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Abstract: Robotics will significantly impact large sectors of the economy with relatively low
productivity, such as Agri-Food production. Deploying agricultural robots on the farm is still a
challenging task. When it comes to localising the robot, there is a need for a preliminary map, which is
obtained from a first robot visit to the farm. Mapping is a semi-autonomous task that requires a human
operator to drive the robot throughout the environment using a control pad. Visual and geometric
features are used by Simultaneous Localisation and Mapping (SLAM) Algorithms to model and
recognise places, and track the robot’s motion. In agricultural fields, this represents a time-consuming
operation. This work proposes a novel solution—called AgRoBPP-bridge—to autonomously extract
Occupancy Grid and Topological maps from satellites images. These preliminary maps are used by
the robot in its first visit, reducing the need of human intervention and making the path planning
algorithms more efficient. AgRoBPP-bridge consists of two stages: vineyards row detection and
topological map extraction. For vineyards row detection, we explored two approaches, one that
is based on conventional machine learning technique, by considering Support Vector Machine
with Local Binary Pattern-based features, and another one found in deep learning techniques
(ResNET and DenseNET). From the vineyards row detection, we extracted an occupation grid
map and, by considering advanced image processing techniques and Voronoi diagrams concept,
we obtained a topological map. Our results demonstrated an overall accuracy higher than 85% for
detecting vineyards and free paths for robot navigation. The Support Vector Machine (SVM)-based
approach demonstrated the best performance in terms of precision and computational resources
consumption. AgRoBPP-bridge shows to be a relevant contribution to simplify the deployment of
robots in agriculture.

Keywords: support vector machine; topological map; path planning; agricultural robotics; deep learning;
steep slope vineyard

1. Introduction

Agriculture is among the most critical sectors of the global economy. The sector has been adapted
along years to fulfil the worlds population demand, which has doubled in the last 50 years [1].
The predictions point to a 60% increase of the world’s population until 2050. Furthermore, it will be
expected to have more people living in urban areas [2]. Besides, a decrease in human resources for
agricultural labour has been noticed in past years [3,4]. These statements indicate that the world’s
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agriculture productivity must increase sustainably and be less dependent on handcraft work with
automatization and optimization of agricultural tasks. The strategic European research agenda for
robotics [5] states that robots will improve agriculture efficiency. The literature presents some robotic
solutions for precision agriculture. A robot equipped with a Light detection and ranging system
(LIDAR) and vision sensors was proposed for monitoring orchards [6,7]. Mahmud et al. [8] presented
a path planning approach for pesticide spraying in greenhouses, and Iqbal et al. [9] proposed a
simulation of a robotic platform based on 2D LIDAR for navigation and phenotyping tasks, like
measuring canopy height. Recently, a literature review under the subject of agricultural robotics
concluded that robotic systems were most explored for harvesting and weeding. The study infers that
optimization and further development of agricultural robots is vital [10]. However, the deployment of
robots in agriculture is still a challenge.

To localize the robot and perform a path planning operation, usually, there is a need of a
preliminary map of the field obtained from a previous visit of the robot at the farm through a
Simultaneous Localisation and Mapping (SLAM) process. In extensive agricultural terrains, this would
represent a time-consuming operation or impractical procedure.

In the context of vineyards, in particular steep slope vineyards (such as those placed in the Douro
Demarcated Region (Portugal), UNESCO Heritage place), obtaining a preliminary map is critical.
These scenarios present several challenges to autonomous robot navigation: Global Navigation Satellite
Systems (GNSS) gets frequently blocked by the hills providing unstable positioning estimations,
and the irregular sloppy terrain presents a challenge for path planning algorithms. To tackle some
of these challenges, we proposed VineSlam [11] and Agricultural Robotics Path Planning framework
(AgRobPP) [12]. An identified limitation in AgRobPP is its memory efficiency. The large dimensions of
the vineyards would present a memory problem to the path planning algorithm, as large amounts of
data would be required to construct a map.

To obtain a preliminary map and solve AgRobPP memory requirements, this work contribution
proposes a novel solution called AgRobPP-bridge, with two stages: AgRob Vineyard Detector and
AgRob Grid Map to Topologic.

