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Abstract: The detection and description of features is one basic technique for many visual robot
navigation systems in both indoor and outdoor environments. Matched features from two or
more images are used to solve navigation problems, e.g., by establishing spatial relationships
between different poses in which the robot captured the images. Feature detection and description is
particularly challenging in outdoor environments, and widely used grayscale methods lead to high
numbers of outliers. In this paper, we analyze the use of color information for keypoint detection and
description. We consider grayscale and color-based detectors and descriptors, as well as combinations
of them, and evaluate their matching performance. We demonstrate that the use of color information
for feature detection and description markedly increases the matching performance.

Keywords: visual navigation; feature detectors; feature descriptors; feature matching; ransac;
outdoor; color image processing

1. Introduction

Autonomous lawn-mowing under visual guidance is a complex task for outdoor robots. One of
the basic elements is a visual navigation system that enables a systematic covering of the entire
working area. In outdoor environments, varying illumination conditions as well as seasonal changes
and nonplanar terrain pose multiple challenges to a visual navigation system. For the class of
methods that we are interested in, the computation of the spatial relationship between arbitrary
views (“home vectors”) is required. Therefore, we focus on feature matching without restricting
the search space by feature tracking and study the effect of incorporation of color information in order
to improve feature matching. Furthermore, we concentrate our study on the performance in the context
of domestic gardens and lawns near public buildings.

Feature detection, description, and matching are fundamental parts of feature-based visual
navigation. A wide variety of feature detectors and descriptors have been proposed in the last
decades, for both grayscale and color images. A review and evaluation of different detectors and
descriptors is beyond the scope of this article; we refer to [1] for grayscale images and [2] for color
images. Most evaluations of different feature detectors and descriptors are found in the context of
object recognition, image registration, camera calibration, and three-dimensional world reconstruction.
Studies regarding the impact of different feature detectors and descriptors on the accuracy of visual
simultaneous localization and mapping (vSLAM) are mainly restricted to indoor environments,
grayscale features, negligible camera in-plane rotations, and short baselines between images [3–6].

In outdoor environments, autonomously navigating robots have to solve additional problems as
compared to indoor environments. Incorporating color information is an obvious option to improve
feature-based methods, as the main purpose of color descriptors is to increase the photometric
invariance and the discriminative power. Previous studies on color descriptors have been limited
to computer vision tasks, such as object and scene recognition, and they do not cover typical scenes
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for lawn-mowing robots (e.g., [2,7]). In this article, we focus on the impact of incorporating color
information in feature detection and description measured by an evaluation criterion suitable for
a subsequent random sample consensus (RANSAC) [8] step. Therefore, we select a widely-used feature
detection and description method (SIFT [9]), which we still consider as state-of-the-art, and analyze
the incorporation of color information. Instead of comparing different color feature detectors and
descriptors, we retain the main components of the method and focus on the use of additional color
information. We evaluate the methods on outdoor image datasets regarding their inlier frequency as
evaluation criterion. In the feature matching step, no tracking is performed, as this is not possible
in the intended application scenario. In the context of feature-based methods, a vast amount of
published literature exists, and the use of color information in robotics vision is no new approach
(e.g., [10,11]), but our study focuses on a specific use case with special characteristics: feature matching
in fisheye images for pose estimation in outdoor environments.

In [12], Dzulfahmi and Ohta present a performance analysis on image matching in outdoor
environments. The main focus of this study is the tolerance of the feature detector and descriptors
against illumination changes by matching of images to images of the same scene at different
illumination conditions. This evaluation is performed in a teaching and playback setup, but it also
includes only grayscale methods. In a similar teach-and-repeat context, Krajník et al. [13] also analyze
feature detection, description, and matching in outdoor environments. Likewise, the evaluation is
based on grayscale features, but the focus lies on long-term matching, despite strongly changing
appearances in outdoor scenarios due to weather conditions and even seasonal changes. In this
underlying context, the robustness to the change in appearance is more important than viewpoint
changes or non-planar surfaces. In [14], Valgren and Lilienthal address appearance-based topological
localization for seasonal changes. It is stated that feature matching that is based on SIFT or SURF alone
is not sufficient for visual localization across seasons. The authors propose the additional use of epipolar
constraints in order to solve single-image localization under these conditions. Other feature-based
approaches for visual navigation in outdoor environments typically involve tracking the detected
features across time, such that the search space of the matched features is restricted (e.g., [15]).

Contrary to the above-mentioned studies, we focus on the following three main aspects:
(1) benefits of color information for feature matching, (2) environments that are typical for a robot
navigating in lawn-mowing scenarios, which include long baselines (ranging from approximately one
to 30 meters) and camera rotations, and (3) images that are captured on different locations that are
matched to compute relative pose estimates without feature tracking. Many of the state-of-the-art
visual navigation approaches that are based on feature matching use feature tracking to restrict
the search areas for each feature and thereby prevent strong outliers. In our application, feature
tracking is not suitable, as we compute home vectors between arbitrary views from a topological map
and not only along the driven path.

These aspects arise out of the intended use case in an autonomous lawn-mowing task that
we sketch out here. The main task of the robot is to systematically cover a predefined lawn area
aiming for complete coverage with minimal overlap. This approach is built on previous work on visual
navigation for an autonomous cleaning robot [16]. The main difference is the transition from indoor to
outdoor scenarios, which implies several challenges; however, the basic approach is equal. The robot
uses an upward facing camera with a fisheye lens to build a topo-metric map of its environment, which
allows for a systematic covering of the entire area. The map is built anew for each lawn-mowing run
and, thus, only needs to handle changes within the time period of one run. This includes changes
in weather, illumination, and small changes in the environment, but no longterm changes, such as
seasonal variations. One fundamental module for this map building is the computation of home vectors
to previously visited views, which is addressed in this article. Furthermore, we use fisheye images
to detect and describe image features, without a preceding mapping to azimuth-elevation format.
Alongside advantages, e.g., a larger field of view and the separability of rotation and translation, fisheye
images also pose challenges, like smaller and more distant objects or problems with lighting conditions.



