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Abstract: Road semantic segmentation is unique and difficult. Road extraction from remote sensing
imagery often produce fragmented road segments leading to road network disconnection due to the
occlusion of trees, buildings, shadows, cloud, etc. In this paper, we propose a novel fusion network
(FuNet) with fusion of remote sensing imagery and location data, which plays an important role of
location data in road connectivity reasoning. A universal iteration reinforcement (IteR) module is
embedded into FuNet to enhance the ability of network learning. We designed the IteR formula to
repeatedly integrate original information and prediction information and designed the reinforcement
loss function to control the accuracy of road prediction output. Another contribution of this paper
is the use of histogram equalization data pre-processing to enhance image contrast and improve
the accuracy by nearly 1%. We take the excellent D-LinkNet as the backbone network, designing
experiments based on the open dataset. The experiment result shows that our method improves
over the compared advanced road extraction methods, which not only increases the accuracy of road
extraction, but also improves the road topological connectivity.

Keywords: road extraction; road connectivity; remote sensing image; location data; data augmenta-
tion; data post-processing; deep convolutional neural network

1. Introduction

Road extraction is widely used in many urban applications such as road map updating,
geographic information updating, car navigations, geometric correction of urban remote
sensing image, etc. [1–3]. Road region segmentation based on remote sensing images [4]
has its unique and difficult characteristics, which are manifested in Figure 1: (1) The road
is long and narrow, although it occupies a small proportion of the whole image, and often
covers the whole image; (2) the topological connectivity relationship is complex, especially
in the road intersection; (3) the geometric features are similar to the water system and
railway; (4) the texture features are easy to be confused with the surrounding background
environment; (5) the extracted roads are not connected due to the occlusion of trees,
shadows, buildings, etc. These characteristics above show the differences between road
and non-road features, which makes the challenge for road extraction by using the current
popular semantic segmentation methods to some extent.
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Figure 1. Uniqueness and difficulty of road extraction based on remote sensing image. The first row is the original test 
image, and the second row is the prediction output. Red, Green, and Blue indicates TP, FN, and FP (see Section 4.3 for 
definitions). (a–e) indicates road’s unique and difficult features, which are correspond to the description above (1)~(5). 

Recently, various current popular semantic segmentation methods have been pub-
lished in succession. Fully convolutional networks (FCN) [5] is the first model for En-
coder-Decoder supervised learning and pre-training, and it cannot fully capture contex-
tual semantic relationship due to loss of spatial information via using pooling. As a result, 
researchers proposed efficient multi-scale contextual semantic fusion modules, such as 
Deeplab’s dilated convolution [6–8], pyramid scene parsing network’s (PSPNet’s) pyra-
mid pooling module [9], and encoder-decoder networks for effective fusion of low-level 
and high-level features at different resolutions, such as U-Net [10], LinkNet [11], and D-
LinkNet [3]. In particular, D-LinkNet, as a typical road extraction network, has a good 
lightweight effect. Of course, there is a shortage of local information loss due to the use of 
dilated convolution. At present, the emerging attention mechanism [12–14] for global in-
formation learning has also achieved success in the field of semantic segmentation, such 
as Non-local [15], PSANet [16], A2Net [17], EMANet [18], and HsgNet [19]. Graph convo-
lution networks (GCN) [20] are also brought into focus because of its strong reasoning 
learning ability. However, it is still difficult to apply the above method to the extraction 
task of the complex and occluded roads with features similar to background, especially in 
the improvement of road connectivity. 

Constantly, with the development of location big data, some scholars infer the distri-
bution of road network by tracking the GPS trajectory data of vehicles to extract the road 
network [21–25]. In [26], researchers used GPS data as input data to improve the road 
disconnection caused by occlusion, texture similarity, and geometric feature similarity. 
Apparently, the road connectivity can be improved by introducing multivariate location 
data, which provides a direction for the re-creation of this paper. However, another prob-
lem found in the research process is also worthy of attention and optimization. During 
the shooting process of remote sensing image, the image distribution will be uneven, and 
the contrast will be reduced due to the occlusion of cloud and the illumination of light, 
which therefore leads to the difficulty in pixel classification [27–30]. Therefore, the en-
hancement of data pre-processing is another focus of this paper. 

In this paper, we aim to increase the accuracy of road extraction and improve the 
road connectivity via improving the above problems. We propose to improve the perfor-

Figure 1. Uniqueness and difficulty of road extraction based on remote sensing image. The first row is the original test
image, and the second row is the prediction output. Red, Green, and Blue indicates TP, FN, and FP (see Section 4.3 for
definitions). (a–e) indicates road’s unique and difficult features, which are correspond to the description above (1)~(5).

