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Abstract: Crowdsourcing is one of the spatial data sources, but due to its unstructured form, the
quality of noisy crowd judgments is a challenge. In this study, we address the problem of detecting
and removing crowdsourced data bias as a prerequisite for better-quality open-data output. This
study aims to find the most robust data quality assurance system (QAs). To achieve this goal,
we design logic-based QAs variants and test them on the air quality crowdsourcing database. By
extending the paradigm of urban air pollution monitoring from particulate matter concentration
levels to air-quality-related health symptom load, the study also builds a new perspective for citizen
science (CS) air quality monitoring. The method includes the geospatial web (GeoWeb) platform as
well as a QAs based on conditional statements. A four-month crowdsourcing campaign resulted
in 1823 outdoor reports, with a rejection rate of up to 28%, depending on the applied. The focus of
this study was not on digital sensors’ validation but on eliminating logically inconsistent surveys
and technologically incorrect objects. As the QAs effectiveness may depend on the location and
society structure, that opens up new cross-border opportunities for replication of the research in
other geographical conditions.

Keywords: crowdsourced data quality; GeoWeb; citizen science; outdoor air pollution;
symptom mapping

1. Introduction

Urban air pollution is well known to cause negative health impacts. Therefore, the
monitoring of pollutant concentration levels plays a key role in understanding air quality
and its effects on the subjective well-being (SWB) of citizens [1]. The SWB reflects the
philosophical notion of a good life, as a proxy for assessing life satisfaction, momentary
experiences, and stress. Kim-Prieto et al. [2] also took into account contemporary health
hazards, among which air pollution is a key factor [3,4]. The development of smart and
sustainable cities can only be accomplished through inclusive growth, using smart people,
technologies, and policies [5]. From the perspective of smart people [6]—those who use
smart devices to make their everyday living easier and health safer—we found it necessary
to develop geospatial web (GeoWeb) solutions to measure the adverse impact of cities on
their inhabitants. Ensuring measurement credibility becomes a key scientific challenge in
this context. To this end, we carried out research on the example of air pollution health
symptoms, an emerging trend particularly related to odor [7] and green pollutant [8]
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crowdsensing [9,10]. As crowdsensing (or, more generally, crowdsourcing) methods for
health symptom mapping are subject to data bias [11], we developed and tested a quality
assurance mechanism (QAm) framework (Section 2.2), which can be transferred to similar
health-symptom-based studies.

Sparse or irregular monitoring station networks as well as limited access to the ref-
erence air pollution data underlie the need for citizen science (CS) activities in the field
of air pollution monitoring. Personalized information about exposure to air pollutants,
monitoring during acute events or at specific locations, partnerships with local govern-
ments, and educational and community-driven purposes are the key benefits of bottom-up
environmental monitoring. CS enables the collection of data on much larger spatial and
temporal scales and at much finer resolution than would otherwise be possible. The is-
sue of urban air pollution crowdsourcing motivated the implementation of several CS
programs, such as those led by Mapping for Change, a community interest company in
London (e.g., Pepys Air Quality Project, Science in the City Project, Love Lambeth Air
(https://mappingforchange.org.uk/projects/)), as well other international-scale activities
found at claircity.eu and citi-sense.eu [12]. All the CS activities mentioned above were
hosted on GeoWeb [13–15] (as discussed in Section 1.2). In this approach, citizens are
required to act as sensors [12,16].

The CS HackAir project (https://www.hackair.eu) as well PollenApp were the projects
that undertook the first attempts to crowdsource urban air pollution data, where air pollu-
tion was understood as the compound effect of anthropogenic- and biophysical-sourced
particulate matter (PM) [8]. Pan-European CS projects, such as Distributed Network for
Odor Sensing Empowerment and Sustainability (D-NOSES) [7], have shown that particular
aspects of urban air pollution can be measured through the sense of smell of trained citizen
scientists. Despite the subjective measurement nature of the human sense of smell, human-
sensed CS (sCS) meets the high-quality method expectations (D-NOSES meets germ. Verein
Deutscher Ingenieure, eng. the Association of German Engineers (VDI) 3940 standard).
Ambient air pollution sCS, as well as the symptoms it causes, provides a promising source
of spatial information. However, the unstructured nature of crowdsourced data [17–19]
requires data quality assurance (QA) protocols [20,21], as well as trust and reputation
modeling (TRM) [22] procedure development.

To the best of our knowledge, using QA for the purpose of air pollution symptom
mapping (APSM) has not yet been investigated. Our goal was to address the challenge
of crowdsourced APSM with the use of the GeoWeb platform (Section 2.3) and to solve
the data bias problem by using a quality assurance system (QAs; Section 2.2) based on
logic rules. By assessing the rejection rate of reports affected by data bias, we provide
evidence of reliable air pollution monitoring expressed as the severity of human health
symptoms caused by combined factors of anthropogenic and biophysical ambient air
pollutants [23]. Extending the paradigm of air pollution referenced by WHO in terms of
six main air pollutant [24] concentration levels and their public health impacts [25] to air
pollution symptoms (APS), we indicate new possibilities for citizen-driven research and
social inclusion in environmental and health-related issues, as experienced by sustainable
cities. We also contribute to the development of the sCS data quality methodology.

In our study, we consider health symptoms caused by air pollution as one of the
indicators of the current ecological footprint of humanity on the environment. Therefore,
we focus on urban air pollution as a case study with the starting point of health symptoms
caused by human exposure to air pollutants. This concept highlights the relationship
between urban habitats and the SWB of citizens. The issue of air pollution requires
spatial information provided thoroughly by a modern spatially variable society [26,27].
This underlines the need to implement a local partnership between monitoring agencies,
researchers, and the local community, who all breathe the same air.

https://mappingforchange.org.uk/projects/
https://www.hackair.eu
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1.1. Extending the Paradigm of Urban Air Pollution

In the field of environmental research air quality, information about the quality (i.e.,
clean or polluted) of air is reported as an air quality index (AQI) [28]. The AQI tracks six
major air pollutants: inhalable particulate matter (PM10), fine particulate matter (PM2.5),
ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) [24].
The spectrum of pollutant sources includes those related to the development of human
civilization (anthropogenic pollutants) [23], as well those from natural sources, which
questions the belief that everything that is natural is healthy [29]. Ambient air pollution
concentrations above the approved limits [30,31] can cause certain health symptoms. Con-
versely, health symptoms can reflect air pollution. However, health symptoms resulting
from inhalation of polluted air are also stimulated by natural-sourced biophysical PM such
as pollen, mold spores [23,32], and volcanic emissions [33], causing human health problems
such as respiratory allergies, including allergic asthma, which is regarded as an important
disease [23,34,35]. Bastl et al. [8,32] described pollen as one of the green pollutants, which
are significant components of the atmosphere and are relevant to air quality information for
pollen allergy sufferers. This distinction is important for the comprehensive understanding
of APS. Air pollution is specified as the concentration of pollutants measured in physical
values (e.g., micrograms per cubic meter), whereas air quality refers to the AQI, as well as
to classifications, opinions, and feelings, including the experiences of citizens in terms of
air- and air-quality-related SWB [1,4]. This concept extends our understanding of air pollu-
tion from pollutant concentration levels to personal health symptoms caused by pollutant
inhalation. The quantity and severity of symptoms can explain the air quality; however,
a consensus about the terminology involving urban air quality has not yet been reached,
and researchers typically distinguish air pollution through pollen exposure [36]. There is
no symptom classification for air quality yet. Regardless, both factors shape air quality.
Future research is required to understand and quantify the interaction of co-exposure to
both types of air pollutants and its impact on the severity of human health symptoms [37].