Robotics 2020, 9, 85 3 of 22

We ground our approach on a camera as main sensor, which comes at low costs and can be used for
additional tasks of the complete system, like obstacle avoidance or terrain classification. Besides visual
navigation with cameras, global navigation satellite system (GNSS) receivers are alternative sensors for
autonomous systems in outdoor environments. However, GNSS measurements strongly deteriorate
in urban canyons due to signal blockage and reflections, which can result in positioning errors up
to 100 m in dense urban areas [17]. Thus, GNSS based navigation requires sophisticated approaches
in urban areas and they often use additional sensors to correct the measurements (e.g., [17,18]).

Recently, the advances in the context of deep learning led to approaches that produce
learned feature descriptors in contrast to the classical, handcrafted descriptors. We refer to [19] for
a comprehensive and systematic review on the development from handcrafted to learned features
in image matching. However, approaches that are based on deep learning require large datasets
with annotated ground truth values as well as powerful GPUs onboard the autonomous system [20].
Promising results in the context of deep learning based pose regression are, for example, reported by
Kendall and Cipolla in [21]. The current lack of suitable, annotated training data (in our case fisheye
images with ground truth positions) and the still existing deficit in accuracy (see [21]) justify this study
on the use of color information in combination with classical feature detectors.

2. Feature Detection and Description

In outdoor environments, changing illumination conditions as well as cluttered and repetitive
scene parts pose challenges to state-of-the-art feature detectors and descriptors [12,22,23]. In the context
of this paper, we mainly consider environments that resemble typical domestic gardens. These are
especially interesting data sets for research regarding autonomous lawn mowing. In such scenarios,
large parts of the images contain grass, bushes, trees, or other plants. On the level of features,
e.g., leaves that belong to the same or to different trees are difficult to match correctly. Leaves are
non-distinctive regarding grayscale values and typically green; nevertheless, additional information
in the form of small changes in hue and saturation could be useful. Hence, we analyze whether color
information improves the distinctiveness of such kinds of features.

Color information can be incorporated in the feature detection step as well as in the feature
description step. Therefore, we analyze different combinations of color and grayscale methods.
SIFT [9], which works on grayscale images both for detection and description, is one of the most
commonly used feature detectors and descriptors. A variety of color descriptors have been proposed;
van de Sande et al. [2] published an evaluation and overview regarding object and scene recognition.
Such color descriptors are most frequently computed on keypoints that are detected in grayscale
images (e.g., OpponentSIFT [2]). The counterpart to color descriptors are color detectors that use color
information to detect interest points in the image and then describe the keypoint regions by using
only grayscale information. Stöttinger et al. [24] proposed a keypoint detector, which considers scale
invariance based on color information and a close reimplementation adapted to our images is used
in this study. Barata et al. [25] analyzed the use of color both in the detection and description step,
but only in the context of dermoscopic images for computer-aided diagnostics. Here, we analyze one
method from each of the four categories:

1. Grayscale detector and grayscale descriptor: SIFT [9].
2. Grayscale detector and color descriptor: OpponentSIFT [2].
3. Color detector and grayscale descriptor: Sparse color interest points (CIP) [24] .
4. Color detector (3) and color descriptor (2): extended color interest points (ECIP).

2.1. Scale-Invariant Feature Transform (SIFT)

As baseline for our evaluation, we use the widespread scale-invariant feature transform (SIFT)
algorithm [9]. We make use of the implementation provided in the OpenCV library in version 3.4.0 [26].
Most of the parameters are left at the default values (i.e. three layers in each octave, the contrast
threshold to filter out weak features is 0.04, and the edge threshold to filter out edge-like features is 10.0).
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The value of σ for the Gaussian filter of the first octave is reduced to σ = 2/3, which corresponds to
σD = 2/3 for color interest points (see Section 2.3) and it is varied in our experiments. The procedure is
shown in Figure 1 on the left side for an exemplary image. First, the color input image is converted into
a grayscale image by applying the standard conversion GS = 0.3 · R + 0.59 ·G + 0.11 · B. Subsequently,
the standard SIFT algorithm is executed on this single-channel image giving a list of feature descriptors
each of the size 1 × 128.

Figure 1. Visualization of feature detection and description approaches: (a) scale-invariant feature
transform (SIFT) (b) OpponentSIFT.

2.2. OpponentSIFT

OpponentSIFT [2] extends the description of SIFT features with color information. van de Sande et al.,
showed that SIFT descriptors are not invariant to light color changes and propose several color
versions for SIFT that have different invariance properties. The performance of the descriptors is
domain-specific, but OpponentSIFT is recommended if no prior knowledge of the data set is available.
OpponentSIFT descriptors are invariant to light intensity changes and shifts.

