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Abstract: In this paper, a novel time-phased directional-sensor network deployment strategy
is presented for the mobile-target search problem, e.g., wilderness search and rescue (WiSAR).
The proposed strategy uses probabilistic target-motion models combined with a variation of
a standard direct search algorithm to plan the optimal locations of directional-sensors which
maximize the likelihood of target detection. A linear sensing model is employed as a simplification for
directional-sensor network deployment planning, while considering physical constraints, such as on-time
sensor deliverability. Extensive statistical simulations validated our method. One such illustrative
experiment is included herein to demonstrate the method’s operation. A comparative study was also
carried out, whose summary is included in this paper, to highlight the tangible improvement of our
approach versus three traditional deployment strategies: a uniform, a random, and a ring-of-fire type
deployment, respectively.
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1. Introduction

Wireless sensor networks (WSNs) have been used to effectively monitor various physical
phenomena in real-time, where they collect, transmit, and process information in an on-line manner [1].
Their applications include environmental monitoring, [2–6], border security [7], target tracking and
localization [8–10], urban search and rescue (USAR) [11,12] and lost person detection in wilderness
search and rescue (WiSAR) [13,14]. Research in the field, however, often assumes omni-directional
sensing models for network-topography planning. This assumption may not hold true for many sensor
types, such as video or infrared, which have a directional sensing range [15].

WSNs that utilize directional sensors are, typically, referred to as directional sensor networks
(DSNs). In DSNs, a sensor’s sensing model is characterized by a limited angular range in addition to a
distal range. Thus, in 2D space, the sensing area of a directional sensor is often modelled as a circular
(partial) sector. This contrasts with the sensing area of an omnidirectional sensor, which is a (complete)
disk, which is formed when the angular range of a directional sensor is very wide.

Another class of sensing model exists at the other extreme of the spectrum, when the angular
range is very small. These are referred to as linear sensing models and represent sensors that have a
sensing area that has been constrained to a line, such as a laser [16]. Being a simpler representation
of a sensing region, it is typically (computationally) easier to plan the deployment of directional
sensors using a linear sensing model. We postulate that the deployment of a directional sensor can be
sufficiently approximated by a linear sensing model during deployment planning, with minimal loss
in performance, for the problem considered herein.

Determining locations of directional sensors (i.e., positions and orientations—poses) is an important
aspect of DSN deployment planning. Pertinent strategies are predominantly formulated with the goal
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of maximizing some form of coverage. Two common metrics are total area coverage (with minimum
holes) (e.g., [17–22]) and preferential target coverage (e.g., [23–27]). These objectives are often coupled
with secondary objectives such as ensuring connectivity or increasing energy efficiency.

In [18], for example, a tessellation-based approach was used to deploy directional sensors for
maximum area coverage. The sensing model is simplified by altering the curved portions of the sector
into discretized line segments, forming a hexagonal approximation to the sector. The sensors are then
tiled (i.e., placed side by side) into a rectangular deployment area containing polygonal obstacles until
either all the sensors are deployed, or the area is fully covered. Coverage holes that naturally develop
around obstacles, as a result of the tiling method, are removed by placing auxiliary sensors, which
overlap previously deployed sensors.

In [26], directional sensors are deployed to maximize coverage of a number of static target positions
(point targets) within a region of interest (RoI). The proposed algorithm is a heuristic that deploys
sensors in a sequential manner. The approach starts by determining the distances between the target
positions. The coordinates of the target position with the highest number of neighbors is chosen as
the optimal sensor position. The orientation of the sensor, placed at these coordinates, is determined
by performing a 360◦ rotation and finding the angle at which the greatest number of neighboring
positions are covered. Subsequent sensor poses are determined following the same greedy process.

A substantial area of research within the sensor network literature considers distributed area
coverage and coverage control problems. This involves the reconfiguration of mobile sensor networks
to maximize total area coverage [28–34]. This is, typically, performed in bounded regions with resources
that can cover a substantial portion of the RoI. However, there are key differences between past research
in this area and our work. Mainly, the problem addressed in this paper is not one of maximizing
total area coverage: our objective is to maximize the likelihood of detecting a mobile target within an
unbounded and growing RoI. The expanding nature of the search implies that one would always have
an insufficient number of sensors to cover an appreciable fraction of the search area (i.e., the sensor
network only provides sparse coverage). Namely, in our work, it is assumed that the growing search
area is significantly larger than the one that can be covered by the available search resources. Achieving
non-redundant coverage, where no sensors overlap is, therefore, a given in the scenario considered,
and a reconfiguration to maximize total area coverage would not be necessary. Coverage control
research also attempts to maximize area coverage using dynamic density functions. The focus of
research in this area has been on motion coordination algorithms of mobile robots to optimize for a
generalized time-varying density metric; often, with the use of Voronoi tessellations [35–38]. Although
the density functions considered could represent target motion, as in our work, their solutions are not
applicable as they typically assume mobile sensors, in contrast to our static sensors (i.e., sensors that
cannot be relocated or reoriented once deployed).

As abovementioned, this paper considers the mobile-target search problem, which has been
addressed in the literature using a variety of solutions via sensor networks and robotic UAVs/UGVs.
Some solutions rely solely on static sensors [39,40]. However, these often do not consider dynamic
scenarios where the target-location likelihood function can change over time, nor do they consider
an expanding search area. A modified approach, that deals with these issues, is presented in [41]
where a static-sensor network is deployed in a time-phased manner allowing for re-planning if
new information on the target were to become available. Others consider only mobile search
resources [42–44]. Although mobile robots (e.g., UGVs) enable the reconfigurability of the network,
they are also expensive to deploy and operate as search resources. In contrast, static sensors can
be deployed in greater numbers due to their simplicity and low cost. Hybrid approaches have also
been considered where a combination of static and mobile search resources are deployed [45,46].
For example, in [46], mobile robots are used to relocate redundant static sensors to locations of coverage
holes. The aforementioned target search literature, typically, employs search resources that are either
mobile or have omnidirectional sensing models. In contrast, in this paper, we use homogenous
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static-directional sensors which, to the best of our knowledge, have not been used to address the
mobile target search problem.