Recently, various current popular semantic segmentation methods have been pub-
lished in succession. Fully convolutional networks (FCN) [5] is the first model for Encoder-
Decoder supervised learning and pre-training, and it cannot fully capture contextual
semantic relationship due to loss of spatial information via using pooling. As a result,
researchers proposed efficient multi-scale contextual semantic fusion modules, such as
Deeplab’s dilated convolution [6–8], pyramid scene parsing network’s (PSPNet’s) pyra-
mid pooling module [9], and encoder-decoder networks for effective fusion of low-level
and high-level features at different resolutions, such as U-Net [10], LinkNet [11], and D-
LinkNet [3]. In particular, D-LinkNet, as a typical road extraction network, has a good
lightweight effect. Of course, there is a shortage of local information loss due to the use of
dilated convolution. At present, the emerging attention mechanism [12–14] for global in-
formation learning has also achieved success in the field of semantic segmentation, such as
Non-local [15], PSANet [16], A2Net [17], EMANet [18], and HsgNet [19]. Graph convo-
lution networks (GCN) [20] are also brought into focus because of its strong reasoning
learning ability. However, it is still difficult to apply the above method to the extraction
task of the complex and occluded roads with features similar to background, especially in
the improvement of road connectivity.

Constantly, with the development of location big data, some scholars infer the dis-
tribution of road network by tracking the GPS trajectory data of vehicles to extract the
road network [21–25]. In [26], researchers used GPS data as input data to improve the road
disconnection caused by occlusion, texture similarity, and geometric feature similarity. Ap-
parently, the road connectivity can be improved by introducing multivariate location data,
which provides a direction for the re-creation of this paper. However, another problem
found in the research process is also worthy of attention and optimization. During the
shooting process of remote sensing image, the image distribution will be uneven, and the
contrast will be reduced due to the occlusion of cloud and the illumination of light, which
therefore leads to the difficulty in pixel classification [27–30]. Therefore, the enhancement
of data pre-processing is another focus of this paper.

In this paper, we aim to increase the accuracy of road extraction and improve the road
connectivity via improving the above problems. We propose to improve the performance
of hidden representations of the model based on fusion location data, and to improve the
road disconnection caused by occlusion, shadow, cloud, etc. We study the general model of
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the regression method and integrate the data pre-processing and post-processing modules
into this paper. In data pre-processing, the histogram equalization [27,31]. is adopted
to enhance the remote sensing image data and increase the data contrast and feature
difference; in data post-processing, an Iteration Reinforcement (IteR) module is designed
to fuse the original information to repeatedly self-correct the prediction output and study
the prediction output feature map by Iteration Reinforcement.

The specific contributions of this paper are as follows:

(1) We propose a new road extraction method based on location data fusion and designed
a road extraction network based on D-LinkNet, Fusion Network (FuNet) for short. In
addition, we studied the general data pre-processing and post-processing methods
of the proposed network. We added the Iteration Reinforcement (IteR) module of
post-processing function to the output terminal of the network to splice, fuse, and
retrain all the information of the original input data and the output results of the
network.

(2) We design an IteR module to perform data post-processing. IteR consists of n basic
blocks. By introducing multiple iterative optimization techniques, the prediction
results can reach an optimal and stable result after multiple optimizations, and the
connectivity identification of the road can also be improved when the overall recogni-
tion rate of the road model is enhanced. The basic block structure is introduced to
improve the performance of the model. The proposed module is universal.

(3) The histogram equalization algorithm is used for data pre-processing of remote
sensing image. The data are enhanced by histogram equalization to improve the
image contrast. Different from the commonly used data augmentation methods such
as image rotation, clipping, and zooming, etc., it makes up for the limited training set
caused by the difficulty in semantic segmentation image annotation. The proposed
method is universal.

(4) In this paper, we compare and analyze a number of advanced road extraction methods
on the public data set BeiJing DataSet [1] to certify the effectiveness and progressive-
ness of (1)–(3). We also discussed the performance changes of the proposed model
under different conditions, including the use of histogram equalization before and
after data processing, the role of IteR module, and the changes with the number of
basic blocks of the IteR module. According to the discussion results, we gave some
feasible suggestions for application in this paper.

This paper is organized as follows: In Section 2, related work is introduced. In Section
3, the proposed methodology based on iteration reinforcement is detailed. The experiment
and results are shown in Section 4. The discussion is presented in Section 5. Finally,
the conclusion is drawn in Section 6.

2. Related Work

With the rapid development of machine learning and deep learning, some achieve-
ments have been accumulated in road extraction. However, it is still difficult to extract
road regions based on remote sensing imagery. The research results on road connectivity
especially are relatively few.