The first stage performs vineyard rows detection from satellite images, which will provide
a pre-map of the farm for the robot’s first visit, reducing the human operator need. This tool
is based on a Support Vector Machine (SVM) classifier approach. AgRob Vineyard Detector
also contains a tool to simplify the process of manual image annotation of crop rows in satellite
images. Besides, an open-source tool based on deep learning techniques (ResNET and DenseNET),
Semantic Segmentation Suite [13] was tested and bench-marked with our approach.

The second stage, AgRob Grid Map to Topologic, constructs a topological map of a vineyard.
It takes the resulting grid map (or other) and extracts a topological map with image processing
techniques and Voronoi diagrams. This tool also contains an A* search algorithm to navigate inside
the topological map. The map is delimited into smaller zones considering this concept, which will
allow path planning algorithms to be more efficient.

In this paper, Section 2 presents the related work of feature extraction from aerial images in
agricultural scenarios and path planning approaches with topological maps. Section 3 shows the
first stage of AgRobPP-bridge: AgRob Vineyard Detector. Section 4 describes the second stage
of AgRobPP-bridge: AgRob Grid Map to Topologic. Section 5 reveals the results of the tool
AgRobPP-bridge. The conclusions are described in Section 6.

2. Related Work

Robotic path planning is widely explored in literature [14–16], and the basic concept consists of
the task of finding a collision-free path between two points. The majority of the approaches try to
find the best possible path suitable for the required task. Path planning methods can be based on
several concepts, such as potential field [17], sampling-based methods [18], cell decomposition [19],
and nature-inspired algorithms, like the Genetic Algorithm [20]. Independently, path planning
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algorithms can be classified as off-line or on-line. The first category requires a previous full map
of the environment with obstacles information, while, in the second category, it is possible to construct
the map during the navigation [14].

The applications of path planning in agriculture are not so spread. A literature review under this
topic was performed in a previous work [21], revealing the current research work on path planning
for agriculture. According to this review, most of the approaches for path planning in agriculture
consist of off-line path planners. Although there are some online options, it might be dangerous to
start navigation in an agricultural environment without a previous map, which can still be completed
along with robot navigation. Image analysis of high-resolution satellite images could simplify the
mapping process and provide a prior map for path planning.

The detection of vegetation characteristics from analysis of aerial images is a general
topic for diverse agricultural cultures. Images from Unmanned Aerial Vehicles (UAV) are
predominant, but some approaches resort to satellite images. Mougel et al. [22] identifies
patterns on a regular flat vineyard and on a peach groove with high-resolution satellite images.
Similarly, Karakizi et al. [23] proposes a tool to extract vine canopy from very high-resolution satellite
images. The Hough transform method technique is popular in the detection of patterns of points
like lines or parametric curves. This method is widely used in the detection of crop lines as diverse
plantations are sown in straight lines [24]. A weed mapping system in crops uses images from
UAV [25]. In this work, the position of the weeds is provided in relation to the crop lines to improve
the discrimination of weeds. This way, the authors have a precise method for detecting crop lines
based on the Hough transform. The problem of detecting crop rows is also common in vineyards,
having different studies with various approaches. Delenne et al. [26] delineates a vineyard from
aerial images recurring to a row extraction tool. This tool starts by considering that all the rows are
parallel, and fills the parcel with several orientated lines, eliminating false rows applying minimum
local identification. An approach to detect vine block, rows and individual trees combines threshold
and graph-based procedures from multispectral images [27]. Poblete et al. [28] detected vine rows in
ultra-high-resolution images taken with an UAV. The authors benchmark different methods, such as
k-means cluster, artificial neural network, random forest and spectral indices. Their conclusion
indicated that all the methods had acceptable performances, except for the k-means. A skeletonization
method with high-resolution UAV images was an approach chosen to simplify agricultural scenes,
thus helping in the classification of different features, including like vine rows [29]. Comba et al. [30]
presents an image processing algorithm to segment vine rows from UAV images. This work follows
three different approaches: dynamic segmentation, Hough space clustering and total least squares.
The authors claim to obtain an image that could be explored for robotic path planning. However, this is
just applied to at regular vineyard with total straight line vegetation. To the best of our knowledge,
the segmentation of vine-rows independently of their “configuration”, like steep slope vineyards,
has not been addressed in the literature. Path planning operations in autonomous robotic navigation
systems may be affected by the dimensions of agricultural fields. To store information about all of
the surrounding environment (e.g., occupation grid map) requires a lot of computational memory.
For example, a steep slope vineyard from a small producer has an area around 1 hectare, and big brand
producers farms reach up to 70 hectares [31]. Dividing the space into smaller zones can help to solve
this issue. Such a thing can be achieved with topological maps [32], which describe the world with
vertices and edges instead of using a metric system like occupation grid maps from cell decomposition
planners. There are various approaches for autonomous navigation and localization with topological
maps [33,34]. Thrun et al. [35] extracts a topological map from a grid map using the Voronoi diagram,
which consists of the division of the space by Voronoi segments. These segments represent all the
points in the plane equidistant do the nearest sites. Graph partitioning techniques, like spectral
clustering, are also referred to construct a topological map, starting from a method that subdivides the
environment into a set of sub-maps [36]. Konolige et al. [37] proposes a navigation system with Dijkstra
search algorithm using a hybrid map that contains a topological map and a grid map. The robot
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navigates locally with the grid map, and the global planning is performed in the topological map,
generating a near-optimal path. In previous works, Santos et al. [38] resorted to the Voronoi diagram
to create a topological map from 2D or 3D maps directed to indoor and structured environments,
using a door detection method to finish the place delimitation. More recently, following a similar
approach, this concept was adapted to a steep slope vineyard map [39]. However, the method is not
fully adequate for these environments and needs further improvement. For example, the topological
map in these previous works contains visible outliers, and the place delimitation is just present as
a concept.