The input color image is converted into a grayscale image as for SIFT, as shown on the right-hand
side of Figure 1. For the detection of features, the SIFT algorithm is applied to this grayscale image.
Aside from that, the input color image is converted to the opponent color space (OCS), defined in [27] as

OCS =

 o1

o2

o3

 =


R−G√

2
R+G−2B√

6
R+G+B√

3

 (1)

Subsequently, the detected SIFT features are described in all three channels of the opponent
color space, thus including color information for channels o1 and o2, as well as intensity information
in channel o3. The three descriptors of size 1× 128 each are concatenated into a single color descriptor
of size 1× 384. We implemented OpponentSIFT within the OpenCV-framework (built on the available
SIFT implementation) with the same parameter values as given above for SIFT.
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2.3. Sparse Color Interest Points (CIP)

In this section, we recall the selected approach to incorporate color information in the feature
detection process, which is called “Sparse color interest points” (CIP), as proposed by Stöttinger et al. [24].
The main idea of CIP is to extend a multichannel Harris corner detector [28] by adding a scale
selection method in order to obtain scale-invariant color features. We reimplemented this procedure
to consider the projection of a hemisphere to a circular region on the sensor by the used fisheye lens.
The part of the image frame outside of the circular projection area is discarded for all computations.
We use the so-called light-invariant points as color interest points [24]. The basis of this method is
the shadow-shading-specular quasi-invariant (SSSQI) derived in [27] to enable invariance regarding
illumination effects, like shadows and highlights. Basically, this photometric invariance is achieved by
appropriate projections in the color space, which decorrelate specular, material, and shadow-shading
directions of the color derivatives. On the two channels of the SSSQI, a multi-channel, multi-scale
Harris detector is computed.

We briefly outline the approach here that is based on the illustration presented in Figure 2.
Details of our implementation and the equations are given in the Appendix A. The method combines
two processing branches: (a) interest point detection and (b) scale selection. In the first phase, the use
of color information in a Harris detector enables the detection of discriminative and repeatable key
points in natural outdoor scenes. The incorporation of saliency in the scale selection step of the second
phase provides features that are robust to scale-changes [24].

Figure 2. Computation of color interest points (CIP). (a) First phase: the computation of a Harris energy
(HE) scale stack for a color input image is based on two color components c1 and c2, for which spatial
color gradients are computed in x and y directions (c1,x, c1,y, c2,x, and c2,y). The HE-stack with scale
parameter σ is used to detect a set of interest points {(x, y)} by a maximum search. (b) Second phase:
the selection of the characteristic scale s for the interest points detected in the first phase is based on
a saliency image Î. The Laplacian of Gaussian operator with the scale parameter σ is applied to built
the LoG-stack from which the characteristic scale s for each feature is selected.

A multi-channel Harris corner detector is computed on the color image for different scale levels
for the detection of interest points. Spatial derivatives in x- and y-directions of the RGB-channels
of the input image (Rx, Ry, Gx, Gy, Bx, By) are calculated and then transformed to the HSI-space to
compute the SSSQI. Based on the two channels c1 and c2 of the SSSQI, a color-based second-moment
matrix (also known as structure tensor) is computed for different scale factors. A second-moment
matrix describes the distributions of the gradients in a given region and it is used here to compute
the Harris energy (HE) as corner measure for the interest point detection. The matrices of HE for
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different scale levels are combined to form a scale space. The intensity channel is discarded for
the computation of this HE scale stack. This approach is illustrated in Figure 2a for an exemplary
image. The derivatives are visualized as absolute values and normalized to [0, 255]; small values are
white, large values are black. The scale stacks of c1,x, c1,y, c2,x, and c2,y comprise the color derivatives
in x- and y-direction of the SSSQI on multiple scale levels. Derivatives in the x-direction (c1,x, c2,x) result
in high values for vertical edges in the image, whereas derivatives in the y-direction (c1,y, c2,y) result
in high values for the horizontal edges. For the example image, this effect is difficult to distinguish
visually, because most of the edges are not exactly aligned with the x- or y-direction, but it is best
noticeable at the skyline regions. In the HE-stack, local maxima are searched within a neighborhood
of 26 elements, which include eight immediate neighbors within the scale level and nine neighbors
from each of the two adjacent scale levels. From all found local maxima, the maxima with the largest
HE-value are selected up to a given number of required interest points.

In order to select a characteristic scale for the interest points, a single-channel saliency image Î is
computed and used for a Laplacian-of-Gaussian (LoG) on different scales, as in [24]. Stöttinger et al. [24]
motivated the use of the saliency image for scale selection instead of the HE-stack by the incorporation
of a global saliency measure in the process. Figure 2b visualizes the scale selection procedure.
The saliency image Î is built on the representation of the input image in HSI color space and it
is related to the concept of eigenimages [29]. For potential interest points found in the HE-stack,
the characteristic scale level is selected as the scale level lmax, which maximizes the LoG with respect
to scale. The radius r of the corresponding size for a subsequent descriptor is computed, depending on
lmax and the initial σD for the Gaussian smoothing kernel of the first scale level.

The main parameters for CIP are the initial standard deviation of the Gaussian kernel for the Harris
scale stack σD, the number of scale levels l, the relation between differentiation scale σD, and integration
scale σI . We set these parameters to σD = 2/3, l = 10, and σI = 3σD. Additional parameters for
the implementation and related equations are given in the Appendix A.

Based on the positions of the interest points and their corresponding sizes, a standard SIFT
descriptor [9] is computed on the grayscale image, as illustrated in Figure 3a. For the computation of
the SIFT descriptor, we use the implementation that is available in the OpenCV library with the same
parameters as above for SIFT (see Section 2.1). For CIP, the color information is used to detect interest
points, but it is discarded for the computation of the descriptors.