Several studies have also been conducted in information-acquisition methods during search and
rescue operations utilizing Simultaneous Localization and Mapping (SLAM) [47–49]. The objective
of these problems is to develop path-planning algorithms for mobile robots to enable them to gather
information in complex environments; this information can, then, be used to aid in the search.
In contrast, our work, assumes information about the environment is, primarily, an a priori known
(e.g., locations of obstacles), which enables us to narrow the focus of our work to topology planning for
target detection. Thus, SLAM is considered outside of the scope of this paper.

In other pertinent research works, for example, on target tracking [16,50–52], the objective is
to obtain an accurate estimate of the target trajectory using positional updates provided by sensor
measurements. Solutions to this problem, however, are not directly applicable to target detection since
they assume that the target’s initial position is an a priori known, which is not the case during target
detection. In barrier coverage [53–56], the problems addressed are a subset of the preferential coverage
problem, where sensors are deployed to create a barrier between two RoIs. However, these, typically,
consider sensor deployment within a bounded RoI.

Another important consideration, in sensor network deployment planning, is determining the
feasibility of the deployment plan. This ensures that the planned network can be realized by the
available delivery resources (e.g., robotic unmanned ground vehicles—UGVs). There has been
some research considering sensor delivery during deployment planning [14,45,57–66]. Typically,
these determine optimal robot trajectories, for sensor delivery, according to a pre-determined optimal
sensor network plan [45,58–61,65–67]. Our earlier work has considered the optimization of a sensor
network constrained to the trajectories of mobile search robots, within a WiSAR context [14]. In contrast,
herein, instead of sensors being deployed along pre-defined trajectories, the sensors can be deployed
at any pose provided such deliveries meet the time constraints. Thus, we incorporate sensor-delivery
time considerations directly into our planning algorithm, which has a direct impact on the poses of the
optimal/final network topology.

This paper, thus, considers the problem of deployment planning of sparse DSNs that comprise
only static sensors, with the goal of maximizing the probability of detecting a mobile-target in a
time-expanding RoI. While our own and others’ earlier works have addressed the mobile-target
detection problem using dynamically deployed sensor networks, these have only been for
omnidirectional sensors, [41,68–71]. As this work considers directional sensors, a new solution
approach is required. For example, part of the proposed methodology contains an orientation
optimization which has not been considered in past works with omnidirectional sensors. Similarly,
various aspects of our solution approach are tailored to the directional sensing model type.

In the proposed methodology, sensor deployment poses and times are determined, in order of
priority, to maximize the number of simulated target trajectories the sensors would cover, and be
feasible for a set of delivery resources, while being adaptable if new information is found. Our work is
novel in that it provides a solution method to the maximum intersection problem. This is an uncommon
geometric problem where the objective is to place a line, within a plane, to maximize the number of
intersections it has with a set of pre-existing lines. In the context of our work, this corresponds to
planning the deployment of a sensor (representing the additional line) to maximize the number of
simulated target trajectories it would intercept (which represent the pre-existing lines).

Our work is also novel in that it provides a novel sensor-delivery method that incorporates
delivery-time constraints directly into the sensor-pose optimization to guarantee sensor network
deliverability. Specifically, sensor deployment positions and orientations are planned taking into
account when they could be delivered to the deployment location, given the sensor deployment
plan thus far. This is an approach that, to the best of our knowledge, has not been addressed in the
static-sensor delivery literature.
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2. Problem Definition and Background

The problem addressed in this paper is one of localizing a mobile, un-trackable target in an
unbounded and growing region (e.g., a person lost in the wilderness). Our focus is on the use of
directional static-sensor networks, where the term ‘static’ refers to both the (self) immobility of the
sensors as well as our inability to relocate them once deployed. A further constraint is that these static
sensors have to be deployed by a set of delivery robots (e.g., robotic UGVs), which, typically, move at a
maximum and constant speed. These mobile robots are assumed to have no sensing capabilities and,
thus, do not take a direct part in the search. Namely, the set of available resources for the search are
categorized as static-directional sensors and robotic delivery UGVs.

2.1. Example Application: Wilderness Search and Rescue (WiSAR)

WiSAR is often time-critical, where available search resources would be insufficient to provide a
complete (hole-less) distributed coverage; especially, considering that the search area grows with time.
As a result, the effectiveness of individual deployed sensors diminishes with time.

A wilderness search, typically, begins with the notification of a missing person (the target);
subsequently, information regarding their last known position (LKP), time at which they were present
at this position, and information regarding the target’s demographics is obtained. The target’s travel
since leaving the LKP remains unknown, thus, a probabilistic model of his/her motion through the
RoI is required. This model could be derived from the statistical behavior of the overall demographic
group to which the target belongs [72]. Given an estimate of possible motions that the target could
follow, an effective sensor deployment for detecting the target can, then, be planned.

This work assumes that there exists a parallel search effort for the target by mobile operatives. It is
anticipated that these operatives would provide feedback to the central search controller in real-time
for a potential re-planning of the network deployment (e.g., discovering a clue left by the target).
Furthermore, we assume the sensors remain operational for the full duration of the search.

2.2. Line Approximation of a Directional-Sensor

The approximation to a linear sensing model can be determined using the mathematical parameters
describing a directional sensor. Geometrically, a directional sensor can be modelled by a 4-tuple
(P, θ, Rs, α) [15]: P is the (x, y) position of the node, θ is its working orientation, Rs is its sensing range,
and α is the angular sensing range, Figure 1a. Our simplified linear sensing model, herein, is modelled
using the same mathematical parameters as those of the directional sensor. The difference is that the
angular range is set to α = 0. As a result, it resembles a line segment as shown in Figure 1b.
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This simplified model is only used to reduce the computational complexity of our planning
algorithm. The final solution for the optimal positions and orientations of the linear sensing model
is used to construct the directional sensors. The network performance is, then, evaluated with these
directional sensors. Herein, the directional sensors that are constructed from a linear sensor plan are
referred to as linear-directional sensors.