This work will extend the state of the art approaches to enable the extraction of grid-maps by
considering aerial and satellite images (without a need to the robot visit the farm). Besides, it will
extend the state of the art algorithms, to extract topological maps useful for improving path planning
and localization performance in autonomous robotic systems.

3. Agrobpp-Bridge: Agrob Vineyard Detector

The segmentation task of vineyards in satellite images is divided into two stages: detection of
a full vineyard crop in satellite images, and segmentation of paths and vine vegetation to construct
a prior occupation grid map. The first stage was performed in a previous work [40] recurring to an
SVM classifier. Now, in the second stage, we bench-marked two segmentation tools: “AgRob vineyard
Detector”, our developed SVM tool, and “Semantic Segmentation Suite”, a state of the art framework
with Tensorflow.

AgRob Vineyard Detector is the developed framework that contains an annotation tool to create
image datasets and a segmentation tool. We considered a two classes classification problem: “Vineyard”
and “Path” (not “Vineyard”).

3.1. Segmentation Tool

For the segmentation process, we use an SVM classifier that runs on Robot Operation System
(ROS) (http://www.ros.org/.). The input of this tool is a region descriptor extracted from the image.
Based on the training step, the SVM tool is able to classify the image pixels according to a class object.
Figure 1 depicts the information stream of the classification process.

Figure 1. Information flow of the segmentation process.

http://www.ros.org/.


Robotics 2020, 9, 77 5 of 22

The region descriptor is based in Local Binary Pattern codes (LBP), a grey-level invariant texture
primitive. Ojala et al. [41] presented the non-parametric LBP operator for textured image description.
Originally, the LBP uses a grid of 3× 3 pixels for an arbitrary pixel over an input grey-level image.
The LBP code is computed by comparing the grey-level value of the centre pixel and its neighbors
within the respective grid. The pixels that are not covered by the grids are estimated by interpolation.
Then, the LBP code is a binary number which results from a threshold stage concerning the centre
pixel. The image texture is described with an LBP histogram (hLBP), built from all binary pattern
of each image pixel as shown in Equation (1), where K is the maximal LBP pattern value. Based on
hLBP, we considered the descriptor hLBP by color, as in Figure 2, which contains one LBP histogram
per color, discretizing the color ranges into n colors in RGB (Red, Green and Blue) space. With this
descriptor, each pixel is related to a color range, which will increment the histogram bin related to the
LBP code extracted for that pixel. This descriptor will feed the SVM classifier. Here, the descriptor was
modified to optimize the detection in vineyards. So, we concatenated the two descriptors, as shown in
Figure 2, to describe the centre and its surroundings. The proposed descriptor considers histograms to
describe patterns (LBP) and color. The vineyard rows and the path rows—where machinery/robots can
move—have different patterns and colors, which can be easily captured by the presented descriptor.
Theoretically, this should work for any permanent woody crops (e.g., Orchards or Olive Groves)
because the cultures are disposed in rows (linear and/or contour lines), and the paths are aligned to
these rows. However, to extend this work to other agricultural contexts, an extension to the dataset and
SVM training may be required. For example, crops with paths with exposed soils (without vegetation),
where the soil may have another color, would require this procedure.