Figure 3. Visualization of feature detections: (a) color interest points (CIP); (b) extended color interest
points (ECIP).
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2.4. Extended Color Interest Points (ECIP)

As an extension, we use CIP, as described above, to find salient keypoints, but additionally
use color information for the description step. For this purpose, we combine CIP (Section 2.3) for
the detection with OpponentSIFT (Section 2.2) for the description. To the best of our knowledge,
this combination has not been analyzed and published before, but it seems to be a natural extension.
In Figure 3b, the resulting combined method is shown: the input color image is used to compute
the positions and scales of keypoints while using CIP and, for these keypoints, OpponentSIFT is
applied to compute color descriptors. We call this approach “Extended color interest points” (ECIP),
as color information is relevant for both steps: detection and description.

2.5. Feature Matching

To match the features between two images, we use a simple knn-matcher using the L2-norm and
select the best-matching feature candidate. Additionally, we compute the distance ratio that is based
on [9] between the best and second-best match, but without rejecting matches with low distance ratios.
We use the distance ratio values to sort the matches with regard to their reliability.

3. Evaluation

We performed different experiments to study the effect of color information on feature detection,
description, and matching. To evaluate the results, we motivate and describe the applied evaluation
methods here, followed by a description of the underlying datasets and the experimental setup.

3.1. Evaluation Criteria

Many different evaluation criteria have been proposed in the context of feature matching.
Widely used are the receiver operating characteristic (ROC) curves and precision-recall plots. A first
investigation of our data showed strongly imbalanced data sets, i.e., the number of negative matches
(true negatives + false positives) is much larger than the number of positive matches (true positives +
false negatives). This is caused by the type of the analyzed data sets that comprise images in outdoor
scenes at different positions and under varying illumination conditions. There exist many features
in one image that are not visible in the other image due to occlusions and the restricted field of view.
According to [30], the ROC curves can be deceptive on imbalanced data sets and, thus, are not used
here. The recommended precision–recall plots are also used in feature matching (e.g., [1,31]), where
recall is computed as

REC =
# correct matches detected

# keypoints possible to detect
. (2)

In this equation, the number of keypoints possible to detect is difficult to compute, as it requires
knowledge of the visibility of features in the matched images. However, by applying ground truth
information, we are only able to recognize features that are no longer in the field of view, but we cannot
detect obscured features due to occlusions. This fact would distort the recall value, as the number of
obscured features varies throughout the data sets. Similar problems exist for other frequently used
evaluation criteria, like repeatability ([32,33]), when applied to our data sets.

Therefore, we focus on a criterion relevant for a subsequent RANSAC step [8] for visual navigation,
i.e., our use case. In a RANSAC method, the relevant parameter is the inlier ratio w, which is defined as
the fraction of the number of inliers (i.e. data points fitting to the data model) in the data set divided by
the total number of points in the data set. The inlier ratio directly influences the number of RANSAC
iterations k needed in order to ensure with probability z that at least one outlier-free set is selected.
For a model that is based on n points, the number of iterations is computed, as in [8]:

k =
log (1− z)

log (1− wn)
with w =

# inliers
# points in the data set

. (3)
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Advanced methods that are based on RANSAC use guided sampling schemes to improve
the accuracy and speed (e.g., PROSAC [34]). In the context of a guided sampling, not only the inlier
ratio, but also the distribution of inliers within the data set are relevant. In many applications, a priori
knowledge about the distribution of inliers is available, but discarded for a subsequent RANSAC step.
Concerning feature matching, the matching process provides information on the reliability of each
match by analyzing the distance measure between keypoints. This enables the sorting of the samples
according to their reliability and, thus, promising candidates can be preferred in a guided sampling
scheme. A sorted set of samples provides the basis of the so-called inlier frequency curve defined
in [35], as

f (n) =
1
n

n

∑
k=1

inlier(k), (4)

where inlier(k) is an evaluation function that returns 1 if the k-th tentative correspondence is an inlier,
and 0 otherwise. To compute f (n), the matches are first sorted according to their ratio scores between
the closest and next closest match candidates. Lowe [9] introduced this distance ratio to discard
ambiguous matches and it is used here to rank the matches. The output of inlier(k) has to be
computed based on ground truth values and a decision threshold on the error tolerated for inliers.

In this paper, the basic criterion to label a match as an inlier is the geodesic reprojection error on
a sphere [36] which is computed as

dgi = arccos (bi · bri) (5)

where bi is a measured bearing vector with unit length in one camera image and bri is the normalized
reprojection of the triangulated world point P from corresponding bearing vectors in both images.
Geometrically, dgi describes the arc length of the closest distance between two points on a unit sphere.
For the triangulation of the three-dimensional world point, we use the mid-point method on calibrated
camera rays. It finds the shortest line connecting the two rays and uses the mid-point of this segment
as triangulated world point. We refer to [37] for a comprehensive review on triangulation methods and
detailed descriptions. All of the computations for the evaluation are performed in world coordinates
that are available based on the ground truth information saved for the datasets. Figure 4 shows
the computation of the angular error.