In the aspect of traditional machine learning, Song and Civco [32] proposed a method
to detect road regions using shape index feature and support vector machines (SVM).
Das et al. [33] designed a multi-level framework based on two significant road features to
extract roads from high-resolution multispectral images using probabilistic SVM. Alshehhi
and Marpu [2] presented an unsupervised road extraction method based on hierarchical
image segmentation. Recently, a road segmentation result using shallow convolutional
neural network combined with multi-feature view-based is published. The network made
use of the abstract features extracted from the derived representation of the input image
display, and combined gradients information as additional features of the image to obtain
better results [34]. These methods rely on prior knowledge and additional features, and the
method of deep learning is widely used in road extraction task due to automatically learn
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features. In the aspect of deep learning, Saito [35] exploited CNN to extract roads directly
from the original images and achieved better results in Massachusetts Roads Dataset.
RoadTracer [36] proposed by Bastani directly outputted the road network from CNN
through the iterative search process based on CNN decision function. Xia et al. [37] also
directly used DCNN to extract road and tested them in GF-2 images. According to the
newly published research results, some scholars have introduced the idea of deep transfer
learning and integrated learning into the extraction task of road target objects in stages to
improve the integrity of the roads network [38]. The roads are extracted directly by deep
convolutional neural network in the above studies. However, with the continuous progress
of deep learning in the field of computer vision, researchers began to do innovative research
combined with deep learning. At present, in view of the uniqueness of roads extraction,
there are four semantic segmentation techniques based on deep learning are worthy of
further study.

The first model that impresses us is the multi-scale and multi-dimensional information
fusion network model typically represented by dilated convolution, such as U-Net [10],
LinkNet [11], and D-LinkNet [3]. They splice feature maps with different resolutions to
integrate low-level detail information and high-level semantic information. In particular,
D-LinkNet proposed by Zhou [3] et al. won the first prize in 2018 DeepGlobe Road
Extraction Challenge by expanding the receptive field and multi-scale contextual semantic
information fusion. However, not all pixels are involved in the calculation due to kernel
discontinuity, which results in the loss of spatial information and being unfit for the road
extraction that require learning global information.

The second network model is the innovative network based on attention mecha-
nism [12–14]. Non-local [15], PSANet [16], OCNet [39], and CCNet [40] models were the
first to introduce self-attention in 2018, as well as Local RelationNet [41] model in 2019,
which achieved good results in global and long-distance spatial information learning.
A2-Nets [17] and CGNL [42] optimized the self-attention mathematically. SGR [43], Beyond
Grids [44], GloRe [45], LatentGNN [46], APCNet [47], and EMANet [18] explored and
practiced the “low rank” reconstruction. DANet [48] and cross attention network [49]
further demonstrated that the attention to the information on the feature channel is con-
ducive to the improvement of semantic segmentation accuracy. Of course, learning global
information and long-distance semantics based on attention is effective [50,51], which
makes up for the loss of dilated convolution information. However, although attention
mechanisms can learn global information, it also brings information redundancy.

The third direction that we are interested in is graph convolution. Graph Convo-
lution Networks (GCN) [20] is a very popular semantic relation reasoning approach for
image segmentation in recent years. Different from the CRFs [52] and the random walk
network [53,54], GCN is better at learning the global and long-distance spatial information.
Wang et al. [55] proposed to use GCN in video recognition task to capture the relation
between objects. In the latest invention published by CVPR in 2020, the author exploited
the graph convolution to perform semantic sketch segmentation and adopted the graph
convolution with two branches to extract intra-stroke and inter-stroke features, respec-
tively [56]. In addition, the popular methods such as GAT [57], GAE [58], and GGN [59]
also take GCN as a model to build basic block. However, there are some problems in the
above methods. They have not been tested on the task of road extraction, especially on the
improvement of road connectivity.

The fourth direction, also one of the issues considered in this paper, is the effective
improvement of road connectivity. At first, some scholars exploited the traditional method
to improve the road connectivity by using the manually designed finite element model and
by combining the contextual prior knowledge, such as High-order CRF [60], Junction-point
processes [61], and so on. In recent years, Batra et al. [62] tried to solve the roads topological
connectivity by tracking the specific annotation direction in combination with the behavior
of manual road annotation. Some researchers generate the road network by smoothing and
denoising to GPS data [21,23]. In [26], the combination of remote sensing image and GPS



ISPRS Int. J. Geo-Inf. 2021, 10, 39 5 of 19

data was input into the model for the first time to improve the road extraction ability of the
model. In the road extraction method, we can improve the disconnectivity of the extracted
road due to the occlusion of trees, buildings, shadows, and cloud by introducing GPS data.