H(k) = ∑M
m=1 ∑N

n=1 f (LBPP,R(m, n), k), k ∈ [0, K]

f (x, y) =

{
1, x = y

0, otherwise

. (1)

Figure 2. Representation of the concatenated descriptor hLBP by Color—D1: descriptor 1;
D2—descriptor 2.

SVM is a traditional machine learning technique for classification problems. Despite being
adequate for binary classification, some approaches decompose the problem into a series of two-class
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problems [42], allowing SVM to perform multi-class classification. The SVM concept implements the
following idea: input vectors are non-linearly mapped to a high-dimension feature space, where a
linear decision surface is constructed [43]. Considering a problem of separating the training data
(x1, y1), . . . (xm, ym) into two classes, where xi ∈ R is a feature vector and yi ∈ {−1,+1} its class label.
Assuming that a hyperplane can separate the two classes, w · x + b = 0 in some space H, the optimal
hyperplane will maximize the margin. Change et al. [44] provides a deeper explanation about the
SVM theory and its variant libSVM.

3.2. Annotation Tool

The annotation tool consists of a semi-automatic framework developed to ease the creation of
training images datasets of vineyards in satellite images. A training dataset is composed of a set of
images with a fixed resolution containing examples of images belonging to a specific class. In this
case, there is a group of vineyard vegetation images and another group with vineyard paths images.
The process of manually annotating these images is time-consuming and can lead to incorrect class
annotations, which will decrease the accuracy of the segmentation process. So, as this process is
based on the detection of vineyard lines, our annotation tool requires the user to manually draw a
set of lines representing the vegetation and path lines of the vineyard, using any image editing tool
(i.e., GIMP (https://www.gimp.org/) or Paint). The annotation tool will create a set of training images
based in the line annotations with specified window size, as in Figure 3. This process can also be very
time-consuming in the case of large irregular fields. Still, the method is always simpler than a complete
manual annotation. In this case, with an annotation made entirely by hand, the user would have to
select hundreds or thousands of images with pre-defined window size.

Figure 3. Example usage of the annotation tool.

The selection of the window size is crucial and depends upon several factors, such as the image
resolution and the distance between vine-trees. If this parameter is not correctly defined, an entirely
new dataset can be created with our annotation tool in just a few seconds. If we considered a full manual
annotation, the entire process would have to be restarted. Ideally, the size of this window should
be enough to cover two vineyard lines. The distance between vineyard rows changes significantly
between farms, and satellite images have very different resolutions. So, we have applied the fast Fourier
transform (FFT) on the input images to obtain the distance between crop tree rows (in pixels units)
and used this value to scale our descriptor window according to the image resolutions and distance
between crop trees rows. An FFT is an algorithm that computes the discrete Fourier transform (DFT)
of a sequence. Fourier analysis converts a signal from its original domain (in this work, pixels space)
to a representation in the frequency domain. The higher frequency with high magnitude is correlated

https://www.gimp.org/
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to the crop row spacing. So, to estimate the space between two consecutive vine lines, we calculate
the Fast Fourier Transform (FFT) of various columns and rows of a grey-scale version of the image.
As represented in Figure 4, eight FFT from four different columns and rows are calculated.

Figure 4. Demonstration of calculated fast Fourier transforms (FFTs) in a satellite vineyard image.

To estimate the desired width, the steps below are executed several times, which will provide
different measurements, presenting to the user an average value and the value obtained at
each estimation.

1. Choose a column and a row of the selected image zone and calculate their FFTs.
2. Choose the FFT with maximum magnitude value at the maximum index as this will be closer to

the heading of the image.
3. Calculate the distance between two lines: width = FFTsize

Indexmax
.

3.3. Segmentation Semantic Suite

The Segmentation Semantic Suite [13] is an open-source tool constructed to quickly implement,
train and test semantic segmentation models in TensorFlow. Tensorflow is one of the most popular
Deep Learning (DL)-oriented frameworks. It allows to create, train, and execute models that
can be transferred to heterogeneous devices. With Tensorflow, Convolutional Neural Networks
(CNNs) can be used to perform image classification, object detection, and semantic segmentation.
This segmentation tool performs automatic data augmentation, a process to enlarge the training dataset
by applying a series of random transformations to the original images, such as rotation and translation.
It also includes various state-of-the-art models for feature extraction, such as MobileNetV2 [45] and
ResNet50/101/152 [46], as well as several segmentation models, like Mobile UNet [47] and Fully
Convolutional DenseNet [48]. For the case study of this article, we considered the frontend feature
extractor ResNet101 and the segmentation model FC-DenseNet103.