The triangulated world point is computed by minimizing the squared distance of the two
corresponding rays in both cameras:

‖B λ− t12‖2 → min (6)

Using the Moore-Penrose pseudoinverse B+ = (BT B)−1BT , λ is found as λ = B+ t12. Here,
B = (b1| − b2) is a matrix built of the bearing vectors b1 and b2 for both cameras respectively
in world coordinates. The translation between camera positions Q1 and Q2 is t12 = Q2 − Q1.
With λ = (λ1, λ2)

T , the triangulated world point P is computed as P = (Q1 + λ1b1 + Q2 + λ2b2)/2.
The reprojections to the cameras in world coordinates are given as br1 = (P − Q1)/‖P − Q1‖ for
camera 1 and as br2 = (P−Q2)/‖P−Q2‖ for camera 2.
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Figure 4. Schematic representation of the angular error used as inlier criterion. Feature vectors (b1, b2)
in the images taken at camera positions Q1 and Q2 are used to triangulate a world point of the features
(midpoint P) and this world point is backprojected to the camera images to compute reprojection errors.
br1 and br2 are the reprojections of the world point P to the cameras and used to compute the geodesic
reprojection errors dg1 and dg2 . The positions and orientations of the cameras in a world coordinate
system are defined by the translation vector t12 and rotation matrices.

Following this approach for evaluation, we separately handle different special cases to improve
the overall evaluation accuracy. The approach fails for bearing vectors that are parallel or antiparallel.
For approximately parallel or antiparallel rays, small measurement errors or noise have a large
effect. Therefore, we check for parallelism while using the constraint |b1 · b2| ∈ [1− tP, 1], where
b1 and b2 are the bearing vectors and tP = 0.001. If a pair of matched bearing vectors fulfills this
constraint, then it is excluded from the evaluation. After triangulation of the world point, we check
the orientation of the reprojections, which is equivalent to the cheirality constraint for perspective
cameras. In the perspective camera case, the cheirality constraint checks that the reprojected points
lie in front of the camera. For bearing vectors b1 and b2 with reprojections br1 and br2, we use
a generalized version and check whether b1 · br1 > 0 and b2 · br2 > 0 and classify the match as false,
if one of the two conditions is not fulfilled [36].

The main condition that we use to classify a match as correct based on unit vectors bi and bri is

err < errthresh (7)

with err = dg1 + dg2 = arccos (b1 · br1) + arccos (b2 · br2) (8)

where err combines the reprojection errors in both images and errthresh is set to 3°.
This condition also holds for features that lie within 3° to the epipolar curve, which is

the equivalent to the epipolar line in perspective camera settings. These matches fulfill the epipolar
constraint but can nevertheless be incorrectly matched. An example is shown in Figure 5. A part
of these false matches can be detected by considering the assigned scale of these features from
the detection in scale space and comparing the scales to the distances to the triangulated world point.
This is related to the approach described in [38]. For the size of the feature regions s1 and s2 in image 1
and 2, respectively, and the corresponding distances λ1 and λ2, we build the relations r1 = λ1 − λ2

and r2 = s1 − s2 and only accept features that fulfill the following condition:

sign(r1) == sign(r2) (9)

This means that the scales of the features are required to be consistent with the distances to
the triangulated world point, e.g., if the scale of feature A in image 1 is smaller than the scale of
feature B in image 2, then the distance of the world point from camera 1 is required to be smaller than
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the distance of the world point from camera 2 and vice versa. We check this condition by evaluating
the signs of the relations defined above. If the size of the features is equal (i.e. r2 = 0), then we accept
any relationship of the corresponding distances.

Figure 5. Example of fulfilled epipolar constraint for wrongly matched features. The feature in the left
image is not matched to the same feature in the right image. From the left camera position to the right
camera position, a movement in the direction of the black line was executed. The blue line indicates
a feature matching between the left and right features. Under the given movement vector, the feature
in the left image moves along the epipolar curve of which a part is plotted in orange in the right camera
image. As a consequence, the condition err < errthresh is fulfilled (here err ≈ 2°).

3.2. Datasets and Experimental Setup

The analysis of the inlier frequency curve is based on the ground-truth values available for the used
datasets. The known positions and orientations of the camera images, together with the calibration
parameters, enable the computation of the real transformations (translation and rotation) between
two images and, thus, allow the analysis of the performance of the presented methods, as described
in Section 3.1. For the computation of the inlier frequency curves, we build all possible image pairs
within each dataset. For each image pair, we compute the inlier-frequency values for each method and
then calculate the mean over all image pairs in one dataset. Additionally, we average over the mean
values of all datasets.

For each keypoint detection method, we limit the number of detected keypoints to 1000, which is
not always reached (e.g., due to low contrast regions). Additionally, for each method, we only consider
the number of best matches that are available throughout all image pairs to allow for useful averaging.
The differences in the number of available matches are mainly caused by the parallelism constraint
that is described in Section 3.1.

For detailed information on the datasets, we refer to [39]. Summing up, we include four datasets
of outdoor fisheye images and ground truth information. Two datasets are captured in a typical garden
environment (Garden 1 and 2), one dataset is from a small parklike area (Finnbahn) and the fourth
dataset is in the vicinity of the main building at Bielefeld University. The datasets include different
illumination conditions, varying cloud coverage, and differing distances to visible features.

For the analysis of the inlier frequency curves, we used different parameter sets in the experiments.
We tested varying values for the strength of the initial Gaussian filtering σD = {1/3, 2/3, 1} and different
numbers of scale levels l = {5, 10, 15}. We also performed experiments with masked sky regions to
analyze the effect of misleading features in the sky region of the images. This way, keypoints that
belong to clouds are neither detected nor matched.
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4. Results

In this section, we present the results from experiments using the different available datasets. We
show the results within and across datasets as well as exemplary results of single images, as the datasets
bear particular challenges due to varying environments.