Symptom mapping is a prerequisite for the spatial explanation of both dependencies.
The first attempts at citizen symptom mapping related to green pollutants were made
by Bastl et al. [32] and Werchan et al. [38]. Their research proved that citizen symptom
load can be mapped efficiently using crowdsourced data; however, the sources of the
symptoms cannot be clearly determined. The symptom load index is not directly correlated
with annual pollen load and has a strong correlation to allergen content [32], with a linear
(often daily) correlation [32,39]. Finding that relationship is beyond the scope of this paper;
however, crowdsourced symptom data have shown potential as an indicator of the effects
of urban air pollution on citizen well-being. The unstructured nature of crowdsourced data
requires rigorous QA mechanisms (QAm). In this study, our aim is to identify a QA system
for GeoWeb-based APSM to stream high-quality geospatial data. So far, this data stream
does not exist. By sharing trusted and open data on air pollution symptoms, our findings
can be used for aerobiological and health-risk-forecasting research.

1.2. Contribution of Citizen Science to Improvements in Air Pollution Mapping

According to Haklay [14], geographical citizen science overlaps volunteered geo-
graphic information (VGI), especially in the geographical context of citizen-driven research.
GeoWeb plays an essential role in this field. However, it is crucial that CS and VGI not
be seen as equal, as the main purpose of VGI is to produce geographical information,
while citizen science aims to produce new scientific knowledge [40,41]. Citizens engaged
in scientific research projects become citizen scientists [42], who, depending upon their
personal interests, motivation, education level, and experience in previous projects, engage
with different levels of participation and expect to see the results of their research contri-
bution. They contribute to the project by collecting and analyzing data but may also be
involved in defining research questions or even interpreting results [14,43,44]. Considering
the scope of citizen participation, Haklay [14] defined four levels of CS: crowdsourcing
(first level), distributed intelligence (second level), participatory science (third level), and
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extreme citizen science (fourth level). Citizen involvement in environmental projects on air
pollution is usually based on collecting and analyzing sensor data in the form of online
maps. In this way, knowledge is produced. The fundamental questions about the harmful
health effects of air pollutants have been asked, so these activities are typified as CS level
1 and CS level 2. Of course, higher levels (depending on the engagement of members)
are not excluded. In the case of odor crowdsourcing, which requires training as well as
expecting measurement insights back from members, a collection method can be devised
(i.e., level 3). Our study was based on the first level of CS, where citizens are engaged in
the process of crowdsourcing APS data, producing a new scientific knowledge of APSM,
together with researchers. CS provides a solution to research problems [44], while also
educating citizens [45].

So far, smartphones have not been considered appropriate equipment for measuring
urban air pollution. This is due to the fact that the built-in sensors of smartphones, by
default, do not allow users to measure air pollutant concentrations. Therefore, bottom-
up activities considering air pollution have usually relied on external, low-cost sensors
(initially only capable of PM measurement, these sensors can now also sense all major
pollutants, including volatile organic compounds). Loreto et al. [46] emphasized that mod-
ern participatory sensing, which is one of three sub-categories of citizen cyberscience [47],
has witnessed significant progress related to the fast development and social network-
ing tools of information and communication technologies (ICT), which “allow effective
data and opinion collection and real-time information sharing processes”. In that context,
Guo et al. [48] and Capponi et al. [49] introduced mobile crowdsensing (MCS), which fo-
cuses on sensing and collecting data with mobile devices and aggregating data in the cloud.
However, there are pollutants that are still exclusive for Internet of Things sensor dust.
A great challenge of contemporary CS measurement is odor sensing, which affects both
indoor as well as outdoor air quality. Human-sensed air pollution monitoring seems to be
an emerging trend.

In this research, we specify the citizens as sensors and participatory sensing concepts,
where the senses, subjective impressions, and perception of humans are the only sensors
used in the project; therefore, we propose this as sCS. Moreover, by developing a QA
mechanism for sCS, this study contributes to bottom-up air pollution monitoring and
open-data credibility.

1.3. Importance of Data Quality in Crowdsourced Air Pollution

Data quality issues include errors and biases. Factors affecting the data collected
through citizen perceptions result in data biases. CS requires the collaborative contributions
of multiple contributors [50], but the assumption of multiple contributors is insufficient
to provide high-quality data. Therefore, data quality protocols are an essential part of
crowdsourcing-driven research. Although participatory research faces methodological chal-
lenges such as biases in data collection [51,52], CS has been proven to be a source of trusted
geospatial data [20,53–56], including for health risk mapping [57–59] and risks caused by
poor air quality [32,60,61]. The data quality determines its usefulness [62,63]. Thus, the
unstructured nature of crowdsourced data requires rigorous data QA protocols [17,64–67].

The starting point for QA in CS is education and the provisioning of technical infor-
mation and resources [21,68] in order to increase citizen knowledge about the issues of
air pollution and to improve their environmental awareness and motivation to provide
air-quality-monitoring supporting activities [60,69,70]. Of the range of crowdsourced data
quality measures discussed in the academic literature by Haklay [50] and Foody et al. [67],
among others, attribute accuracy and completeness are essential. Furthermore, these as-
pects of geographic data quality have also been recognized by international standards of
spatial data quality. The ISO 19157 [71], which handles the diverse perspective of data
quality, defines a set of standardized data quality measures, including completeness of
data, positional accuracy, and temporal accuracy, which are all grouped as so-called data
quality elements (DQEs) [72]. Each DQE is, then, further evaluated, and the result of the
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evaluation is documented and reported [67]. The principles of the aforementioned ISO
19157 [71] served as the basis for the proposed APSM data quality assurance framework.