4. AgRobPP-Bridge—AgRob Grid Map to Topologic

AgRob Grid Map to Topologic is a framework developed to deal with big dimensions maps in
autonomous robot navigation. As mentioned in our previous work [12], path planning in terrains
with large dimensions is complex in terms of memory. This approach automatically divides an
occupation grid map into smaller zones and finds the different possible connections between those
places. Then, this information is saved into a graph struct, which allows the usage of a search algorithm
to find the best possible transaction between two zones. In the resulting graph struct, a vertex represents
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a delimited place of the map, and an edge represents the connection between to vertices containing
information about the Euclidean distance, as in Figure 5.

Figure 5. Representation of the graph struct used for the topological map.

A typical A* search algorithm, in which pseudo-code is represented in Algorithm 1, was the
choice to perform the search between two nodes in the graph space. With this, the large map gets
reduced to the strictly necessary zones to navigate between two different places. Considering this
method, the amount of computational memory gets substantially reduced.

Algorithm 1 A* algorithm [39]

1: Add origin node to O (Open list)
2: Repeat
3: Choose nbest (best node) from O so that f (nbest) ≤ f (n) ∀ n ∈ O
4: Remove nbest from O and add it to C (Closed list)
5: if nbest = target node then end
6: For all x ∈ Q(nbest) which are not in C do:

if x /∈ O then
Add node x to O

else if g(nbest) + c(nbest, x) < g(x) then
Change parent of node x to nbest

7: until O is empty

The topological map concept for steep slopes vineyards had been addressed in a previous
work [39]. However, this method was more complex and presented some outliers. For example,
there were unnecessary and repetitive connections between different nodes. The resemblance to
AgRob Grid Map to Topologic is in the Voronoi diagram. Both methods start with the extraction
of a Voronoi diagram, but here the places delimitation follow a more straightforward approach.
As already mentioned, the Voronoi diagram consists of the division of the space by Voronoi segments
and Voronoi vertices. These segments represent all the points in the plane equidistant to the nearest
sites, and the Voronoi vertices are the points equidistant to three or more sites [38]. Our previous
approach started the construction of the topological map by defining a circle in each Voronoi vertice,
then filtering these circles to eliminate overlaps. Until this point, the process in both methods is similar.
While the previous work used Voronoi segments to find the connection between circles and resorted
to parametric equations for the space delimitation process, the current approach is more simplistic,
efficient, and effective, as will be explained below. The result of this method will provide us with
a map sub-divided into smaller places, with the possible connections between these zones saved in
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a data structure. Furthermore, an A* search algorithm is available to search for the best transition
between places, which will be useful for future approaches with path planning algorithms.

For the step by step demonstration of this method, an occupation grid map of a simulated steep
slope vineyard will be considered, as in Figure 6, where the white color represents a free cell and black
color an occupied cell. This image is the result of a 2D projection of the simulated 3D model of a steep
slope vineyard created with a modeling software in previous work [11].

Figure 6. Occupation grid map of simulated steep slope vineyard.

4.1. Voronoi Diagram Extraction

The resulting vertices and segments of the Voronoi diagram are represented in Figure 7.
Its construction originates from a beforehand distance map, which contains the Euclidean distance
of every cell to the closest obstacle. The development of the algorithm was based on the
work of Lau et al. [49].

Figure 7. Vertices and segments of voronoi diagram of simulated steep slope vineyard.

4.2. Topological Map Construction

The visualisation of the topological map is composed of a set of interconnected circles. Each circle
represents a certain zone of the map, that it’s connected to the nearest possible circles, according to the
occupation grid map. To construct it, the algorithm associates two parameters to each one of the Voronoi
vertices, to define a circle: the circle location−→rc = (xc, yc) that is the same as the Voronoi Vertex, and the
circle radius through the distance map, rc = mapdist(xc, yc). With this circle, the algorithm checks, in all
of the remaining stored circles, the following condition: rc(i) + rc >=

√
(xc − xc(i))2 + (yc − yc(i))2.

If the condition is true, the circle with a smaller radius is erased. The result of this operation is
illustrated in Figure 8.
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Figure 8. Filtering of circles in Voronoi vertices: a step on the construction of a topological map.