In Figure 6, two exemplary images from the dataset Finnbahn are shown with the most relevant
1000 keypoints detected by the different methods. On the left, keypoint positions from the grayscale
method SIFT are plotted (OpponentSIFT uses the same keypoint positions). In contrast, the right
plot shows the most relevant 1000 keypoints that were detected by CIP (also used for ECIP) with
the detection done based on color information. The distribution of the keypoints show remarkable
difference between both methods. When being limited to grayscale information, most features are
detected on the transition from ground to sky, as this is the most prominent change in grayscale.
Features within the ground region are less frequently detected and features in the cloudy sky are very
rare. Conversely, CIP, which uses color information for the keypoint detection, detects features that are
more uniformly distributed over the whole image. Interest points are selected within the ground region,
as well as in the sky region; hence, they are not so concentrated on the skyline between ground and sky.

(a) SIFT and OpponentSIFT (b) CIP and ECIP

Figure 6. Different keypoint selections shown on one image: The most relevant 1000 key points are
shown. (a) Keypoints based on grayscale information (used for SIFT and OpponentSIFT) (b) Keypoints
based on color information (used for CIP and ECIP).

Exemplary images are shown in Figure 7 for the feature matching step. Here, the same image pair
from the dataset Finnbahn is shown with the best 50 matches plotted for all four methods. The number
of shown matches is restricted to 50 for this visualization. The color of the matches indicates the rank
of each match, with darker colors corresponding to higher ranks. This ranking is computed by sorting
the matches by their distance ratios. From top to bottom, the use of color information increases.
The images are similarly oriented, such that most of the correct feature matches should be aligned
horizontally. It can be seen that the number of correct matches increases with an increasing use of color
information from top to bottom. For SIFT and OpponentSIFT high ranked as well as lower ranked
matches show mismatches. For CIP and ECIP, the number of mismatches is smaller and, for ECIP,
the mismatches come along with lower rankings.
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Figure 7. Examples of feature matches with different methods: From top to bottom the use of color
information increases. For each method the best 50 matches, regarding their distance ratios, are shown.
The color of the lines encodes the ranking of the matches, which is computed by sorting the matches by
their distance ratios. The darker the color the higher ranked is the feature match.
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In Figure 8, the inlier frequency curves for the analyzed methods are shown for each dataset
(σD = 2/3, l = 10). On the horizontal axis, the number of tentative matches are plotted, which
are the found matches sorted with respect to the distance ratios. As described above, the number
of tentative matches are clipped to the minimum available number of matches in each image pair
within the datasets and thus vary across the different methods and datasets. As inlier frequencies are
plotted on the vertical axis, higher values imply better performance. For all of the datasets, the ECIP
method gives the highest values of inlier frequencies and SIFT yields the worst results. Overall,
the increase in color information from SIFT to ECIP is reflected by a better performance of the methods.
The largest improvement is found between OpponentSIFT and CIP. The results only reveal a minor
impact of masking sky regions on the inlier frequency values.

These results are also confirmed in Figure 9, which shows the inlier frequency curves from Figure 8
averaged over all four datasets. Summing up, the experiments show minor differences between
grayscale or color descriptors. However, color detectors improve the performance considerably when
compared to grayscale detectors. For color detectors, additional color information for the description
step further improves the results. Masking of the sky regions to eliminate misleading features does not
lead to markedly different results.
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Figure 8. Inlier frequency curves for different datasets and different methods. For each dataset,
the dashed lines show the results for masked sky regions, whereas the solid lines demonstrate the results
based on the original input images.
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Figure 9. Inlier frequencies for original input images and masked sky regions as in Figure 8,
but averaged over all datasets.

Figure 10 shows the effect of varying σD, which controls the strength of the Gaussian filtering.
Here, strong differences across the datasets are visible. In the datasets Finnbahn and University,
the smaller value of σD markedly improves the results for CIP and ECIP. In the dataset Garden 1, this
effect is only apparent for small numbers of matches (< 300) and, in the dataset Garden 2, the inlier
frequencies decrease, except for very small numbers of matches (< 50). For SIFT and OpponentSIFT,
the effects are not so distinct, except for the dataset University, in which the use of σD = 1/3 improves
the performance for small numbers of matches.

In Figure 11a, the results for σD = 2/3 and σD = 1/3 averaged over all datasets are plotted. For CIP
and ECIP, the performance increases for smaller σD, whereas only minor differences are visible for SIFT
and OpponentSIFT. The results for a higher value (σD = 1.0) are shown in Figure 11b, averaged over
all the datasets. The plots for the individual datasets are omitted here, as they all show very similar
results. It is visible that the increase of σD from 2/3 to 1.0 leads to worse results for each method.

Another main parameter for CIP and ECIP is the number of layers used to compute the scale
stacks. In Figure 12, the inlier frequency curves for the use of five and 10 layers are plotted (σD is set
to 1⁄3). The results for SIFT and OpponentSIFT do not change, as the number of layers is differently
defined and used in the OpenCV implementations and is therefore not varied within these experiments.
The datasets Garden 1 and Garden 2 lead to similar results as the use of less layers (l = 5) decreases
the inlier frequencies. For the dataset Finnbahn, increased inlier frequency values appear for small
number of matches, but, for higher number of matches. the results also get worse. In contrast are
the results for the dataset University, in which l = 5 results in slightly better values.