The goal of this study was to answer the question of data quality assurance mechanism
implementation in GeoWeb-based APSM. For this purpose, we propose a dedicated APSM
framework for the QA mechanisms of start-check, sequence, cross-validation, repeating,
and time-loop check in order to reduce data bias, such as user response inconsistency,
location inaccuracy, and duplicate time–space-related reports (see Section 2). By combining
several logic-based QA mechanisms (QAm), we tested the robustness of the QAm to find
the strongest QAm set and build a ranked data quality assurance system (QAs). Our
research question was, Which QAs best reduces data bias in APSM? The sources of data
bias include contradictory entries in the geodatabase attribute table recorded as answers
supplied to the specially created APSM survey. However, we did not solve the problem
caused by the non-air-pollution-related factors that affect human symptom severity, which
act synergistically with air pollution to contribute to spatial database robustness on health-
related symptoms [8,73–76].

2. Materials and Methods

For our participatory APSM project, we followed the CS development framework of
Bonney et al. [77], starting from the research question and project team formulation through
to CS action execution and the dissemination of project findings (Sections 2.1 and 2.3).
However, we focused on addressing data bias (Section 2.2) to improve the symptom-based
air-pollution-mapping data quality.

2.1. Building a Field Data Collection Strategy

The method was adopted in the city of Lublin and Lubelskie Voivodship, located
in eastern Poland. The data collection campaign lasted for one academic semester, from
February to May 2018. Starting the campaign in the first quarter of the year is crucial, as
anthropogenic pollutants and pollen occur simultaneously at the beginning of the year,
especially gaseous pollutants that can act as adjuvants, exacerbating pollen allergenic
potency and immunoreactivity [78]. A group of 56 students from different faculties of
the University of Life Sciences in Lublin were involved in the project as volunteers and,
according to Harlin et al. [79], turned into citizen scientists, of which, 30 spatial management
students were the core citizen group of the project. A total of 18 non-academic citizens
joined the research and collected data together with the student group. The project was
continually open to everybody through the community channel for data and app sharing,
which was implemented in GeoWeb. By sharing their conclusions and opinions during the
social campaign, the citizens had a direct impact on the optimization of methods used.

To strengthen the data quality potential already before the field data collection cam-
paign began, the scientific student organization of the Spatial Management Faculty of the
University of Life Sciences in Lublin organized workshops for the citizen scientists, who
were learned about the subject of study and the research project assumptions. Furthermore,
they were trained on handling the mobile and web apps (details about apps provided in
Section 2.3). The workshops, training, informing, and research project promotion among
citizens lasted for the first month.

According to the study requirements, the citizen scientists were asked to collect data
only during their daily outdoor activities, preferably once per day. If they observed air-
pollution-related symptoms, they were asked to report them as soon as possible. If they
caught a cold or were sick, they were expected to stop collecting data until they recovered.
The project assumptions and rules for collecting data were included in the mobile app, as a
user guide introducing the study. Other educational materials were made available in the
narrative web apps.

Our study referred to the patterns of citizen activity characteristic for CS specifics [80].
As such, we implemented a method for citizen engagement improvement, which was
based on the monthly activity ranking of users, presenting a number of submitted APS
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reports. Users were assigned award titles according to the following number of reports sent
per month: 1–5, Beginner; 6–10, Pretty Involved; 11–20, Super-Engaged; and >20, Excellent
Citizen Scientist. A user-activity-tracking module, included in the operations dashboard
app (details in Section 2.3), was public and allowed for competition between the citizens.

2.2. Data Quality Assurance Methods for APSM

Following other studies of human health symptom severity, such as the Symptom Load
Index research in pollen allergy sufferers [81], we used a questionnaire sheet. However, we
extended the group of potential citizens to all those who suffered from air-quality-related
health symptoms, whereas to improve the method of data quality assessment, the user-
screening question was implemented in the questionnaire, which helped identify the more
sensitive citizens to air pollution. The question asked for any pollen allergens the user is
allergic to (birch, alder, hazel, grass, pine, plantain, mugwort, nettle, ragweed, others; it is
also possible to answer no allergens; Figure 1a). The survey included close-ended questions
about health symptoms related to air quality according to the classification defined in the
research on the epidemiology of allergic diseases in Poland (PL: Epidemiologia Chorob
Alergicznych w Polsce (ECAP)) [82], accompanying the SWB question, which developed
the QA method; a personal profile with the user-screening question; and finally time range
and geolocation information. The questions are as follows:
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eyes”), (d) closing questions about subjective well-being, and (e) time and geographical location recording.

User-screening question: Which pollen allergens are you allergic to?

Q1. How do you feel today?
Q2. Sneezing. If you are currently experiencing this symptom, please choose the level of

severity.
Q3. Nose itching. If you are currently experiencing this symptom, please choose the level

of severity.
Q4. Runny nose. If you are currently experiencing this symptom, please choose the level

of severity.
Q5. Watering eyes. If you are currently experiencing this symptom, please choose the

level of severity.
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Q6. Scratchy throat. If you are currently experiencing this symptom, please choose the
level of severity.

Q7. Breathing problems. If you are currently experiencing this symptom, please choose
the level of severity.

Q8. Do you rub your eyes?
Q9. Could you assess the level of your current self-comfort?
Q10. How long have you been in this location?
Q11. For how long have you felt your symptoms?

The questionnaire design was inspired by sociological research. We followed the
rule that filling out a web form shouldn’t take more than 10 min [83]. The designed
web questionnaire was tested in web form so that it did not exceed the assumed 10 min.
Following Malchotra [84], the questionnaire contained mainly dichotomous and multiple-
choice questions. The APS questions were grouped together [85]. The data stored in
the database were displayed as a text data type in the mobile app, which is simple and
intuitive for the user. The data were also coded in the database in the short integer data
type (except for the user-screening question, which was coded in text data type) and were
used for data analysis and statistics, as shown in the flowchart of the APSM questionnaire
(Figure 1). The proposed method includes data forms, which are the basis of the developed
conditional statements.

2.2.1. QA Methods Applied during the Data Collection Process

We initially adopted three QA methods in the mobile survey app in order to improve
data quality during the data collection process. These methods were based on the quality
measures of ISO 19157 [71]: positional and temporal accuracy, data completeness, and
consistency. The first QA method eliminated identical reports sent from the same location
within a certain time interval (5 min) from the database in case the same report was
duplicated. The report duplication was confirmed with the same nickname of the citizen
who made the report. Then reports lacking geolocation were excluded from the database by
the second QA method. The third method controlled the Global Navigation Satellite System
(GNSS) positioning accuracy of the reported APS observations, under the assumption that
reports with a horizontal accuracy error greater than 100 m are outliers, which were
eliminated in the data collection stage. If the surveys were accepted under the three QA
methods described above, they were finally checked with the completeness quality measure.
Surveys that were not completed, in terms of obligatory questions, were automatically
blocked against submission through the mechanism configured in the app so that the
database was free from incompleteness.