The next step consists of finding the connections between the circles. For that operation, all the
pixels of each circle will have associated a unique label. Then, all the pixels containing a label
are expanded until a different label is found. This operation is similar to a recursive process of a
morphological operation of erosion until there are no more pixels without a label associated. The result
is visible in Figure 9.

Figure 9. Expansion labels of circles in Voronoi vertices.

With this image, the process of finding the connections between the circles is simple. It is just
necessary to check the zones where the label changes. So, a topological map is constructed and
represented in Figure 10.

Figure 10. Topological map of a simulated steep slope vineyard.
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4.3. Place Delimitation

In this stage, the algorithm takes advantage of the expansion performed before, as in Figure 9,
to define delimited places on the map. Then, these places are approximated to the nearest possible
rectangle, and this information is saved into the graph struct. At this stage, it is possible to use A*
search algorithm to find the best transition sequence between two different nodes. The result of this
operation is visible in Figure 11, where A* was used to find the connection between the nodes S80
and S92. The final result presents a map that only contains the strictly necessary zones for robotic
navigation between those two nodes.

Figure 11. Space Delimitation and A* search result between nodes S82 and S92.

5. Results

This section presents the results of AgRobPP-bridge. The mentioned segmentation methods,
AgRob Vineyard Detector and Segmentation Semantic suite are demonstrated in two different
vineyards to extract an Occupancy Grid Map. AgRob Grid Map to Topological map extraction
is demonstrated with one of the extracted grid maps. The satellite images of the vineyards are publicly
available on Google Maps, and we resorted to a public tool [50] to obtain high-resolution images with
the necessary dimensions to cover an entire vineyard. One of the vineyards, as in Figure 12A, is a flat
vineyard located at “Quinta da Aveleda” (41.205074, −8.307765), with an area of approximately 5.2
hectares. The other image, Figure 12B, corresponds to a portion of a steep slope vineyard located at
“Quinta do Seixo” (41.167574, −7.553293) with an approximated area of 2.3 hectares. Both images were
acquired at the maximum possible resolution with 300 pixels per inch.

5.1. Agrob Vineyard Detector Results

Two different training datasets were created with the annotation tool mentioned in Section 3.2,
visible in Figure 13. The dataset contains two classes: “Vineyard” which includes the vine-trees,
and “Path” that represents everything else. Although the class “Not Vineyard” may not necessarily
include a path for robotic navigation, the main goal is to identify the vineyards. As SVM is a tool more
suitable for binary classification, we simplified the problem to work with just these two classes. For the
vineyard of “Quinta da Aveleda”, we annotated a portion of the image with a window size of 70× 70
pixels. The annotation on the steep slope vineyard was performed with a window of 45× 45 pixels.
The SVM tests were performed in Ubuntu 18.04.3 LTS under ROS Melodic framework, in a computer
with Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz × 12, 16 GB of memory. The application runs in
CPU without any parallelization.
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Figure 12. Two Vineyards satellite images considered: (A) “Quinta da Aveleda”, (B) “Quinta do Seixo”.

Figure 13. Annotation of two satellite vineyard images with Annotation tool for SVM: (A) “Quinta da
Aveleda”, (B) “Quinta do Seixo”.

The accuracy results of the training process are expressed in Table 1 with a confusion matrix.
About 15% of the images in the dataset are used to test the training process. The confusion matrix
table indicates, for example, that, in 102 images belonging to “vineyard”, 4 were wrongly classified as
“path”. Ideally, the values outside of the main diagonal of a confusion matrix should be 0.
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Table 1. Confusion Matrix of the SVM training process.