2.3. Sensor Plan Performance Measure

The objective of our DSN planning is to determine sensor deployments that maximize the
probability of detecting the mobile target. Herein, a sensor network deployment plan, Ds, for a
set of n sensors, comprises the sensor positions, {(x1, y1), . . . , (xn, yn)}, orientations, {θ1, . . . , θn)}
and corresponding placement times, {t1, . . . , tn)}. The optimization problem at hand can, then, be
formulated as:

maximize P (S = success|Ds), (1)

where S is a binary random variable denoting the success/failure of a search mission (i.e., a successful
target detection).

One may note that it is, typically, not feasible to determine the search success probability exactly.
Thus, herein, an estimator of the success probability is used as the objective function. It is defined as
the proportion of equally feasible target motions that would be detected by a search:

P(S = success|Ds) ≈
ntd
nt

, (2)

where nt is the number of equally likely potential target trajectories, and ntd is the number of targets,
on their respective trajectories, that would be detected by a sensor in the deployed DSN. Assuming
a linear sensing model, Figure 1b, a moving target would be detected when its trajectory crosses a
sensor’s sensing range. In our proposed method, the set of nt trajectories is simulated using the lost
target’s demographics. These trajectories represent a statistical sample of all possible trajectories that
the target could have taken from the LKP. Thus, the objective of our sensor-network planning is to
maximize the number of these simulated trajectories that would be intercepted by the sensor network
(i.e., maximizing ntd). Namely, the planned network maximizes the likelihood of a successful target
detection as defined by the abovementioned estimator.

2.4. Optimization Metric for Sensor Planning

The simulated target trajectories are also used to plan the sensor deployment poses within our
proposed methodology. In our previous work, such target trajectories were used to inform our
deployment planning by defining a target location likelihood function to estimate where the target may
be at any given time, t, via a density estimate [68]. The simulated trajectories were also used to define
iso-probability curves denoting the limits of where a given percentile target could travel up to in all
directions [14]. However, herein, we maximize the cumulative number of trajectories intersected by the
sensor network directly. A function, f, that describes the number of simulated trajectories intersected
by a directional sensor, of a particular sensing range, Rs, if placed in a certain position, (x,y) at time t,
and in an orientation θ, can be defined as,

ni = f (xi, yi, ti,θi, Rs), (3)

where ni is the scalar value representing the number of trajectories intersected by Sensor i at Position
(xi, yi) and Orientation θi, at Time ti. As the probability of success, defined in Equations (1) and (2),
is determined by the number of targets detected, maximizing the number of trajectories intersected,
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when planning each sensor pose, also maximizes the estimate of the cumulative probability of success.
Thus, f can be set as the objective function which needs to be maximized. This is described by

Ni = max
{
f (xi, yi, ti,θi, Rs)

}
, (4)

where Ni is the number of trajectories intersected at the optimal position, orientation and time for
a particular sensor, i. It should be noted that a distinction is made between the set of simulated
trajectories used to plan the sensor deployment and the trajectories used to evaluate the sensor network
plan. Specifically, one set of simulated trajectories, n, was used to plan the poses of the sensors and a
separate set of trajectories, nt, was used to test the performance of the final sensor network plan.

3. Proposed Deployment Methodology

The proposed deployment methodology is a three-phase adaptive approach. First, the strategy
determines the (original) deployment poses and times for the sensors at hand, prior to the start of the
search (i.e., tstart), in an off-line manner. Next, the original deployment plan is initiated where sensors
are deployed at their planned poses, at their corresponding deployment times, by their assigned
delivery robots. If during this phase, new information becomes available (e.g., a clue is found), then,
the third phase of the proposed strategy is invoked, where the deployment poses and times for the
remaining (undeployed) sensors are re-optimized. Since the three phases of the methodology are
sequential in nature, they are designed to run on commercially available computing devices and can
be assumed to run as a finite-state machine. However, a more helpful model for performance and
property analysis may be a random-access stored-program (RASP) machine model of computation.
Thus, we assume that our algorithm is not limited by the memory available in modern computers.

3.1. Phase 1: Original Network Planning

The off-line planning process is outlined in Figure 2 and detailed in the following sub-sections.
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The proposed methodology plans the placement of directional sensors assuming a linear sensing
model in an iterative and sequential manner (i.e., one at a time). In this method, the linear sensing model
is used as a simplification of the directional sensing model to reduce the computational complexity
of our problem and improve computational efficiency. The proposed methodology commences by
simulating a set of possible target trajectories, starting from the LKP, Step 1.1. Next, the best possible
sub-region, within the RoI, to place a sensor is determined, Step 1.2. Sensor pose optimization is, then,
conducted within the optimal sub-region to determine the optimal planned pose, Step 1.3. The process
is repeated until all sensor deployment poses and times are determined. Pseudocode for the overall
planning methodology, as described in Figure 2, is included in Appendix A.

3.1.1. Step 1.1: Target Trajectory Generation

There exists extensive literature on developing complex probabilistic motion models to predict
the behavior of a lost person based on their demographics and environmental features [73]. However,
for simplicity, in this work we simulate the target’s possible motion patterns as randomly generated
piecewise linear target trajectories that begin from the target’s LKP [68]. These trajectories represent a
statistical sample of all the possible trajectories that the actual target could have taken from the LKP
and are used to inform our deployment planning.

The simulated trajectories follow an outward propagation model with a target’s potential proclivity
to randomly wander factored in. This is characterized by straight-line segments with probabilistic
heading changes. The likelihood of a target walking on a particular heading, θt, and travelling a
distance along that heading, r, in its motion, is given by:

P(r) = U(0, dm), (5)

P(θt) = N
(
φ, σ2

θ

)
, (6)

where dm is the maximum distance the target will walk along a heading, σθ is the degree to which
the target wanders, and φ is the heading directly away from the LKP. A normal distribution centered
on the direction directly away from the LKP is used to model target heading changes. The outward
propagation model is used since historical data suggests that targets continue travelling in their
initial direction of motion after leaving the LKP. The velocity of the targets is modelled as a normal
distribution centered on the mean target speed vmean and standard deviation vstd. Detailed pseudocode
describing the implementation of the statistical models to create the simulated target trajectories is
given in Appendix B.

In the case of multiple targets, for example, Target A, B, C, etc., separate sets of, nA, nB, nC, etc.,
trajectories would be simulated for each target based on their respective demographics, and their
respective LKPs, respectively. The combined set of trajectories would then be used to inform the
deployment planning.