2.2.2. Logic-Based QA Mechanisms Implemented after the Data Collection Process

The proposed logic-based QA framework for APSM has a four-tier structure, starting
with a set of logically related questions, the basis of the quality assurance (QA) mechanisms,
which in various configurations form five mechanisms and then QA systems (Figure 2).

The logic formula for each conditional statement was built to filter and eliminate data
bias. The conditional statements were the primary components for QA mechanisms. To
determine the potential logic rules, the following general criteria based on the database-
coded answers from the questionnaire were assumed: Q2–Q7, which are the questions
reporting citizen health symptoms, should have been implemented in minimum six condi-
tional statements, while Q1 and Q9 (SWB questions) should have been implemented in
minimum two conditional statements each. Then the conditional statements identified data
inconsistencies, based on false hypothesis, such that false results were returned (Table 1).
The QA mechanisms of start-check, sequence, cross-validation, repeating, and time-loop
check were proposed, with one or two levels of robustness (Table 2). These QA mechanisms
were implemented in the database after the data collection process was finished.
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Table 1. Conditional (Con.) statements, the basis of the quality assurance (QA) mechanisms.

Conditional Statement
Number Logic Formula

Con.1 i f [(Q1 = 0) or ((Q1 = 1) and (any(Q2 : Q7) = 3))] then f alse,
Con.2 i f [(Q1 = 0) or ((Q1 = 3) and (all(Q2 : Q7) 6= 3))] then f alse,
Con.3 i f [(Q1 = 0) or ((Q1 = 1) and (any(Q2 : Q7) > 1))] then f alse,
Con.4 i f [(Q1 = 0) or ((Q1 = 3) and (all(Q2 : Q7) 6= 3))] then f alse,
Con.5 i f [all((Q2 : Q4) or (Q6 : Q7)) = 1) and (Q5 = 3)] then f alse,
Con.6 i f [all((Q2 : Q4) or (Q6 : Q7)) = 3) and (Q5 = 1)] then f alse,
Con.7 i f [all((Q2 : Q4) or (Q6 : Q7)) = 0) and (Q5 = 2)] then f alse,
Con.8 i f [((Q5 = 0) and (Q8 = 3)) or ((Q4 = 0) and (Q8 = 3))] then f alse,
Con.9 i f [((Q5 = 0) and (Q8 6= 0)) or ((Q4 = 0) and (Q8 6= 0))] then f alse,
Con.10 i f [((Q9 = 1) and (Q1 = 3)) or ((Q9 = 3) and (Q1 = 1))] then f alse,
Con.11 i f [((Q9 = 1) and (any(Q2 : Q7) = 3)) or ((Q9 = 3) and (all(Q2 : Q7) 6= 3))] then f alse,
Con.12 i f [((Q9 = 1) and (Q1 6= 1))or ((Q9 = 2) and (Q1 6= 2)) or ((Q9 = 3) and (Q1 6= 3))] then f alse,

Con.13 i f [((Q9 = 1) and ((any(Q2 : Q7) = 3) or (any(Q2 : Q7) = 2)))or
or ((Q9 = 3) and (all(Q2 : Q7) 6= 3))] then f alse,

Con.14 i f (Q11 ≥ Q10) then f alse,
Con.15 i f [(Q11 = 1) or (Q11 > 120)] then f alse,
Con.16 i f [(all(Q2 : Q7) = 0) and (Q11 6= 0)] then f alse,
Con.17 i f [(all(Q2 : Q7) 6= 0) and (Q11 = 0)] then f alse.

To date, such a method has not been implemented in an sCS air-pollution-related
symptom-mapping project. As a data quality assurance framework for APSM, we propose
a data quality assurance system (QAs) that is a combination of each QA mechanism,
depending on the QA mechanism robustness variant (Table 3). The choice of the QA system
variant depends on the project character: each QA mechanism works independently and,
so, can be implemented in the APSM project separately or in any combination, if needed.



ISPRS Int. J. Geo-Inf. 2021, 10, 46 9 of 28

Table 2. QA mechanisms implemented in the citizen air-pollution-related symptoms questionnaire,
with less (1) and more (2) robust variants.

QA Mechanism QA Mechanism Code QA Mechanism Components:
Conditional Statement Combination

Start-check (SC)
SC1 Con.1 or Con.2
SC2 Con.3 or Con.4

Sequence (Sq) Sq Con.5 or Con.6 or Con.7

Cross-validation (CV)
CV1 Con.8
CV2 Con.9

Repeating (Rp) Rp1 Con.10 or Con.11
Rp2 Con.12 or Con.13

Time-loop check (TC) TC Con.14 or Con.15 or Con.16 or Con.17

Table 3. QA system variants applied for air pollution symptom mapping (APSM).

QA System (QAs) Variant QA System Components: QA Mechanism Combination

QAs1 SC1 or Sq or CV1 or Rp1 or TC
QAs2 SC1 or Sq or CV1 or Rp2 or TC
QAs3 SC1 or Sq or CV2 or Rp1 or TC
QAs4 SC2 or Sq or CV1 or Rp1 or TC
QAs5 SC2 or Sq or CV1 or Rp2 or TC
QAs6 SC2 or Sq or CV2 or Rp1 or TC
QAs7 SC1 or Sq or CV2 or Rp2 or TC
QAs8 SC2 or Sq or CV2 or Rp2 or TC

The core principle for the research is the logic-based data quality assurance procedure. The
start-check, cross-validation, and time-loop check mechanisms are based primarily on the med-
ical assumptions included in the logic rule framework. The other QA mechanisms, sequence
and repeating, are purely logical and result from social and psychological survey methods for
monitoring, the typical respondent-answering process, and data quality control [86].

The start-check mechanism was used to verify the report consistency at the beginning
of the survey, excluding reports whose symptom severity answers were not consistent
with the general well-being question. The quality assurance method of applying a general
question about the issue preceding the detailed questions was used by Bastl et al. [8] and
Bousquet et al. [87]; however, these studies did not report success in using this conditional
statement. We examined this in two variants of robustness. Components and algorithms of
the start-check mechanism are presented in Tables 1 and 2, which were implemented in the
database work as follows: Variant 1 is less robust and assumes that the report is consistent
when the citizens assess their current comfort as “good” (1), and then the answers to
Q2–Q7 should be between “no symptoms” (0) and “moderate symptom severity” (2). If
the answer for Q1 is poor self-comfort (3), then at least one question between Q2–Q7 must
be answered as “strong symptom severity” (3). Variant 2 is stricter and assumes that the
possible answers for Q2–Q7 can only be “no symptoms” (0) or “mild symptom severity” (1)
when the current comfort is rated as “good” (1). If the answer for Q1 was “poor comfort”
(3), the same conditional statement was used as in variant 1. For both variants, the reports
with the answer “I have no opinion” (0) for Q1 were excluded.