Classes No

of Images
Train

Images
Test

Images

Confusion Matrix Accuracy
(%)Path Vegetation

Aveleda Path 537 457 80 72 8 93.4%Vegetation 684 582 102 4 98

Seixo Path 607 516 91 81 10 84%Vegetation 523 445 78 17 61

The images in Figure 14 represent the SVM segmentation result with the flat vineyard at “Quinta
da Aveleda” and the corresponding Occupancy Grid Map. The result in the steep slope vineyard is
shown in Figure 15. The result is present in the form of a color map, which is related to the probability
of each pixel to belong to the class “Vineyard Path”, where blue represents the lowest probability
and red the highest. The grid map is obtained through a threshold process in the color map image.
Two ground truth images were created, similar to the images in Figure 16 to calculate the accuracy of
the method. These images were compared pixel by pixel to the final result of the SVM tool in order to
determine quality metrics. Table 2 presents the Accuracy and the metric F1-score, common in binary
classification problems. This table is similar to a confusion matrix (Table 1), but, instead of presetting
the number of images correctly identified, it considers the number of pixels by comparing the image to
a ground-truth image. However, such data is not available, so we annotated the images manually and
consider them as ground-truth, as in Figure 16. For the accuracy, we consider all the pixels correctly
identified out of all pixels in the image. F1-score combines “Precision” and “Recall” metrics with a
harmonic average. “Recall” refers to the number of pixels correctly identified as Positive (Vineyard)
out of the total True positives (“Vineyard” and false “Path”). The “Precision” is the number of items
correctly identified as positive (“Vineyard”) out of all pixels identified as positives (“Vineyard” and
false “Vineyard”) [51].

Figure 14. SVM Segmentation results in a color map of the vineyard at Quinta da Aveleda (Left).
Resulting Occupancy Grid Map (Right). Black: Vineyard vegetation.
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Figure 15. SVM Segmentation results in a color map of steep slope vineyard at Quinta do Seixo (Left).
Resulting Occupancy Grid Map (Right). Black: Vineyard vegetation.

Table 2. SVM Precision. TP—True Positive; FP—False Positive.

Classes TP FP Accuracy
(%)

F1-Score
(%)

Aveleda Vineyard 4,670,106 2,075,617 88.5 66.0Path 32,389,277 2,734,308

Seixo Vineyard 339,554 460,578 87.7 54.8Path 3,658,598 100,345

5.2. Segmentation Semantic Suite Results

To compare the results of this tool with the SVM classifier, we created two training datasets using
similar information sources, that is, using the same area of satellite images. Here the annotation process
was manual and time-consuming because it must be performed to every individual pixel. Each pixel
gets associated with a particular color, which is related to a specific class. We considered three classes:
Vineyard, Path, and Background. The last one represents everything that is outside of the first two
classes. The annotation is illustrated in Figure 16.

Two training processes were performed, and the graphics correlating the average loss and average
accuracy with the number of epochs are visible in Figure 17. The prediction results are revealed
in Figure 18, and Table 3 presents the accuracy and F1-Score of the prediction similarly to Table 2.
The classes Path and Background were considered to be one single class (“Not Vineyard”) to calculate
the F1-score. This application requires a GPU, so we ran these tests remotely with Google Colab
Platform (https://colab.research.google.com).

https://colab.research.google.com)
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Figure 16. Annotation of two satellite vineyard images for Semantic Segmentation Suite: (A) Quinta
da Aveleda, (B) Quinta do Seixo; Red: Vineyard, Green: Path, Black: Background.

Table 3. Semantic Segmentation Suite Precision. TP—True Positive; FP—False Positive.

Classes TP FP Accuracy
(%)

F1-Score
(%)

Aveleda
Vineyard 5,722,413 910,572

87.4 81.5Path 7,361,845 2,244,559
Background 25,421,493 2,386,748

Seixo
Vineyard 311,261 216,800

73.3 64.3Path 1,136,978 718,661
Background 2,005,063 323,685

5.3. Agrob Grid Map to Topologic Results

The results for this tool were demonstrated along Section 4 considering a simulated map of a
steep slope vineyard. The present section presents the results of this tool applied to the occupation
grid map obtained in the segmentation of “Quinta da Aveleda” vineyard, as in Figure 15, as this is the
most complete grid map with the biggest area. As the image dimensions of the maps are considerable,
6490 × 6787 pixels, it is only possible to highlight part of the result. Figure 19 shows the resulting
topological represented by circles and their connections. The place delimitation operation is illustrated
in Figure 20. Then, we present an example of a path search operation between two nodes using A*
search algorithm in Figure 21.
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Figure 17. Relation between Average Loss (Top) and Average accuracy (Bottom) with train epochs on
Semantic Segmentation Suite.

Figure 18. Semantic Segmentation Suite results. (A)“Quinta da Aveleda”, (B)“Quinta do Seixo”.
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Figure 19. Topological map of “Quinta da Aveleda”.

Figure 20. Place delimitation with the topological map of “Quinta da Aveleda”.

Figure 21. Transition path between nodes 609 and 594 using the topological map of “Quinta
da Aveleda”.