Since deployment execution cannot start at the exact moment of notification of a lost target,
a specific deployment start time, tstart, from which sensors can start to be deployed is determined
by the search commander. Furthermore, as the search cannot continue indefinitely, an end of search
time tend is also defined. As a result, only the portions of the trajectories that occur between tstart and
tend are considered to inform the deployment planning. Figure 3a below shows a set of 100 target
trajectories that start at the LKP (0, 0) at t = 0, and move outward randomly until an end of search time
of tend = 7200 s. Figure 3b shows a set of 100 trajectories with a tend time of 7200 s and with the portions
of the trajectory before the tstart time of 3600 s removed. Thus, the search time duration is defined a
priori as [tstart, tend].
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3.1.2. Step 1.2: Deployment Sub-Region and Time Determination

An estimate of the number of trajectories that can be intersected in any region can be determined
by examining the density of trajectories in that region. The higher the density, the greater the potential
of maximizing the cumulative total of simulated trajectory intersections. In our previous work,
a non-uniform polar grid-based approach was used for density prediction [50]. However, this method
is not suitable to the maximum intersection problem considered here since it only determines the
density of trajectories in locally defined areas within the RoI. A global search is required to determine
the sub-region with the highest density of trajectories. Thus, herein, a hierarchical multi-resolution
variation of pattern-search optimization is proposed [74]. A similar hierarchical direct search approach,
but using a genetic algorithm, can be found in [75]. The proposed pattern search optimization
determines a sub-region, within the entire search RoI, that contains the highest density of simulated
trajectories so that if a sensor was placed within this sub-region it would intersect the maximum
number of trajectories possible.

Our strategy uses a hexagonal pattern, shown as the seven black ×s of the pattern search tool in
Figure 4. The sub-region corresponding to each point is shown as a circle, whose size is dependent
on the pattern size such that a hole-less coverage is achieved. The objective function evaluated for
each iteration of the pattern is the number of trajectories that pass within each of the seven circles
centered at the crosses (i.e., the density of trajectories within the circular sub-regions). If the circle,
in the center of the stencil, contains the highest density of trajectories, then, the size of the stencil
is isometrically reduced. A scale factor of 0.75 was selected to ensure the reconfigured stencil fits
within the central sub-region, with no coverage holes. If the highest density is found within one of
the outer circles, then, the stencil is translated so that the circle that contained the highest density
of trajectories is at the center. The density of trajectories, in the new pattern configuration, is, then,
evaluated. This process is repeated until the diameter of the circles is the equivalent length of the
defined sensing range. Namely, the pattern search stencil is translated and resized until the sub-region
with the highest density of trajectories is found. That sub-region (i.e., the one containing the highest
density of trajectories), in the pattern’s final configuration, is selected as the final optimal sub-region
within which the sensor is deployed.
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Figure 4. The hexagonal pattern used to determine the region with the maximum density of trajectories in
its (a) initial, (b) a first intermediary, (c) a second intermediary, and (d) final configurations, respectively.

The proposed pattern, in its initial, final and two intermediary configurations, is shown in Figure 4,
overlaid above a set of 100 target trajectories. It should be noted that only four steps of the pattern
search process are shown, in Figure 4, for brevity. Using a circular sub-region, with a final configuration
diameter that is the same size as the linear sensing range, allows for a more effective orientation
optimization (in the subsequent step), compared to the polar grid approach in our previous work [68],
as the sensor line can be swept circularly until an optimal orientation, θ, is found. This design was
inspired by the patterns seen in sensor network deployment problems involving k-coverage, where
multiple omnidirectional sensors overlap to ensure every point in the RoI is covered by at least k
sensors [76–78].

Deployment time is incorporated into the pattern search optimization. For each sub-region in the
hexagonal pattern, a corresponding deployment time is determined by calculating the earliest time
at which a robot could deliver there, based on each robot’s relative distance and previous delivery
assignments. Namely, the deployment time of a sensor, at a given location, is calculated by adding
the time it would take for a robot to get to the deployment position (i.e., the center of the deployment
sub-region) to the time at which the robot was at its previous deployment position.

Figure 5 shows the positions and times, of three delivery robots, at their previous deployment
positions as well as the next potential deployment position (black ×). This deployment position
represents the center of a deployment sub-region. The distances to the potential position are 2820 m,
1084 m, 580 m for Robots 1, 2, and 3, respectively. For a robot speed of 10 m/s, the earliest deployment
times, then, are 4008 s, 3879 s, and 3799 s, respectively. Thus, in this example, the earliest deployment
time which could be achieved, by Robot 3, is t3 = 3799 s. It should be noted that the distance of the
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delivery robot, from the deployment sub-region, is calculated using the position of the center of the
sub-region. However, the sensor is actually positioned on the circumference of the sub-region in the
following step of our methodology. This assumption is made as the sensing range (i.e., the diameter of
the sub-region) is small enough, in the final configuration, to not have a significant effect on the actual
deployment time achieved by the robot.
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Once the earliest possible deployment time is determined for each sub-region, only the parts of
the simulated target trajectories that occur after the sensor becomes active (i.e., when it is deployed) are
considered. Namely, the density of trajectories, for each sub-region, would then be the total number
of trajectories that pass through it after its corresponding deployment time. This has a direct effect
on the choice of the optimal sub-region as earlier deployment times would result in more trajectory
presence in each respective sub-region. The optimal deployment sub-region, at each iteration, is the
one that contains the highest number of trajectories. If, however, there are no trajectories present
within a sub-region, after the determined deployment time, then a deployment in that sub-region is
considered infeasible. Namely, the robot would not be able to deliver in time to intercept any of the
trajectories passing through that sub-region. It should be noted that this, typically, only occurs in the
initial iterations of the pattern search, due to the large distances of the outer sub-regions from the LKP.
In the case that none of the circular sub-regions contain any trajectories, the pattern search algorithm
is reinitialized at a position closer to the robots. The process is repeated until a feasible sub-region
and corresponding deployment time is found. Detailed pseudocode of the pattern search algorithm is
given in Appendix C.