The performance of semantic segmentation methods above will be better if a data
augmentation technique and a data post-processing method can be integrated. The data
augmentation technique is still a powerful way to improve the accuracy of semantic seg-
mentation. The effect of traditional data extension methods such as tailoring, rotation,
and scaling is not obvious due to the difficulty in annotating data. In particular, due to
the low contrast of the acquired remote sensing image data caused by sunlight or weather,
the image contrast can be improved by data augmentation, so that the model can iden-
tify the target object more easily [27–30]. Simultaneously, data post-processing is a very
common method to improve semantic segmentation, and there are many post-processing
methods [62,63]. In [63], a refinement pipeline is introduced to iteratively enhance the pre-
diction output, and the refinement process is performed for the whole model. The predicted
segmentation results and the original input images are spliced during the optimization,
and then sent to the model for calculation. The approach improves the performance of
the model after multiple iterations, but the computation amount is very huge. The refine-
ment method for several iterations is also adopted in [21–25]. Different from the previous
method of splicing the prediction results with the original pictures, the prediction results
are spliced with the decoded output feature maps, and the model effect is better after
multiple iterations. A stacked multi-branch convolutional module is proposed in the model
for iteration, instead of the iteration of the entire network, which can effectively utilize the
mutual information and reduce the computation amount. Some scholars also employ a
post-processing probability layer combined with deep learning to effectively optimize road
segmentation [64]. Mnih and Hinton [65] uses RBMs as the basic block to construct the
deep neural network and combines pre-processing and post-processing methods further
improve the accuracy of road segmentation. The contributions of the above scholars have
inspired the research of this paper.

In this paper, we constructed a road extraction network by combining the data pre-
processing with histogram equalization and the fusion location data to strengthen the
learning of output results by embedding a general IteR module at the end of the network.
The IteR module is inspired from [62,63], but the entire network is not iterated to avoid
excessive computation; instead, the prediction output is fused with the original image,
and the iteration is repeated to achieve self-correction. Experimental results show that
the proposed road extraction network of the post-processing module based on IteR and
the data pre-processing method are effective. Compared with other experimental meth-
ods, the results are optimal, the accuracy of road extraction is increased, and the road
connectivity is improved.

3. Methodology
3.1. FuNet Architecture

A novel Fusion Network (FuNet) is proposed to segment remote sensing images,
which can be extended to the field of image segmentation. FuNet uses D-LinkNet34 [3] as
the main structure for experiments. The network architecture (Figure 2) is connected to the
universal Iteration Reinforcement (IteR) after D-LinkNet coding, multi-scale feature fusion,
and decoding output, and the original images are fused to conduct auxiliary reinforcement
training for output results, so as to further improve the predication output. See Section 3.2
for Iteration Reinforcement (IteR) design.



ISPRS Int. J. Geo-Inf. 2021, 10, 39 6 of 19ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 2. Fusion network (FuNet) architecture, with D-LinkNet as the backbone network, includ-
ing coding, multi-scale feature fusion, decoding, and post-processing iteration reinforcement 
(IteR) module. The blue box is the feature map, and the others are shown in the legend at the 
lower right corner. 

3.2. Iteration Reinforcement 
Iteration Reinforcement (Figure 3) is connected to the output terminal of D-LinkNet 

network to enhance the post-processing of the output data. The input data of D-LinkNet, 
the deconvolution output of the penultimate layer, and the expansion convolution layer 
output of the last layer are expressed as 𝑋, 𝐹1 , and 𝐹3 . The output of D-LinkNet can 
be defined as follows: 𝐷_𝐿𝑖𝑛𝑘𝑁𝑒𝑡 𝑋 → 𝐹1 ,𝐹3  (1)

IteR model further integrates multi-dimensional information through repeated iter-
ative enhancement learning of the splicing results of D-LinkNet output data and original 
images, so that the accuracy of the results will not be affected by information loss when 
the model is forecasting. The result 𝐹2  of splicing 𝐹1  with the original input image 
along the channel is defined as: 𝐹2 𝑐𝑜𝑛𝑐𝑎𝑡 𝐹1 ,𝑋  (2)𝐹3  is the input of the 𝑡  basic block, which is defined as follows: 

Figure 2. Fusion network (FuNet) architecture, with D-LinkNet as the backbone network, including coding, multi-scale
feature fusion, decoding, and post-processing iteration reinforcement (IteR) module. The blue box is the feature map,
and the others are shown in the legend at the lower right corner.

