2—Initial Orientation Perturbation
	Test 3—Initial Position Perturbation
	Test 4—All Perturbation

	Runtime

	Conclusions
	Proof of Lemma 1
	Proof of Lemma 2
	Process for Obtaining Ground Truth for the Tech-R-2 Dataset
	References