3.1.3. Step 1.3: Sensor Pose Determination

In the previous step, only the density of trajectories that pass through the optimal sub-region was
determined. In order to maximize the exact number of trajectories that the sensor would intersect,
an orientation optimization is conducted on the simulated trajectories within the optimal sub-region.
These simulated trajectories can also be represented as multi-segmented lines. A target would be
intercepted, then, if one of the multi-segmented lines, belonging to a particular trajectory, intersects the
sensing area of the sensor.

The linear sensor is positioned, within the optimal sub-region, such that its sensing line bisects the
circular sub-region. Namely, it is positioned on the circumference of the circular sub-region determined
in Step 1.2 and oriented to point towards the center of the region. An example of this is shown in
Figure 6 for three sensor orientations spaced by 60◦.
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The optimal orientation, namely, the one that intersects the greatest number of trajectories,
is determined using a simple search engine that is implemented practically using the fminsearch
function from MATLAB’s optimization toolbox [79]. As the number of target trajectories intersected by
a sensor is a discrete function, the optimization is initialized at several different orientations to avoid
converging to a local maximum. Practically, whether or not an intersection exists is determined by
equating the linear geometric equations of the line-segment representing the sensor (i.e., the linear
sensing model) and the multiple line-segments representing each trajectory. Namely, if a trajectory is
to be intersected by a sensor, at least one of the multiple segments of a single trajectory must contain
an intersection point with the line representing the sensor. Mathematically, this can be solved using
the equations of a pair of line segments [80]. One line is connected between points p1 and p2 and the
other is connected between points p3 and p4. This is described by the following equations:

pi = p1 + ta(p2 − p1), (7)

pi = p3 + tb(p4 − p3), (8)

where pi is the point of intersection of the two lines and ta and tb are the offsets of the intersection
point for each corresponding line. In the context of this paper, p1 and p2 represent the end points of a
particular segment of a trajectory and p3 and p4 represent the start and end points of the sensor line,
respectively. By equating the two and solving the system of linear equations, values for ta and tb can be
obtained. If both values satisfy the inequalities,

0 ≤ ta ≤ 1,0 ≤ tb ≤ 1,

then, a point of intersection exists between the two-line segments. The exact coordinates of the
intersection can be found by substituting the values of ta and tb back into either Equations (7) or (8),
respectively. The pseudocode for the orientation optimization process is included in Appendix D.
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Figure 6. An example of orientation optimization within a sub-region.

The set of trajectories that are intersected, in between each pose determination, are removed and
resampled to ensure the same level of information is used to plan subsequent poses. For example,
after the pose is determined for Sensor A, the simulated trajectories na that were intersected by this
sensor, out of the total trajectories n, are removed and re-simulated. The new set of simulated trajectories,
which consists of the previously non-intersected trajectories and the re-simulated trajectories, would,
then, be used to plan the pose of Sensor B. This approach has to be taken to avoid the depletion of target
trajectory information and was inspired by the resampling process of a particle filter [81]. This iterative



Robotics 2020, 9, 82 12 of 27

algorithm is followed until all poses have been planned for all the available sensors. The pseudocode
for the trajectory re-simulation process is included in Appendix E.

Once the optimal sensor poses, which were planned using the linear sensing model, are determined,
they are subsequently converted to the required directional sensors. Namely, the sensor position (x,y),
orientation (θ) and sensing range (Rs) of the linear sensing model are combined with the directional
sensing angle, α, to form the DSN. This is reflected, visually, in a change from sensors resembling
line-segments (Figure 7a) to those resembling sectors (Figure 7b). The linear-directional sensors
(directional sensors that are planned using a linear sensing model) are, subsequently, used to test the
performance of the network.Robotics 2020, 9, x 12 of 27 
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Figure 7. A single sensor network planned utilizing a (a) linear sensing model and converted to (b) a
directional sensor network.

Deployment Example:

An example DSN deployment plan obtained via the proposed strategy for 50 sensors each with a
30 m sensing range is given in Table 1 and shown in Figure 8. Optimal sensor poses and times were
determined for tstart = 3600 s and tend = 7200 s.

Table 1. Some Sensor-Deployment Poses and Times for the DSN shown in Figure 8.

Sensor # Time of Deployment (s) Deployment Position (m) Sensor Orientation (rad)

1 3683 (896, 1418) 1.55
2 3700 (1794, −912) 0.82
3 3701 (355, 1994) 1.16
...

...
...

...
28 4287 (−2011, −847) 2.18
29 4293 (−2189, 197) 5.89
...

...
...

...
48 4757 (104, 2475) 1.98
49 4807 (−887, 2342) 3.84
50 4902 (−2524, 604) 6.91



Robotics 2020, 9, 82 13 of 27

Robotics 2020, 9, x 12 of 27 

 

 
(a) 

 
(b) 

Figure 7. A single sensor network planned utilizing a (a) linear sensing model and converted to (b) a 
directional sensor network. 

Deployment Example: 

An example DSN deployment plan obtained via the proposed strategy for 50 sensors each with 
a 30 m sensing range is given in Table 1 and shown in Figure 8. Optimal sensor poses and times were 
determined for tstart = 3600 s and tend = 7200 s. 

 
Figure 8. The original DSN deployment topology noted in Table 1. 

Table 1. Some Sensor-Deployment Poses and Times for the DSN shown in Figure 8. 

Sensor # Time of Deployment (s) Deployment Position (m) Sensor Orientation (rad) 
1 3683 (896, 1418) 1.55 
2 3700 (1794, −912) 0.82 
3 3701 (355, 1994) 1.16 ⋮ ⋮ ⋮ ⋮ 

28 4287 (−2011, −847) 2.18 
29 4293 (−2189, 197) 5.89 ⋮ ⋮ ⋮ ⋮ 
48 4757 (104, 2475) 1.98 
49 4807 (−887, 2342) 3.84 
50 4902 (−2524, 604) 6.91 

  

-3000 -2000 -1000 0 1000 2000 3000
x distance from LKP (m)

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

 y
 d

ist
an

ce
 fr

om
 L

K
P 

(m
)

 y
 d

ist
an

ce
 fr

om
 L

K
P 

(m
)

-3000 -2000 -1000 0 1000 2000 3000
x distance from LKP (m)

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

LKP

Sensor Position

Figure 8. The original DSN deployment topology noted in Table 1.