3.2. Iteration Reinforcement

Iteration Reinforcement (Figure 3) is connected to the output terminal of D-LinkNet
network to enhance the post-processing of the output data. The input data of D-LinkNet,
the deconvolution output of the penultimate layer, and the expansion convolution layer
output of the last layer are expressed as X, F10, and F30. The output of D-LinkNet can be
defined as follows:

D_LinkNet(X)→ F10, F30 (1)

IteR model further integrates multi-dimensional information through repeated itera-
tive enhancement learning of the splicing results of D-LinkNet output data and original
images, so that the accuracy of the results will not be affected by information loss when the
model is forecasting. The result F20 of splicing F10 with the original input image along the
channel is defined as:

F20 = concat(F10, X) (2)

F3t is the input of the tth basic block, which is defined as follows:

F3t =

{
F5t−1 i f t > 1
F30 i f t = 1

, t = 1, . . . , n (3)
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F4t is the splicing result of F20 and F3t along the channel in the tth basic block, which
is defined as follows:

F4t = concat(F20, F3t), t = 1, . . . , n (4)

F5t is the prediction feature map, which is calculated by the convolution (kernel size
is 3, dilation is 1) of F4t, which is defined as follows:

F5t = conv(F4t), t = 1, . . . , n (5)

where n is the number of basic blocks, which is set to n = 5 (Section 5.2) after experimental
discussion. In Equation (1), F10 and F30 are the output of the penultimate layer and the
last layer of D-LinkNet, respectively. In Equations (2) and (4), concat(.) is the splicing along
the channel. In Equation (3), F5t−1 is the output feature map of the t− 1th basic block.
In Equation (5), conv(.) is the convolution operation of the input feature map.

When the current basic block is the last one, the predicted predt is obtained by F5t
through the nonlinear transformation layer of sigmoid.

The predicted predt of each basic block is defined as follows:

predt = sigmoid(F5t), t = 1, . . . , n (6)

If the current basic block is not the last, F5t is passed to F3t+1 of the next basic block
along the direction of the dotted arrow, and then Equations (3)–(5) are repeated.
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3.3. Loss Function

During the training process of FuNet, each basic block will output the prediction
results, and the total loss in the training process will be obtained by calculating the accumu-
lated loss of n basic blocks. Assuming that the tth basic block outputs the prediction feature
map F5t, the prediction result predt of the current basic block is acquired by F5t through
sigmoid layer, and the losst of predt and label and the total loss (Figure 4) are calculated,
as defined below:

losst = BCELoss(predt, label) (7)

loss =
n

∑
t=1

losst (8)

where t = 1, . . . , n is the index of basic block, and n is the total number of basic blocks.
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4. Experiment and Results
4.1. Datasets

The training, verification, and test datasets adopted in this paper are from BeiJing
DataSet [1]. Data types include remote sensing (RS) images and global positioning system
(GPS) data. The samples of two data sets are shown in Figure 5.

There are 348 remote sensing images in RS data. Among them, 278 images are used
for training verification set, and 70 images are used for testing. Each image has a size
of 1024 × 1024 and a pixel resolution of 0.5 m/pixel. The road labels on the image are
manually marked by the author. During the training process, the training set and the
verification set are randomly divided from the training verification set at 9:1, and the
remote sensing image data are randomly enhanced by Scale, Horizontal Flip, Verticle Flip,
Rotate 90 degree. We set the random probability prob to be 0.5. In the training stage,
a random number of 0 to 1 is generated for each image. If the random number is less
than prob, then the image will be enhanced; if it is greater than prob, then the image will
not be enhanced. Before training, the original remote sensing images are processed by
histogram equalization.

GPS data come from 8,100,000 samples taken from 28,000 taxis in Beijing in a week.
GPS data in BeiJing DataSet contain latitude, longitude, speed, and sampling interval.
The proposed model only uses the latitude and longitude fields of GPS, which can be
expressed as Point = 〈Lat, Lon〉. On the basis of spatial position coordinates, we convert
GPS points into binary image format according to the corresponding relationship between
the original remote sensing image and GPS longitude and latitude. Then, we implement
the data fusion by overlaying the GPS binary image and the original remote sensing image
in the channel dimension. Results are shown in Figure 5. By comparing them with the
original image, we can find that GPS points are concentrated in the trunk road area, while
there are GPS points apparently concentrated in some places covered by trees on the remote
sensing image. Thus, we can infer whether there is a road through the location and density
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of GPS points, which is also the fundamental reason for the introduction of location data to
improve road connectivity in this paper.

We adopt the index APLS [66] to evaluate connectivity. Then, the labels and prediction
results need to be further processed during the testing process. First, the labels and
prediction results are extracted from the skeleton line, which is then transformed into a
graph structure. On the basis of the graph structure, the road topological connectivity is
evaluated by calculating the deviation of the shortest path distance between all node pairs
in the label graph and the prediction graph.
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4.2. Setup

The network architecture adopted in this paper is based on D-LinkNet and takes advan-
tage of the fusion of multi-dimensional multi-resolution features. See Section 3.1. An iteration
reinforcement (IteR) is added at the output end of the network architecture, in which the basic
block is n = 5, which is an experimental value; please refer to Section 5.2.