The sequence mechanism was applied to exclude user automatism in providing answers,
which is often caused by a citizen giving rash answers or not reading the questions. Therefore,
each report with all questions answered by responses with the same place in the sequence (e.g.,
every first answer for each question) were eliminated from the database. The QA mechanism
is based on the method of rearranging the order of possible answers [88,89] for one question in
the sequence of similarly asked questions. The standard order of the answers for questions
Q2–Q7 was 1, 2, 3, 0. Q5 was an exception, with an answer order of 3, 0, 1, 2.

The cross-validation mechanism was used to reject responses by using three essentially
related questions. If the answer to the additional question was not consistent with one



ISPRS Int. J. Geo-Inf. 2021, 10, 46 10 of 28

of the two previously answered related questions, the report was excluded. The APS
mentioned in Q8 (rubbing eyes) should be related to symptoms of a runny nose (Q4) or
watering eyes (Q5). The mechanism was tested in two variants, where variant 2 is stricter.

The repeating mechanism determines the consistency of the report, according to the other
previously answered questions, by asking the same question but in a different way. If the
repeated answer is not consistent with the former one [21,88,90,91], the report is excluded
from the database. This was used with Q9, which repeated the content about the citizen’s
self-comfort in Q1. Additionally, the mechanism tested the report’s compatibility based on the
repeated SWB question and symptom severity ones (Q2–Q7). The mechanism was examined
in two variants of the robustness level analogous to the previous mechanisms.

The time-loop check mechanism was used to eliminate reports that did not align to the
geolocation of the citizens, according to the length of their stay in a place in comparison to the
duration of their symptoms. Previous studies [92–94] have shown that human allergic reactions
to pollen range from 10 to 20 min, usually resolving after 1–2 h for an early-phase reaction and
3–4 h with resolution after 6–12 h, sometimes even 24 h, for a late-phase reaction. The late-phase
reaction is preceded by an early-phase reaction. The early-phase reaction is characterized by
symptoms such as allergic rhinitis (including sneezing, itching, and rhinorrhea) [34,95], while
the late phase is connected with nasal congestion and obstruction [34,96]. For anthropogenic-
sourced air pollutants PM10 and PM2.5, the reaction time (according to the pollutant type)
ranges between 2 and 10 min for the most sensitive subjects and resolves after 30 min [97,98].
For the purpose of APSM, we adopted the time range for the duration of the human early-
phase reaction to air pollutants as between 1 min and 2 h. This mechanism assumes that all
reports with a time loop value higher than the duration the user remained in the place are
eliminated, as such information indicates a late-phase reaction, which is not connected with
the actual geolocation of the citizen.

2.3. GeoWeb Method Supporting Data Quality Assurance

The GeoWeb platform, which was the technological basis of this project, to maintain
project openness, consists of a mobile app for field data collection based on the configurable
Survey123 for the ArcGIS application (Survey123; Esri Inc., Redlands, CA, USA) and a
data mapping module, including dashboards (web mapping applications based on ArcGIS
Online (AGOL) components; see Figure 3), available to citizens for free on a smartphone
but also via a web browser.

The mobile app (A) includes the APS survey for field data collection. The educational
and technical training materials (B) are provided in a narrative web mapping application
(Esri story map templates), which are served through Representational State Transfer
(REST) services. The collected data are sent to the geodatabase through REST services,
and raw data are presented in the dashboard app (C) in real time. Then, the raw data
are QA-checked in the database using ArcGIS Desktop integrated with the REST and R
statistical software (R: a language and environment for statistical computing; R Foundation
for Statistical Computing, Vienna, Austria; www.R-project.org) (D), which is used for
analysis of the QA mechanisms and QA system variant robustness, as well as the survey
result statistics. Finally, the QA-checked data are returned to the database and presented
as APSM results in the open web mapping applications, including dashboards (C). The
results were reported in the dashboard app as a percentage of the observations eliminated
by the most robust QA mechanism combination, presenting the total robustness of the
implemented QA system.

The questions proposed for the survey in Section 2.2 were included in the mobile
survey, which was divided into individual pages, in order to help the user to quickly
navigate between questions without scrolling down the whole form [99,100]. This helped
to avoid mistakes in filling out similar APS questions and focus on the relevant section of
the survey. An offline mode in the mobile app was secured to collect actual geolocation,
even if without the internet. We used a user authorization option with an alphanumeric
nickname and a four-digit code at the beginning of the survey in order to help follow

www.R-project.org
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the reports of each citizen, while also providing them with anonymity. To improve the
quality of collected data, we implemented closed questions with single- or multiple-choice
type and data range functionality, which prevented submitting certain reports that were
inconsistent with the rules of the project.
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Within the field data collection campaign, the reports were mapped, in real time, in a
point-symbolized data layer (Figure A4, Appendix A). Cooperation between the Survey123
mobile app and the web mapping module was based on the typical WebGIS architec-
ture [101]. The dashboard displayed the user activity-ranking widget, which was based
on a list of 10 most active citizens, presented as their nicknames together with their award
titles, as well as their number of reports in the last month (Section 2.1). This functionality
helped to enhance the engagement of the citizens during the data collection process.

The design concept and interface description of GeoWeb applications, along with the
crowdsourced symptom map formed from the Lublin case study, are provided in Appendix A.

3. Results

Data quality assurance is key for useful and effective sCS, and so, the results mostly
focus on the implemented QA mechanisms and the robustness analysis of the QA system
variants for air-pollution-related symptom mapping. We first focused on the field data
collection campaign, which provided us with the input for our analysis. The citizen activity
curves indicated the varying and regularly decreasing activity of the citizens. For QA
robustness results, our key focus was the eight QA system variants, the combinations
of five logic-based QA mechanisms, which rejected from 18.3% to 28.6% of reports with
data bias. As a result, we created and proposed a QA framework for APSM, based on the
ArcGIS platform, which was configured and customized to the study requirements. The
air-pollution-related symptom map and GeoWeb apps are presented in Appendix A.
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3.1. Data Collection Campaign Outcomes