3.2. Phase 2: Network Deployment Execution

This phase of the proposed strategy involves executing the DSN deployment plan, determined in
Phase 1. Namely, the sensors at hand are deployed according to the optimal schedule at their optimal
poses {(x1, y1, θ1, t1), . . . , (xn, yn, θn, tn)} by the assigned delivery robotic UGVs. If, however, during the
original deployment, new information becomes available regarding the target’s motion, for example,
through a clue find, then, Phase 3 of the proposed deployment strategy would be invoked, followed by
a deployment execution of the remaining sensors at their newly planned poses and times.

3.3. Phase 3: Network Re-Planning

In this phase, the deployment of the remaining (undeployed) sensors is re-planned around the
new LKP (i.e., the clue location). Re-planning is vital, as utilizing the updated knowledge regarding
the target location would result in a significantly higher probability of target detection. Re-planning
determines new deployment poses and times for the set of undeployed sensors, while considering the
past deployment.

This phase follows the same stages as Phase 1 but with the proposed methodology applied around
the updated LKP. Figure 9 shows an example of an original deployment plan (i.e., black sensors) and the
re-planned network (i.e., magenta sensors) as a result of a clue find, at the blue cross, using 50 sensors
with a 50 m sensing range.
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4. Results

Extensive simulated search experiments were performed to demonstrate the effectiveness of the
proposed deployment methodology. The subsections below first present an illustrative simulated search
experiment to demonstrate the method’s operation. A comparative study contrasting the performance
of a sensor network planned by the proposed strategy against the performance of alternative sensor
network topologies is presented next.

4.1. Illustrative Search Example

In this example, the search starts with the notification of a lost person, last known to be at
(x, y) = (0, 0), at a time t = 0. The parameters used to simulate the lost person’s trajectory were a speed
of 0.42 m/s, in a general direction of φ = −150◦. The target wanders from the general direction by
σθ = π/3 rad and the maximum distance the target will walk along the chosen particular heading is
dm = 100 m. The entirety of the path followed by the target is shown in Figure 10. As can be noted,
the terrain also contains large-scale obstacles, such as a lake or a dense forest.
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4.1.1. Phase 1: Off-Line Network Planning

The off-line network is planned using n = 50 sensors, each with a sensing range of Rs = 30 m.
The search resources are available to deploy at tstart = 1800 s and the search commander has determined
an end of search time of tend = 7200 s.

The network-deployment planning begins with the simulation of 10,000 target motion trajectories,
in Step 1.1, using the parameters of the demographic group to which the lost person belongs. For our
example, the target walking speeds along the potential paths were sampled from a normal distribution
with a mean of 0.5 m/s and a standard deviation of 0.167 m/s. The segments, of the target motions,
were created using σθ = π/3 and dm = 100 m. These parameters are the same as that of our target to
ensure the simulated trajectories reflect the characteristics of their demographic.

Sensor poses were planned sequentially by first determining an optimal sub-region and
corresponding deployment time, in Step 1.2, and, then, determining an optimal pose within this
sub-region in Step 1.3 and, finally, constructing the linear-directional sensor from the linear one planned
in the previous step. This yielded the positions {(x1, y1), . . . , (x50, y50)}, orientations, {θ1, . . . , θ50} and
corresponding placement times, {t1, . . . , t50} for all n sensors in sorted order with t1 being the earliest
deployment and t50 being the latest. The original deployment plan is shown in Figure 11.
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Figure 11. The original deployment plan.

4.1.2. Phase 2: Network Deployment Execution

The deployment plan is, then, executed. However, a clue is found at t = 2355 s at (−1330, −795).
At this time, 25 of the original 50 sensors have been deployed. As a result of the clue find, the third phase
of the deployment is invoked where the network is re-planned for the remaining sensors according to
the updated LKP.

4.1.3. Phase 3: Network Re-Planning

A conservative estimate of the expected time of arrival, using the maximum target speed and the
straight-line distance to the clue position, of the target is 1550 s. A deployment plan, centered at this
new LKP, is simulated to determine the poses for the remaining 25 sensors. Figure 12 shows the full
deployment plan including the original and re-planned poses of the sensors.
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The deployment plan is restarted at t26 = 2450 s. The search continued until the target was
eventually detected by a re-planned sensor at t = 4850 s, at the position (−1895, −1260). Figure 13
shows a four-frame movie strip from t = 2450 s until the time of interception t = 4850 s.
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4.2. Comparative Study against Standard Topologies

In order to demonstrate its effectiveness, the proposed deployment methodology was evaluated
against several existing deployment strategies. However, no static directional sensor deployment
methodologies for mobile target detection exist in the present literature. Furthermore, existing DSN
literature does not consider sparse coverage with temporal constraints and as a result a direct competitor
cannot be established.

Thus, as a benchmark, herein, our proposed strategy was compared against three common
deployment methods: (a) uniform [82], (b) random [83,84], and (c) a ‘ring of fire’ type deployment,
which is inspired by the expected topology in a border surveillance application, where search resources
are arranged to form a single, air-tight, barrier around a point of interest (i.e., the LKP) [53–56].

Uniform sensor networks are, typically, deployed by dividing the RoI into either square, triangular
or hexagonal grid-based patterns and deploying along the grid vertices [82]. In contrast, our approach
utilizes a gradient-based optimization [85]. The optimization evenly spaces out randomly generated
deployment positions within a bounded region until a convergence criterion is met. This was practically
implemented using the fmincon function in MATLAB’s optimization toolbox. The size of the bounded
region is found by determining the furthest distance a target, with the specified demographics,
could have travelled by the end of search time, tend. Directional sensors are, then, deployed at these
positions and oriented perpendicular to the LKP as this is the orientation expected to maximize
trajectory intersections; this approach is also taken in the random and ring of fire deployments.

For the randomly deployed network, sensor positions are found using random distributions.
The random distribution for positions has limits to ensure that each sensor is within the specified
region; same as that of the uniform deployment. This type of topology is often used within mobile
sensor networks as an initial configuration from which adjustments are made to reach an optimal
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configuration, based on a target metric such as coverage or connectivity [86]. However, as we are only
considering static sensors, the random poses of the sensors represent their final configuration.