The remote sensing image and GPS location data in this paper are from the public Bei-
Jing Dataset [1]. We take Adma as the optimizer [67] and BCE (binary cross entropy) + dice
coefficient loss as the loss function [3]. We set the batch size to 16 and the initial learning
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rate to 1e−4. If the loss of six consecutive epochs verification sets does not drop below
the historical minimum value, then the learning rate is multiplied by 0.5. The training is
terminated when the training cycle is over 60 epochs, or the learning rate is below 1e−7.
During the training, the data are randomly enhanced by Scale, Horizontal Flip, Vertical
Flip, Rotate 90 degree. All experiments are tested on a NVIDIA Tesla V100 32G using
Ubuntu 18.06 operating system.

4.3. Evolution Metric

The experimental results are evaluated by mean intersection over union (mIoU),
as defined below:

IoUi =
TPi

TPi + FPi + FNi
(9)

mIoU =
1
n

n

∑
i=1

IoUi (10)

where TPi is the number of correct samples detected as positive samples, FPi is the number
of incorrect samples detected as positive samples, FNi is the number of incorrect samples
detected as negative samples, the subscript i is the number of samples, and n is the total
number of samples.

In addition to the general semantic segmentation index mIoU, we take the average
path length similarity proposed in [21,66] as another evaluation index to certify that our
method can also improve the roads topological connectivity. APLS is an effective index
based on graph theory to emphasize the connectivity of the road network. The deviation of
the shortest path distance between all node pairs in the graph is captured by the proposed
method.

We convert label y and prediction output ŷ into graph form to get G = (V, E) and
Ĝ = (V̂, Ê). The definition of APLS is simply described as follows:

SP→T = 1− 1
|V|∑ min(1,

∣∣∣L(a, b)− L(â, b̂)
∣∣∣

L(a, b)
) (11)

APLS =
1
N ∑

(y,ŷ)

1
1

SP→T(G,Ĝ)
+ 1

ST→P(Ĝ,G)

(12)

where a, b ∈ V, â, b̂ ∈ V̂. |V| is the total number of nodes in the ground truth graph,
N is the total number of images, L(a, b) and L

(
â, b̂

)
are the path length between a −→ b

and â −→ b̂ , respectively. SP−→T is the cumulative sum of the shortest path difference
between all node pairs in the survey graph G = (V, E) and the graph Ĝ = (V̂, Ê). ST−→P is
symmetrically introduced to the calculation of final APLS to punish false positives. ST−→P
is the cumulative sum of the shortest path difference between all node pairs in the survey
graph Ĝ = (V̂, Ê) and the graph G = (V, E).

4.4. Results and Analysis

The experimental results of various advanced semantic segmentation methods on
BeiJing DataSet [1] are listed in Table 1. We can directly observe that: (1) The accuracy of
our model is optimal before and after the fusion of GPS location data. The mIoU (63.31%)
of the proposed model is 1.38 higher than HsgNet based on attention mechanism and 2.41
higher than D-LinkNet, which was the first place in the road extraction competition in
2018; (2) compared with the model without GPS data, the accuracy of all models with GPS
location data is obviously improved; (3) the road connectivity is also effectively improved
by the proposed model, but the results are not as good as the Road Connectivity model [62]
focusing on road connectivity. These observations can prove that the introducing of location
data and data post-processing proposed are effective.
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Table 1. Comparison results after inputting different data. Among them, input data include only
remote sensing image data, which is abbreviated to Image; the fusing of GPS and remote sensing
image is input, which is abbreviated to GPS+Image.