During the data collection campaign, 1936 APS reports were sent by citizens to the
cloud, which were used as the input to the QA-mechanism-developed database. The citizen
scientists involved in the APSM project became members of the Citizen Science Community
of University of Warsaw (CS-Community-UW; Warsaw, Poland) (https://arcg.is/WeqfK),
which was set up to share all project data, materials, and apps in GeoWeb, available
at https://arcg.is/1iDD18, in order to provide continuous access to the results. When
citizens collected data, their activity was controlled and updated every month in a user
activity module implemented in the dashboard app (Section 3.3). Analysis of the activity
curve indicated that citizen activity peaked for 11 days at the beginning of the campaign
(39–48 reports per day) and then decreased. After this, activity stabilized at between 4 and
29 reports per day, with two peaks of 32 and 34 reports per day (Figure 4). The students
were more active than non-academic citizens. The most active student collected 25 reports
in April, whereas the most active non-academic citizen collected 7 reports in March.
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3.2. Robustness of QA Mechanisms

During the initial stage of data set filtering, 19 outliers with no geolocation were
eliminated. Another 68 APS records were excluded as they were duplicate reports at the
same geolocation within a short (5 min) interval. The horizontal positioning accuracy
varied from 0 to 100 m, where 93% of reports had a horizontal accuracy between 0 and 30 m.
We filtered 26 outliers that had a horizontal accuracy error exceeding 100 m, which were
rejected. As a result, 1823 reports of the 1936 remained and were used as the object of our
logic-based QA implementation study. After the implementation of the QA mechanisms in
the database, their robustness was analyzed.

According to Table 4, the three most robust QA mechanisms for our specific case
study were: repeating in two variants (more robust, repeating2 (Rp2); less robust, repeat-
ing1 (Rp1)) and start-check in the more robust variant (SC2). The repeating2 mechanism
excluded 23.1% of reports, repeating1 eliminated 10.6% of reports, and start-check2 elimi-
nated 6.9% of reports. Thus, most data bias resulting from inconsistencies between the first
and the repeated question was identified by the repeating mechanism.

Three QA mechanisms—start-check, cross-validation, and repeating—which were
implemented in two variants (i.e., less robust and more robust) were analyzed in terms
of the report reduction in each variant. For the start-check mechanism, the two vari-
ants reduced 71 of the same reports, while start-check2 eliminated 54 more reports than
start-check1. Cross-validation1 and cross-validation2 reduced the same 54 reports, while
cross-validation2 additionally eliminated 54 observations. For the repeating mechanism,

https://arcg.is/WeqfK
https://arcg.is/1iDD18
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repeating1 and repeating2 were compatible for 194 reports, while repeating2 was 12.5%
more robust than repeating1, excluding 228 additional APS reports (Table 5).

Table 4. QA mechanism robustness.

QA Mechanism Reports
QA Mechanism

Robustness RankName Code Accepted Rejected Total Rejected
(% of Total)

Start-check
SC1 1752 71 1823 3.9 5
SC2 1698 125 1823 6.9 3

Sequence Sq 1806 17 1823 0.9 8

Cross-validation
CV1 1769 54 1823 3.0 6
CV2 1716 107 1823 5.9 4

Repeating Rp1 1629 194 1823 10.6 2
Rp2 1401 422 1823 23.1 1

Time-loop check TC 1771 52 1823 2.9 7

Table 5. QA mechanism variant compatibility.

Start-Check2 Cross-Validation2 Repeating2

Accepted Rejected Accepted Rejected Accepted Rejected

Start-check1
Accepted 1698 54
Rejected 0 71

Cross-
validation1

Accepted 1716 53
Rejected 0 54

Repeating1 Accepted 1401 228
Rejected 0 194

The largest data bias was related to the inconsistency between the general SWB
question and its repeated query (repeating1: 10.6% and repeating2: 23.1%). This result
could have been produced by the inaccuracy of the repeated-question structure or by
citizens misunderstanding the question. The start-check2 mechanism rejected 6.9% of
reports, which means that the severity symptoms did not align with the general SWB
assessment. The sequence mechanism was the least robust (0.9%), indicating that citizens
rarely filled in the form automatically, that is, without carefully reading the answers. A high
rejection rate was observed using the QA mechanisms start-check2 (6.9%), cross-validation2
(5.9%), and repeating2 (23.1%), which were between 46% and 57% more robust than their
alternative variants (start-check1, cross-validation1, and repeating1, respectively). They
rejected a higher percentage of reports. Due to its high rejection rate, start-check2 was
found to also reject some consistent reports.

Finally, according to the methodology (Section 2), the QA mechanisms were combined
into eight QA system variants (QAs1–8; Table 6). Implementing each subsequent QA
mechanism changed the database, considering the QA system functions. For this study, the
most robust QA systems were QAs8 and QAs7 (28.6%) and QAs2 and QAs5 (27.3%), which
best reduced the number of falsely filled in reports in the survey. They increased the quality
of the collected data but rejected a percentage of reports that might have contained valid
information. As a result, some valuable data would be lost. The least robust were QAs1
(18.3%) and QAs3 (20.0%), which could not identify all the reports with false data, thus
decreasing the quality and validity of the research results. As mentioned above, two pairs
of QAs variants reduced the same data set and replicated the result database (QAs2 with
QAs5; QAs7 with QAs8), thus allowing their interchangeable use. To reduce replication
in the results, the studied QA framework was limited to six QAs variants (with QAs5
and QAs7 removed). For another location (i.e., country, continent) and society structure,
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the robustness ranking of the six QAs variants could be different and the particular QA
mechanisms could be more or less effective than in the considered case study in Lublin.

Table 6. QA system variant robustness.

QA System
Variant QA Mechanisms Combination

Reports
QA System

Robustness RankAccepted Rejected Total Rejected
(% of total)

QAs1 SC1 or Sq or CV1 or Rp1 or TC 1490 333 1823 18.3 6
QAs2 SC1 or Sq or CV1 or Rp2 or TC 1325 498 1823 27.3 2
QAs3 SC1 or Sq or CV2 or Rp1 or TC 1459 364 1823 20.0 5
QAs4 SC2 or Sq or CV1 or Rp1 or TC 1445 378 1823 20.7 4
QAs5 SC2 or Sq or CV1 or Rp2 or TC 1325 498 1823 27.3 2
QAs6 SC2 or Sq or CV2 or Rp1 or TC 1422 401 1823 22.0 3
QAs7 SC1 or Sq or CV2 or Rp2 or TC 1302 521 1823 28.6 1
QAs8 SC2 or Sq or CV2 or Rp2 or TC 1302 521 1823 28.6 1

3.3. APSM Results after QA System Implementation

APSM results calculated on the QAs8-checked data set were added to the GeoWeb
dashboard app (Figure 5) such that each user could track the APSM data of the whole
crowdsourcing campaign, presenting the impact of air pollution on his/her SWB status.
From the QAs8-checked database, the most frequently observed health symptom was a
runny nose, which was reported in 46.98% surveys during the whole campaign. The least
frequently reported symptoms were breathing problems (only 6.92% surveys). The QAs8
had an impact on the percentage of surveys reporting any APS (Table 7). Most surveys
reporting breathing problems were rejected, reducing their percentage in the database by
47.34%. The percentage of surveys reporting a runny nose remained almost unchanged, as
it increased by 0.86%. The percentage of surveys reporting other symptoms reduced by
14.88% to 35.42%.
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Table 7. QAs8 impact on the percentage of surveys with reported air-pollution-related symptoms.