The ring of fire network is determined by arranging the available sensors into the largest possible,
air-tight, circular boundary around the LKP.

Figure 14 below shows example topologies of the four deployment methods found using 50 sensors
with 100 m sensing ranges for a tstart = 3600 s and a tend = 7200 s.Robotics 2020, 9, x 17 of 27 
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Figure 14. The topologies of the (a) proposed deployment, (b) uniform deployment, (c) random
deployment and, (d) ring of fire deployment.

The sensor network plans of our proposed methodology and the comparative models were tested
with the same set of 10,000 trajectories. These represent the test trajectories, nt, from our estimator
of success, which was introduced in Equation (2). The performance of each model was evaluated
by determining how many trajectories their respective plans were able to intersect, ntd. This was
repeated a number of times and averaged to remove performance bias on any particular set of 10,000
trajectories. The test trajectories were simulated with a mean target walking speed of 0.7 m/s and a
standard deviation of 0.23 m/s. The segments, of the target motions, were created using σθ = π/3 and
dm = 100 m. For our proposed methodology, the sensors were delivered by 3 delivery robots that
travel at a constant speed of 10 m/s. It is assumed that the sensors are deployed all at once for the three
benchmark methods (i.e., the deployment time for all of the sensors is the same as the deployment
start time tstart = 3600 s).

The results for the comparative study (i.e., the values of ntd achieved by each sensor network plan)
are shown for a deployment start time of 1800 s in Figures 15 and 16 and for a start time of 3600 s in
Figures 17 and 18, respectively. The end of search time was 5400 s and 7200 s, respectively.
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Figure 15. The number of targets found by a set of 50 sensors with varying sensing ranges and a
deployment start time of 1800 s.

Figure 16. The number of targets found by topologies of a varying number of sensors with a sensing
range of 20 m and a deployment start time of 1800 s.

Figure 17. The number of targets found by a set of 50 sensors with varying sensing ranges and a
deployment start time of 3600 s.
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Figure 18. The number of targets found by topologies of a varying number of sensors with a sensing
range of 20 m and a deployment start time of 3600 s.

From the results, it is clear that the proposed methodology outperforms all three of the benchmark
methods. As expected, a larger sensing range or number of sensors increases the number of targets
found. Furthermore, it can be seen that the earlier the deployment starts, a higher total number of
targets can be intercepted. This is expected as deploying earlier in the targets’ trajectories means
that they will be closer together and a single deployment will be able to intersect a higher number
of trajectories.

In the best case, with a deployment start time of 1800 s and 100 sensors with a 20 m sensing
range, the proposed methodology outperforms the next best method, the uniform deployment, by 48%
(i.e., it intercepts almost twice as many targets). In the worst case, with a start time of 3600 s and
20 sensors with a 20 m sensing range, the proposed strategy is still able to intercept 3.2 times as many
targets as the next best model, the uniform deployment.

It should be noted that the ring of fire method will outperform the other methods if a large enough
number of resources is available to form an air-tight barrier around all the simulated trajectories.
However, the performance of this method diminishes with an increasing deployment start time as
the targets have more time to move beyond the barrier. Furthermore, if the target is slower than
anticipated, it may be a long time until they reach the ring of fire barrier which is not ideal in a
time-critical application such as WiSAR.

In addition to having a higher performance, in terms of target detection probability, the proposed
methodology also benefits from being adaptable to new target information. This improves upon
traditional static-sensor strategies that deploy at a single optimal deployment time. By being adaptable,
the cost of opportunities lost is avoided.

5. Conclusions

In this paper, we present a novel directional static-sensor deployment strategy for mobile-target
detection. Optimal deployment poses planned, utilizing the concept of linear sensing models,
are determined by positioning sensors in areas of high target densities, in orientations that maximize
the number of trajectory intersections. The feasibility of sensor delivery is considered by ensuring
that a sensor can be delivered, at the optimal sub-region, by one of the available delivery robots.
The proposed time-phased strategy is adaptive, in that the deployment plan can be altered if new
information becomes available during the network-deployment execution.

The proposed solution methodology is also applicable to problems beyond WiSAR. For example,
the solution to the novel mathematical problem could be used for urban planning where a highway
needs to intersect several roads or for planning additional connections to a complex network of
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pipelines. The density estimation approach, used to determine an optimal sub-region, could be used
for applications that require determining priority areas, within a bounded region, to optimize for a
specified metric. Conversely, the approach could be used to determine areas to avoid by locating
regions with high densities of a specified metric.
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Appendix A

Pseudocode describing the sensor planning process.

Algorithm 1: Overall Sensor Planning Algorithm

1. Inputs: deployment start time (startTime), deployment end time (endTime), trajectory timestep (timestep),
number of simulated trajectories required (n), mean target speed (vTmean), standard deviation of target
speed (vTstd), number of sensors (sens_num), sensing range (sens_range), sensing angle (sens_angle),
number of robots (num_robots), robot speed (robot_speed), LKP cartesian coordinates (LKP_x, LKP_y)

2.
3. Simulate n target trajectories from (LKP_x, LKP_y) \\ algorithm 2
4.
5. Set delivery robots positions (robot_pos) to (0,0)
6.
7. for each available sensor
8. determine optimal sub-region and deployment time \\ algorithm 3
9. determine and record optimal linear sensor pose \\ algorithm 4
10. re-simulate the trajectories that were intersected by the planned sensor pose \\ algorithm 5
11. end
12.
13. Output: final sensor poses and deployment times for sensors

Appendix B

Pseudocode to generate the simulated trajectories.