Method Input mIoU (%) Relative APLS Relative

Deeplabv3+ [8] Image 57.05 - 30 -
GPS+Image 59.92 +2.87 35.9 +5.9

LinkNet [11]
Image 59.63 - 30.7 -

GPS+Image 60.73 +1.1 30.9 +0.2

D-LinkNet [3]
Image 59.78 - 33.2 -

GPS+Image 60.90 +1.12 29.7 −3.5

Road-connectivity [62] Image 58.9 - 34.4 -
GPS+Image 61.82 +2.92 43.1 +8.7

HsgNet [19] Image 60.39 - 30.6 -
GPS+Image 61.93 +1.54 37.0 +6.4

D-LinkNet + 1D [1]
Image 59.75 - 35.2 -

GPS+Image 61.81 +2.06 41.5 +6.3

FuNet
Image 61.07 - 38.5 -

GPS+Image 63.31 +2.24 40.4 +1.9

The visualization results acquired by various methods are shown in Figure 6. From the
visualization results, we can clearly see that our model performs best in terms of texture
similarity, occlusion, and complex background. In particular, our method also performs
well in road connectivity.
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In order to further demonstrate the advantages fusion of GPS location data intuitively,
we present the test results of inputting remote sensing image lonely and inputting fusion
data of GPS and remote sensing image in Figure 7. We obtained the following observations:
(1) Although some roads are occluded by trees or houses, GPS points will be distributed
obviously, which indicates the existence of road; (2) when only remote sensing images
are used as input data, the blocked road cannot be recognized or effectively identified
(column 4); after the fusion of GPS location data, the road segmentation effect is significantly
enhanced (column 5). These observation results show that GPS data can improve the
recognition and reasoning ability of the model, especially when the road is occluded by
trees, houses, shadows, etc., which is also demonstrated in [1,26].
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5. Discussion
5.1. Before vs. After Histogram Equalization

This section aims to further certify the effectiveness and universality of the data pre-
processing using histogram equalization. The comparison results before and after using
histogram equalization are listed in Table 2. We observe that the accuracy of histogram
equalization is generally increased no matter whether the input data is only remote sensing
image or fusion data. This observation show that histogram equalization approach can
improve the accuracy of road recognition by enhancing the contrast of the image. In high-
contrast images, the road region can be separated from the background in a better way to
improve the performance of the model in road extraction [27–30]. However, the comparison
with forth column (after HE2) and fifth column (after HE1) experimental results reveal that
histogram equalization is required for both the training set and the test set, otherwise the
accuracy of road extraction will be reduced. Therefore, in practical application, histogram
equalization is available when the contrast of remote sensing image is poor due to shooting,
occlusion, illumination, and other factors, but users need to perform image-wise histogram
equalization for both training data and application data simultaneously.
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Table 2. The comparison of accuracy (mIoU %) before and after using histogram equalization (HE).
The result without using HE is recoded in the third column (before HE). Using HE both in the training
set and testing set is recoded in the fourth column (after HE2) and using HE in training set is recoded
in the fifth column (after HE1).

Method Input Before HE After HE2 After HE1

Deeplabv3+ [8] Image 57.05 57.23 50.08
GPS+Image 59.92 60.29 53.67

LinkNet [11]
Image 59.63 59.82 52.72

GPS+Image 60.73 61.46 55.68

D-LinkNet [3]
Image 59.78 60.63 53.09

GPS+Image 60.90 61.83 58.90

Road-connectivity [62] Image 58.9 59.67 51.52
GPS+Image 61.82 62.01 58.52

HsgNet [19] Image 60.39 60.79 52.85
GPS+Image 61.93 62.41 54.80

D-LinkNet + 1D [1]
Image 59.75 60.27 52.64

GPS+Image 61.81 62.68 58.98

FuNet
Image 61.07 61.54 53.34

GPS+Image 63.31 63.36 59.47

To further explain the discussion results above, we present the gray level distribution
after histogram equalization of BeiJing DataSet [1] (Figure 8). We can see that before
equalization, the foreground and background histograms overlap more at the peak; af-
ter equalization, the degree of overlapping decreases, which indicates that the image
contrast is enhanced by histogram equalization, and the gray level of the image is ad-
justed from nonuniform distribution to uniform distribution by gray level transformation.
Histogram equalization can be performed for red, green, and blue components of color
images. Respectively, to enhance color images. When it is difficult to extract road due
to insufficient illumination or serious exposure in aerial images [1], the image contrast is
especially improved by histogram equalization.
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5.2. Multi Basic Block

This section aims to further certify the effectiveness and generality of IteR module.
Before and after histogram equalization, the effect of the number of IteR basic blocks
on the model performance is recorded in Table 3. Considering the running time of the
model as, without histogram equalization, the optimal result can be achieved when n is
equal to 5, and the number of IteR modules become 3 while using the histogram equal-
ization (reduced by 2). We observe that the number of IteR modules will reduce after
using histogram equalization, which certifies that histogram equalization can improve the
model performance.