% of Surveys with Reported Symptoms QAs8 Impact on the
ResultsRaw Data QAs8-Checked Data

Sneezing 29.98 25.52 −0.149
Nose itching 30.27 21.98 −0.274
Runny nose 46.58 46.98 0.009

Watering eyes 26.77 21.52 −0.196
Scratching in the throat 22.73 14.68 −0.542

Breathing problems 13.14 6.92 −0.473

The information about the percentage of surveys reporting individual symptom
severity values were presented in the dashboard app (Q2–Q8; Figure 5f), which includes
additionally the percentage robustness of the QAs8 implemented in the project (Figure 5g).

Moreover, the web application presented the results in terms of the spatial location
of eligible symptom-related layers (Q1–Q8; Figure 5a–c), the number of QA-checked
reports depending on the spatial extent (Figure 5d), and the general level of citizen comfort
(Figure 5e). For more details about the GeoWeb app, see Appendix A.

4. Discussion

In this study, we introduced social innovation into the urban air pollution issue, where
citizens act to assess air pollution using their symptoms, thereby extending the paradigm
of air pollution. We considered the spatial context; therefore, a map was used to spatially
model symptom severity (Figure A5, Appendix A). The web mapping application is public
and provides information about air pollution in specific areas of the city such that citizens
can learn about which areas could positively or negatively impact their SWB, according to
information about the severity of the symptoms observed by the APSM project members
within individual months. The air pollution level based on health symptom observations
could be compared with other methods, such as satellite observations and in situ mea-
surements. Such in situ ones were described and studied by [81], who compared pollen
counts recorded by the European Aeroallergen Network and pollen-induced symptoms
reported by pollen allergy sufferers, precisely the Pollen App users’ community. The health
symptoms registered by the APSM community can be compared with green pollutants’ con-
centration levels recorded by the Polish Aerobiological Monitoring Network [102]. In the
context of other air pollutants, Sentinel 5p imagery can be taken as a point of comparison,
especially because it is served near real time (NRT) [103], although at a more global scale.

Although the potential for using crowdsourced data to monitor urban air pollution
was demonstrated here, the minimum report sample can be considered a limitation of
the project. Citizen science is an emerging trend in Poland, and so, specific motivation
mechanisms need to be elaborated, based on the citizen motivation recommendations
developed in other projects [104,105]. As APSM focuses on citizens who are interested in
the effect of air pollution on their health and well-being, our study is wider than other
projects that are dedicated only to people diagnosed with health problems. This means that
the motivation mechanisms involved differ from those that are appropriate for patients
(e.g., free medical consultations).

Crowdsourcing projects rely on a suite of methods to boost data quality and account
for data bias [20]. To gain better data quality in CS, three-step mechanisms are generally
recommended: taking considerations before, during, and after the data collection pro-
cess [21]. The APSM method, using logic rules to reject inconsistent database entries, was
successfully implemented after the data collection process. Depending on the expected
data quality level, different mechanisms were tested.

From a practical point of view, the data quality (i.e., completeness, spatial accuracy,
thematic resolution, timeliness, and logic consistency) should be suitable for the project
purpose. The quality of CS data is expected to be similar to that of the data collected
by professionals. According to Wiggins et al. [21], some general solutions for improving
crowdsourced data quality include volunteer training (workshops), a large sample size,
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data filters, data mining algorithms, a qualifying system, voting for the best, reputation
scores, online data and metadata sharing, citizen contribution feedback, reuse of data, and
replicate studies; however, the purpose of our study was to create a data quality framework.

This confirms that data quality control mechanisms are an indispensable element
in any citizen-driven research, hence also being effective in CS activities such as that
considered in this paper. The removal of falsely completed surveys increased the collected
data’s quality and usefulness. In our research, only 5.8% of data were eliminated due
to positioning accuracy, either a lack of geolocation or duplicated reports at the same
geolocation. Farman [106] identified 12% of crowdsourced data to have accuracy-related
errors. Thus, we conclude that in our sCS, this type of error did not pose a significant
problem in terms of data quality; however, subjective data bias definitely does. Still, the
problem of human bias in data poses a problem that must always be considered during data
analysis. Human bias introduced into data can be mitigated by using clearly stated survey
questions, providing additional training, and limiting the scope of the survey. We found
that up to 29% of all collected surveys regarding air pollution objectively contained useless
or false information. Kosmala et al. [20] reported subjective data bias at levels between 5%
and 35%, depending on the simplicity of the tasks assigned to citizens, Hube et al. [107]
presented data bias at 15–17% in a crowdsourced data set, and Eickhoff [108] pointed out an
accuracy rate reduction of 20% due to cognitive data bias. We recognize that our percentage
share of data bias was high, highlighting the absolute necessity of a QA mechanism
framework for sCS health-related projects. As QA mechanisms are created through the use
of logic rules, they are easy to understand and can be crafted to match particular (expected
or observed) error types in collected survey data. We found that QA mechanisms can be
used to remove surveys that contain clearly defined errors. Moreover, by choosing a single
QA system (Table 3) and combining rejected reports with the username, each user’s quality
rank can be calculated. A user who passes the QA system could then be rewarded with
trust and reputation statuses. Such citizen trust models have been proposed by Alabri and
Hunter [109], who developed a social trust metrics framework, and Langley et al. [110],
who applied a reputation model and used a reputation score system to determine the
threshold for accepting volunteered data. This should be based, for each citizen, on the
ratio of reports accepted by the QA system to the total number of their surveys: the higher
the ratio of accepted reports, the higher the level of citizen trust.

The APSM data quality mechanisms implemented after the data collection stage—but
referenced to a particular user’s reports—could be used to develop a user motivation
system (which, in the current study, was limited only to user activity). Furthermore, the
technological implementation of QA systems as cloud services may enable the ranking of
user trust and reputation during the data collection process. Then, not only the quantity
but also the quality of user reports can be analyzed and their level of reputation could be
assessed and presented during the campaign. In large-scale CS projects such as iNaturalist
(iNaturalist.org), the trust and reputation of citizens are based on their activity: “The users’
community ensures that data is reliable, but it also gives the opportunity for fellow users
to gain knowledge” [111].