Averaged over all the datasets, we obtain improved results for approximately the first 100 matches,
and worse results for higher amounts (see Figure 13a). The use of more layers (l = 15) leads to lower
inlier frequency values, regardless of the number of matches (Figure 13b).
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Figure 10. Inlier frequency curves for different datasets and different methods. For each dataset,
the dashed lines show the results for σD = 1/3, whereas the solid lines demonstrate the results for
σD = 2/3.
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(a) σD = 2/3 and σD = 1/3

0 100 200 300 400 500

Number of tentative matches

0

0.1

0.2

0.3

0.4

0.5

In
lie

r 
fr

e
q

u
e

n
c
y

(b) σD = 2/3 and σD = 1.0
Figure 11. Inlier frequencies for varying σD averaged over all datasets.
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Figure 12. Inlier frequencies for different number of layers used in CIP and ECIP (l = 5 and l = 10).
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(b) l = 10 and l = 15
Figure 13. Inlier frequencies for varying number of layers l averaged over all datasets.

Figure 14 shows a compact version in order to obtain an overview of the different results. For this,
the inlier frequency value at x = 100 is selected for each method and each parameter set, i.e., the value
for the best 100 matches averaged over all datasets is extracted. The systematic labeling encodes
the different parameter sets, where the token L is followed by the number of layers used and the token
s is followed by the initial σD. Throughout all of the tested methods, ECIP with 10 layers and σD = 1/3

performs best. For each parameter combination, the ordering of the methods is the same, with SIFT
leading to the lowest and ECIP resulting in the highest inlier frequencies. Equally high values for ECIP
are reached with just five layers being used, which decreases the computational costs.
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Figure 14. Inlier frequencies for different parameter sets. The inlier-frequency values at n=100 are
shown, i.e., the best 100 matches are considered.

5. Discussion

The main result of the experiments is the improvement of performance going along with additional
use of color information. The incorporation of color information leads to higher inlier-frequency values
in all of the analyzed outdoor datasets. The best results are obtained if the color information is used
in both the detection and description process. This increases the complexity of the feature detection and
description, but it could make a subsequent RANSAC step feasible by providing acceptable inlier ratios
and, thus, limiting the number of iterations needed. For our use case of solving relative-pose problems
without feature tracking, the inlier ratio of the best analyzed method is still very low. However,
the inclusion of color information leads to a strong improvement.

Regarding the masking of sky regions, our results only show minor differences. Even though
the color detector apparently selects more interest points in the sky region (see Figure 6), the overall
matching performance is higher yet. If more false matches occur in sky regions using color detectors,
they do not outweigh the overall better matching performance. Figure 7 exemplarily shows that
features in the sky region do barely appear within the best 50 matches. Therefore, mismatches
in the sky (e.g., due to clouds) do not seem to cause a major problem for outdoor scenarios. This effect
is different to the results of our previous study on sky masking in the context of the holistic MinWarping
method [39], in which false information in the sky region markedly deteriorates the homing results.
Moreover, this result is possibly limited to our datasets and specific use case which includes changes
within a few hours, but not across multiple days or even seasons. In the context of stronger changes
of illumination or appearance, e.g., across seasons, the performance of features in different regions
of the images should be studied further. Various algorithms exist that use UV sensors to remove
information in the sky region and focus on the skyline to enable robust visual navigation ([40,41]).
In [42], Chen et al., propose a multi-scale attention learning system that supports the removal of sky
regions by creating attention masks that actually filter out sky regions and focus on the ground regions
of the images as salient regions.

The results concerning the initial σD suggest a smaller value for our datasets than that proposed
in the original publications, which use σD = 1.0 ([24]). We reached the best results for σD = 1/3,
but the results show large differences among the datasets. In our datasets, most of the images
contain small features representing objects far away from the camera accompanied by predominantly
small baselines between camera positions. However, the datasets also comprise images with large
features close to the camera and relatively large baselines due to our problem definition in Section 1.
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The choice of σD = 1/3 turns out to be appropriate for our datasets, but has to be chosen considering
the characteristic of the images used. Similar relationships exist for the suitable number of layers
which also depends on the underlying dataset. In addition to l = 10 proposed in [24], we tested l = 5
and l = 15. On average l = 5 shows comparable results to l = 10, whereas l = 15 leads to worse
results. Besides the dependency on the dataset, the effect of l depends on the number of matches.
For smaller number of matches (approximately less than 100), on average l = 5 outperforms l = 10,
but for a higher number of matches we see the opposite effect. Thus, the number of matches needed
in the application should also be considered in the choice of l. However, better results for less layers
(l = 5) are only reached in the dataset University, in which most visible objects are far away from
the camera and are subject to only small scale changes, as the baseline is mainly short in relation to
the distances to the objects. For the other three datasets, which include closer objects, l = 10 leads to
better results. Thus, the choice of l is markedly dependent on the environment and a trade-off between
performance and computational complexity.

6. Conclusions

Based on our experiments, we conclude that color information is a major aspect for improving
the matching performance in outdoor environments. The additional information contained in color
information can be used to reach inlier ratios that make subsequent navigation steps feasible. Further
work is needed to analyze this effect in the context of relative-pose problems in combination with
RANSAC. The increased computational complexity in the feature-detection and feature-description
process has to be studied regarding the implications for subsequent RANSAC steps, as higher inlier
ratios decrease the number of iterations needed in RANSAC and, thus, reduce the computational effort
of this step.

Based on the presented results, using grayscale images only, the search space has to be limited,
e.g., by tracking of features over time, which is not suitable for our application. However, the performed
experiments show promising results for color detectors and descriptors. We focused on the one
color method, but other grayscale detectors and descriptors could also benefit from extension to
color information. A great number of grayscale detectors and descriptors exist with characteristics
suitable for different datasets. An appropriate grayscale method could be used as a basis for a color
extension. More research is needed in this context, before a particular color detector and descriptor
can be recommended.