Table 3. Statistical results of the changes in the number of IteR basic blocks and the model perfor-
mance before and after histogram equalization. Statistical items are mIoU (%), time (ms), time relative
before and after histogram equalization (HE).

n
Before HE After HE

mIoU Time Relative mIoU Time Relative

1 61.05 35.52 - 62.01 38.91 -
2 61.33 37.20 +1.68 61.73 40.62 +1.71
3 62.12 39.14 +1.94 63.36 42.54 +1.92
4 61.82 40.49 +1.35 61.48 43.79 +1.25
5 63.31 42.30 +1.81 62.39 45.65 +1.86
6 63.26 43.89 +1.59 62.00 47.30 +1.65
7 63.43 45.63 +1.74 62.13 48.92 +1.62
8 62.42 47.50 +1.87 62.74 50.82 +1.90
9 62.76 49.24 +1.74 62.14 52.63 +1.81

10 62.93 50.89 +1.65 62.00 54.19 +1.56
11 62.94 52.53 +1.64 62.18 55.93 +1.74
12 62.70 54.21 +1.68 62.28 57.62 +1.69
13 61.04 55.87 +1.66 62.19 59.33 +1.71

The visualization results of the IteR module (n ≤ 5) before histogram equalization
are shown in Figure 9. We can clearly see that as n increases, the model performs better in
road extraction. From the second row, we can see that as n increases, the non-road objects
(red check box) and road objects are identified correctly by the model. The main reason
for this phenomenon is similar to self-correcting principle described in [68]. We fuse the
output data and the original image information by repeated IteR to prevent the low-level
information loss. The effectiveness of the proposed method has also been certified in
previous studies [21–25].

We discussed the effect of the number of basic blocks in IteR model on the accu-
racy of results before and after histogram equalization, respectively. As can be seen from
Table 3 and Figure 10: (1) As the number of basic blocks n increases, the accuracy of the
model is improved and then declines and tends to be stable; (2) as the number of basic
blocks n increases, the running time of the model increases continuously; (3) the size of
the model will not increase significantly with the change of n, regardless of whether the
data pre-processing with histogram equalization is used; (4) without the histogram equal-
ization, the accuracy of the model is optimal when n is equal to 7. However, considering
both the running time and accuracy of the model, it is more appropriate for n to be 5;
with histogram equalization, the optimal accuracy of the model is achieved when n is 3.
By further processing and calculation, we can conclude that: (1) No matter whether using
the histogram equalization, the test time increases by about 1.7 ms when n increases by 1;
(2) when n is equal, the running time with histogram equalization is 3.4 ms longer than that
without histogram equalization. However, the number of IteR basic blocks can be reduced
by the histogram equalization. Further comparison shows that: (1) The predictive ability
of the model without histogram equalization is positively correlated with n increasing
when n is less than 5, and the predictive ability declines and tends to be stable when n
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is greater than 7; after histogram equalization, the peak occurs when n is equal to 3, and
the number of basic blocks decreases; (2) when the number of IteR basic blocks without
histogram equalization is 5, the optimal mIoU is 63.31%, and the running time is 42.30ms;
when the number of IteR basic blocks with histogram equalization is 3, the maximum
mIoU is 63.36%, and the running time is 42.54 ms. These data guide us how to select n
before and after using histogram equalization.
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To sum up, the number of IteR modules can be reduced by the data pre-processing with
histogram equalization in the case of guaranteeing accuracy and efficiency, so according
to the quality of remote sensing image, n is equal to 5 without histogram equalization;
n is equal to 3 with histogram equalization. Finally, it is recommended to employ both
data pre-processing with histogram equalization and IteR data post-processing in practice
application.

6. Conclusions

This paper mainly aims to improve the accuracy of road extraction and the road
connectivity. The innovative achievements in this paper are as follows: We (1) proposed
a novel Fusion Network (FuNet) to integrate remote sensing image data and location
data and enhance the learning performance of the network; (2) designed an universal
Iteration Reinforcement (IteR) model to self-correct and optimize the model by fusing the
prediction output and original image information and to enhance the network learning
ability; designed an reinforcement loss function to improve the accuracy of road prediction
label; and (3) exploited the data pre-processing with histogram equalization to improve the
image contrast with better effect, which is increased by nearly 1%. The data pre-processing
method is also universal. We also designed experiments with D-LinkNet as the backbone
network structure and compared several advanced road extraction methods in BeiJing
DataSet. This paper focuses on the data pre-processing and post-processing, analyzes,
and discusses the performance of the histogram equalization and the number of basic blocks
in IteR module, and gives practical application suggestions. Experimental results show
that our model performs best, which improves the accuracy of road extraction and the road
topological connectivity. To sum up, according to Section 5, we suggest to use both data
post-processing based on IteR and data pre-processing based on histogram equalization,
but users need to perform image-wise histogram equalization for both training data and
application data simultaneously.

In future work, we will continue to study the complex road extraction from satellite
images, which is a necessary and important research topic. We plan to adopt the way
of multi-source data fusion, especially to give full play to the auxiliary advantage of the
location big data, and further improve the accuracy of road extraction by introducing the
multi-source information fusion such as direction and spatial relationship of road.
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