Algorithm 2: Simulating Target Trajectories

1. Inputs: number of simulated trajectories required (n), mean target speed (vTmean), standard deviation of
target speed (vTstd), deployment start time (startTime), deployment end time (endTime), trajectory
timestep (timestep), LKP cartesian coordinates (LKP_x, LKP_y)

2.
3. for target Ti in {T1, . . . , Tn}
4. Set position to LKP
5. Set travel distance to 0
6. Set velocity (vTi) to a random number drawn from N(vTmean, vTstd)
7. Set travel direction (φi) to a random number drawn from U(0, 2π)
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8. Set travel distance before changing direction to a random number drawn from U(0, dm)
9. Set degree of random wandering to a random number drawn from N(φi,σθ)
10. Determine cartesian coordinates of target position at next timestep using parameters in steps 6–10
11. end
12.
13. \\ simulating target motion
14. for target Ti in {T1, . . . , Tn}
15. for timestep ti in {t1, . . . , tn} \\ e.g., (10, 20, 30, . . . etc.) for a time step of 10 s
16.
17. if a target Ti requires a new direction \\ i.e., the target has travelled the max distance dm

18. repeat steps 8–10
19. end
20. Determine distance travelled in timestep using vTi and timestep
21. Determine the new position of the target
22. Save target position after the current timestep
23. end
24. end
25.
26. Output: A n x (no. of time steps) size matrix containing the n simulated target trajectories

Appendix C

Pseudocode for determining the deployment sub-region with the highest density of trajectories
and its corresponding deployment time.

Algorithm 3: Determining the Deployment Sub-region and Time (Pattern Search Algorithm)

1. Inputs: simulated trajectory data (from algorithm 2), sensing range (sens_range), number of robots (Nr),
robot speed (Vr), delivery robot positions (robot_pos), deployment end time (endTime)

2.
3. Determine the maximum size of the RoI (max_RoI) using the end point of the furthest trajectory
4. Create nP initial cartesian starting points, {P1, . . . , PnP}, for the pattern search stencil taken from

U(0, max_RoI) \\ the initial position of the pattern search stencil taken from the center sub-region
5.
6. for Pi in {P1, . . . , PnP} \\ for each pattern search stencil starting position
7.
8. set the sub-region radius (region_radius) to max_RoI \\ ensures the stencil covers all the trajectories
9.
10. while region_radius > sens_range \\ radius of the sub-regions > sensing range of the sensors
11. Create hexagonal pattern search tool and corresponding sub-regions using Pi

12.
13. for Ci in {C1, . . . , C7} \\ for each of the 7 circular sub-regions
14. Set the earliest deployment time (early_deploy_time) to infinity \\ earliest achievable

deployment time
15. Set the earliest delivery robot index (Re) to 0 \\ the index of the earliest robot to deliver

the sensor
16.
17. for robot Ri in {R1, . . . , RNr} \\ for each available delivery robot
18. find dist_to_deployment to Ci (i.e., the Euclidean distance of the robot to the center-point of the

delivery sub-region)
19. find deployment_time (i.e., the time at which the robot would deliver the sensor at the

sub-region).
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20.
21. if deployment_time < early_deploy_time
22. Set early_deploy_time to deployment_time \\ saving the deployment time of the earliest robot
23. Set Re to Ri \\ saving the index of the robot that will deliver at early_deploy_time
24. end
25. end
26.
27. Only consider the portion of the simulated trajectories between early_deploy_time and endTime
28. Record the number of trajectories that are within Ci

29.
30. end
31.
32. determine the sub-region that contains the highest number of trajectories
33.
34. if the center sub-region contains the highest number of trajectories
35. multiply region_radius by 0.75 \\ reduce the size of the sub-regions
36. else
37. translate the pattern search tool so that the center sub-region is in the position of the sub-region

that contained the highest number of trajectories
38. end
39.
40. end
41.
42. Repeat steps 10–32 using the final position of the pattern search stencil (at the end of the while loop),

and setting the range of the sub-regions to the required sensing range of the linear sensor
43.
44. Record the optimal sub-region’s position, density of trajectories, early_deploy_time and Re

45. end
46.
47. Compare the optimal sub-regions determined for each pattern search initialization and determine which

one contains the most simulated trajectories
48. Record the sub-region position and corresponding deployment time for the sub-region determined in the

previous step
49.
50. Set robot_pos of robot Re to match deployment position
51.
52. Output: deployment sub-region position, deployment time, updated robot positions and times

Appendix D

Pseudocode for the orientation optimization to determine the final sensor pose.

Algorithm 4: Sensor Orientation Optimization

1. Inputs: simulated trajectory data (from algorithm 2), sub-region position (from algorithm 3), sensor
deployment times (from algorithm 3), sensing range (sens_range)

2.
3. Set nθ equally spaced θ initializations: {θ1, . . . , θnθ } \\ the initial orientation of the linear sensor
4.
5. for θi in {θ1, . . . ,θnθ } \\ for each initialization



Robotics 2020, 9, 82 23 of 27

6.
7. Use the fminsearch function from MATLAB’s optimization toolbox to evaluate the user defined cost

function described in lines 9–13 with θ as the dependent variable.
8.
9. cost function start (
10. Using θ, sens_range and the sub-region position, generate a line that bisects the circular sub-region

such that its endpoints are on the circle’s circumference (see Figure 6)
11.
12. Return the number of trajectories intersected, num_int, by the generated line \\maximize num_int
13. ) end
14.
15. Record the optimal θ found at the end of the optimization in line 6 as well as the final sensor pose

(i.e., coordinates of the line’s endpoints) and the number of trajectories intersected by this pose
16.
17. end
18.
19. Determine the optimal θ, out of all the initializations \\ the θ with the highest num_int
20. Record θ from step 19 and the corresponding sensor pose (as cartesian coordinates of the line end points)
21.
22. Output: final sensor pose, optimal orientation angle, maximum num_int

Appendix E

Pseudocode for the trajectory re-simulation process.

Algorithm 5: Trajectory Re-simulation

1. Inputs: simulated trajectory data (from algorithm 2), planned sensor poses (from algorithm 4), sensor
deployment times (from algorithm 3), num_int (from algorithm 4)

2.
3. Record the non-intersected trajectories
4.
5. resim_traj = 0 \\ initializing for while loop
6. while resim_traj < num_int \\ number of re-simulated trajectories < the number of

trajectories intersected
7.
8. Re-simulate required number of target trajectories using algorithm 2
9.
10. Determine if any of the re-simulated trajectories intersects an already planned sensor pose (after its

corresponding deployment time) and remove those trajectories
11.
12. Save the re-simulated trajectories that are not intersected and update the value of resim_traj
13. end
14.
15. Add re-simulated trajectories (from steps 6–13) to the previously non-intersected trajectories (from step 4)
16.
17. Output: matrix of new target trajectories
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