5.4. Results Discussion

The presented results of satellite image segmentation and topological map extraction are
satisfactory. It is possible to extract an occupation grid map from satellite images and create a
topological map with the results of the segmentation. The developed SVM (AgRob Vineyard Detector)
tool demonstrated a similar performance when compared to a Deep Learning alternative using
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Semantic Segmentation Suite. Each approach has different characteristics, and Table 4 presents a
small benchmark between these methods according to the experience of this work. The training
time with the SVM tool takes less than one minute, while, with the deep learning tool, this time can
reach several hours, even with the process parallelized in a GPU. Such a thing does not happen in
AgRob Vineyard Detector, which is running sequentially in CPU without any parallelization. However,
the testing time that takes some seconds with the Semantic Segmentation Suite took about two hours
in some of our experiences with the SVM tool. Nevertheless, as already mentioned, this tool is not
optimized to reduce the processing time. The annotation process with the Deep Learning approach
may be the main drawback. As the tool requires a pixel to pixel annotation, the process was performed
manually and took about three hours in each image to be completed. The same process in the SVM
took less than one hour, with the help of the annotation tool described in Section 3.2. The precision
in both cases is acceptable, even though we are missing a real ground-truth image to make a proper
evaluation. The accuracy in the two methods is higher than 73% and reaches 89%, but the F1-Score
drops significantly in the SVM tool. This is happening because the precision of the class vineyard is
lower than the class “Path”, as visible in Table 2. Such phenomena may be occurring due to the use of
a manually annotated image as ground-truth. 80% of the pixels in the ground-truth image marked
as vineyard were correctly identified, but this tool identified more extensive lines, which causes the
precision to decrease. So, the decrease in F1-score may be caused by human error during the annotation
process. With this experience, it could be concluded that AgRob Vineyard Detector is simpler to use
and that there are no substantial gains in using the alternative framework. However, such claim
can not be fully accepted without a proper evaluation of the data using an accurate ground-truth
image. The AgRob Grid Map to Topologic tool revealed good results even when tested in a map with
considerable big dimensions. Without this, a path planning algorithm would have to deal with a vast
map of 6490 × 6787 pixels to perform a simple operation of finding a path between two near sites. This
operation could cause memory problems and affect the performance of the path planning algorithm.
Using the topological tool, and considering the most simplistic approach, the path planning tool would
work with a much smaller map of 427 × 551 pixels, which represents a reduction of 99.5% of the area.

Table 4. Benchmark between the two presented segmentation tools.

AgRob Vineyard Detector
(SVM)

Semantic Segmentation
Suite

Training Time Low High
Testing Time High Low

Computational Resources Medium High
Precision Medium-high Medium-high

Annotation Process
Complexity

Medium-low High

Annotation Process
Time

Medium High

6. Conclusions

The proposed work presented an approach to deal with big dimensions of agricultural terrain
in robotic path planning. For such purpose, we proposed the AgRobPP-bridge, a method to extract
an Occupation Grid Map from a satellite image and a tool to construct a topological map from a
Grid Map. Based on an SVM classifier, AgRoB Vineyards Detector identifies Vineyards from satellite
images and produces an Occupation Grid Map. This tool was bench-marked with an alternative
open-source framework, Semantic Segmentation Suite, which is constructed to implement, train, and
test segmentation models in TensorFlow. The experience indicated that AgRoB Vineyards Detector is
simpler to use, requires less computational resources, and gives a similar accuracy when compared



Robotics 2020, 9, 77 19 of 22

with Semantic Segmentation Suite. However, as there is not a real ground-truth image, it is not possible
to assure a reliable precision metric. For this purpose, the results were compared with a manually
annotated image, being that, the resolution is not sufficient to ensure correct annotations. To the
construction of the topological map began with the extraction of a Voronoi diagram, ending with the
map with delimited places saved in a graph structure, with a simple A* search algorithm to find the
best transition between different places. The experiments showed promising results when dealing
with significant large maps. The tool is capable to efficiently extract the topological map, delimit the
areas according to the nodes of the topological map, and search for a transition path between two
different nodes. As future work, we will test the segmentation tool with higher resolution images
obtained from a drone or an aeroplane and construct a reliable ground-truth image using land sensors
from a ground robot. The topological tool will be applied to a path planning framework in order to
solve computation memory problems when dealing with big maps.
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FFT Fast Fourier transform
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