Concerning the use of fisheye images, particularly methods that consider the strong radial
distortions are promising candidates. For example, Lourenco et al. [43] proposed modifications to SIFT
that make it resilient to radial distortions. This method, called sRD-SIFT, could be used as a basis for
a color detector and descriptor for outdoor applications with fisheye images.
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Appendix A. Implementation Details of CIP

In this appendix, we describe our implementation of CIP in detail (see Section 2.3), which follows
our understanding of [24]. To compute the scale stack of Harris energies, spatial first-order derivatives
in x- and y-directions of the RGB-channels of the input image (Rx, Ry, Gx, Gy, Bx, By) are computed
which are then transformed to the HSI-space. The derivatives in the HSI-space are computed from
the individual derivatives in RGB-space using the equation from [27]:
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∂

∂x
HSIscaled =

 S · Hx

Sx

Ix

 =


R(Bx−Gx)+G(Rx−Bx)+B(Gx−Rx)√

2(R2+G2+B2−RG−RB−GB)
R(2Rx−Gx−Bx)+G(2Gx−Rx−Bx)+B(2Bx−Rx−Gx)√

6(R2+G2+B2−RG−RB−GB)
Rx+Gx+Bx√

3

 . (A1)

Equation (A1) gives the spatial derivatives in the x-direction of the channels in the HSI-space with
additional scaling of the derivative Hx to account for the instabilities at the black-white axis at small
values for saturation (for details see [44]). The derivatives in y-direction are computed analogously.

The first two components from Equation (A1), (S · Hx, Sx)T = (c1,x, c2,x)
T and (S · Hy, Sy)T =

(c1,y, c2,y)
T , are the so-called shadow-shading-specular quasi-invariants and are used to compute

the second-moment matrix M with different scale factors:

M(x, σI , σD) = (A2){
σ2

D g(σI) ∗
[

c2
1,x(σD) + c2

2,x(σD) c1,x(σD)c1,y(σD) + c2,x(σD)c2,y(σD)

c1,x(σD)c1,y(σD) + c2,x(σD)c2,y(σD) c2
1,y(σD) + c2

2,y(σD)

]}
(x)

where x is the pixel location in the image, g is a Gaussian filter with the given standard deviation,
σD is the differentiation scale, and σI is the integration scale with σD = σI/3.0 as in [24]. Here,
∗ denotes the convolution operator. From M(x, σI , σD), the Harris energy HE for different scales can
be computed by

HE(x, σI , σD) = det(M(x, σI , σD))− κ · trace2 (M(x, σI , σD)) (A3)

We use κ = 0.04 as mentioned in [45]. Harris energy is computed for different scale levels s using
σI(s) = tsσI , with s = 1, 2, . . . , l and the factor t = 1.2.

To select a characteristic scale of a feature, the single-channel saliency image Î is computed and
used for a Laplacian-of-Gaussian (LoG) on different scales as in [24]. The saliency image is built
on the representation of the input image in HSI color space which is based on the opponent color space
(Equation (1) in the main text):

HSI =

 φ1
φ2
φ3

 =


atan

(
o1
o2

)√
o2

1 + o2
2

o3

 (A4)

As a preprocessing step, we shift the HSI channels separately to a mean of zero and normalize
each channel by the standard deviation of the channel to get a normalized input matrix:

HSIn =

 Hn

Sn

In

 (A5)

where Hn is computed as

Hn =
H −mean(H)

stddev(H) .
(A6)

and Sn and In are computed in the same way. As we use fisheye images with pixels outside of the field
of view set to 0, we exclude these pixels from the computations. From HSIn, the covariance matrix Q
is build and the eigenvectors ei of Q are calculated using singular-value decomposition. The saliency
image Î is the result of a scalar product of each three-dimensional pixel value at pixel index x in HSIn

space with the eigenvector e1 which has the highest eigenvalue:

Î(x) = HSIn(x) · e1. (A7)
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Î forms the basis for the computation of a modified LoG that additionally applies a circularly symmetric
raised cosine kernel to achieve a stronger robustness to noise. This kernel is defined for each location
(xe, ye) as

ΓσD =
1 + cos

(
π

σD

√
x2

e + y2
e

)
3 .

(A8)

The modified LoG is then calculated as

Λx,σD = {[σ2
D|Lxx(x, σD) + Lyy(x, σD)|] ∗ ΓσD}(x) (A9)

where Lxx(x, σD) = ∂2 Î
∂x2 ∗ g(σD) and Lyy(x, σD) = ∂2 Î

∂y2 ∗ g(σD) with ∗ representing convolution and
the Gaussian kernel g(σD) with standard deviation σD. To compute the scale space of LoG, the same
parameters as for the Harris energy scale space are used.

In the last step, the scale stack of Harris energies and the scale stack of the modified LoG are used
to select interest points with their characteristic scales. In our implementation, potential interest points
are searched in the Harris energy scale space as local maxima with respect to both scale and space
which results in a search within 26 nearest neighbors (eight spatial neighbors and two adjacent scale
levels). For these potential interest points, the characteristic scale level is selected as the scale level lmax

which maximizes the modified LoG with respect to scale. If more than one local maximum is found,
the largest scale level is chosen, and if no local maximum is found, the interest point is discarded.
The radius r of the corresponding size for a subsequent SIFT descriptor is computed as

r = 3tlmax σD. (A10)

Based on the positions of the interest points and their corresponding sizes, a standard SIFT
descriptor [9] is computed on a grayscale image which is built by applying the standard conversion
GS = 0.3 ·R+ 0.59 ·G+ 0.11 · B. For the computation of the SIFT descriptor, we use the implementation
available in the openCV library.
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