In future research, during the data collection process, some new solutions can be
implemented, such as GNSS trajectories. Currently, Q10 (Figure 1) requires users to
estimate how long they have stayed in a location. Using GNSS or Global System for
Mobile Communications (GSM) data to characterize user mobility patterns and analyze
user spatial trajectories could increase data quality and make the application smarter.
Changes in user trajectories could also result in an individual push notification to maintain
or cancel the APS, depending on the change of location. Finally, to gain better data quality,
improvements before the data collection stage may also be proposed. APSM was carried
out as a Polish case study. As CS has been recognized as an emerging trend in Poland,
we found it necessary to promote the sCS concept through the European CS platform
(https://eu-citizen.science) and engage citizens in air pollution monitoring by organizing
training sessions. What differentiates CS from other VGI activities is the fact that CS can be

https://eu-citizen.science
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taken up by any volunteers who have undertaken standardized training. Learning how to
observe one’s own symptoms in reaction to air pollution, relating them with air quality
information and green pollutant concentration levels, and regular symptom recording
were considered prerequisite parameters for ensuring the quality of APSM. The D-NOSES
project [7] proved that the sense of smell of individuals can be calibrated through training
on odor pollution and workshops exploring odor perception in the D-NOSE method.

In the study, we applied a user activity rank model, which showed that citizen activity
decreased over time, which is typical for a CS project [112]. The level of citizen engage-
ment and motivation was the highest at the beginning of the crowdsourcing campaign
(100 reports per day), dropping after 14 days. The two peaks in the last month of the field
data collection campaign could have resulted from the motivational workshops with an
educator where citizens rankings were discussed, thus increasing competition between the
citizens (35 and 40 reports per day, May 2018). In summary, for a case study of Lublin or
any city of similar size and structure, a citizen group larger than 74 people is needed and
regular workshops, as well social media campaigns engaging people to participate directly
in the CS group forum, are necessary to maintain their activity.

Due to the intuitive access and operation of the presented tools, such methods and
tools are suitable for scientists, educators, and evaluators alike. The ability to reduce data
bias in real time is not possible without a programmed web-based mechanism functionality.
AGOL-configurable capabilities allow for data filtering, but the filters are too basic for the
conditional statement combinations that form the QA mechanisms.

Conveniently, our database was set up on REST services, such that the QA mechanisms
and their combinations could be implemented and analyzed using desktop software, in
direct connection with AGOL apps, which ensured the stability of the REST service-based
data source.

5. Conclusions

In summary, the APSM project was the first research in Europe that focused on
assessing air pollution based on the health symptoms of citizens and their subjective well-
being. This source of air pollution monitoring could be complementary to other methods.
The highly subjective form of the data source could be burdened with data bias and specific
errors. Therefore, it requires a QA framework for APSM projects, which was proposed and
implemented in this study.

Of the five QA mechanisms employed, the most robust were those aimed at removing
inconsistent user answers, which were intentionally repeated in the survey (i.e., the re-
peating QA mechanism). These results suggest that some of the methods employed might
lead to a decrease in user engagement, as some users were not consistent with their own
answers in the same survey. This finding may be due to a natural phenomenon associated
with the human condition or to a survey questionnaire that lacks user engagement. Fu-
ture surveys employing sCS as a data source might expect many haphazardly completed
user surveys. Analyzing the QAm effectiveness results, we assume that some of the QA
mechanisms’ effectiveness can be increased, and we recommend some modifications to
the examined QA framework. The sequence mechanism should be additionally enhanced
by a functionality measuring how much time it took to fill out the form. This will help
capture the user automatism in filling out the survey. Furthermore, the results provided
evidence that APS assessment is much easier for citizens than identification of their SWB.
This conclusion is confirmed with the level of the repeating mechanism’s robustness, which
eliminated the most reports, and was based on the repeated SWB questions. Therefore,
we recommend that researchers rather focus on the health symptom questions and not
repeat SWB questions in the survey, as it could be too difficult for the citizens to verify.
The screening question could be developed in future research as well. Moreover, the QA
method for APSM can be extended by the abundance and frequency of the surveys in a
close or the same geolocation in the near time. This will be a mechanism that potentially
improves the reliability of collected data. If some citizens give very close responses in the
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same or a close time and location, then the quality of data should have a potentially higher
level of trust than those that are not confirmed by any surveys of other citizens.

The focus of our research was not on validation with digital sensors but on elimi-
nation of logically inconsistent answers and technologically incorrect objects. However,
the APSM method can capture the moment when air pollution changes. The observed
health symptom severity can be validated with air pollution concentrations measured by
air-quality-monitoring stations. Having information about whether citizens are diagnosed
as pollen allergy sufferers, and by collating this information with the current concentration
of pollen species, the chance for confirmation of the impact of air pollution on citizen
SWB is higher. The completed database has potential for further research to test the thesis,
if citizens more sensitive to air pollution provide data of better quality than those who
do not report any pollen allergy or other relevant preexisting conditions. Thus, people
who are more sensitive to air pollution can be potentially more interested in providing
high-quality data than those who have no air-pollution-related health problems. How-
ever, understanding the mechanisms underlying citizen scientists’ motivations requires
further research.

Citizens, together with scientists, built a reliable model of the impact of air pollution
on the well-being of citizens in their city. As a result of our research, we can confirm that
not only QA mechanisms but also citizen activity are necessary for CS contribution to
geospatial data quality improvement.

Due to the proposed QA framework, the data obtained with regard to the measured
air pollution could be output as a spatial model of city well-being.
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Abbreviation

Acronym Defined in Section Meaning (Section)

CS citizen science
Citizen-driven research that citizens (non-experts) participate
in by cooperating with researchers (Introduction, Section 1.2).

QAm quality assurance mechanism

Conditional-statement-based mechanism for data bias
controlling. Five data quality assurance mechanisms are
proposed in this study (Introduction, Section 1.3; Section
Materials and Methods, Section 2.2).

QAs quality assurance system

Combinations of data quality assurance mechanisms. In the
study, we studied and analyzed eight QAs variants, depending
on their robustness levels, QAs1–QAs8 (Materials and Methods,
Section 2.2).

GeoWeb geospatial web
Geographically related tools and web services for individuals
and groups (Abstract, Introduction, Materials and Methods
Section 2.3).
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SC (SC1,
SC2)

start-check mechanism in
variant 1 and variant 2

The start-check mechanism is used to verify the report quality
at the beginning of the survey and controls the report quality
during the analysis of each symptom severity answer.The
mechanism studied and proposed in two variants of robustness
(variant 1: less robust; variant 2: more robust) (Materials and
Methods, Section 2.2).

Rp (Rp1,
Rp2)

repeating mechanism in
variant 1 and variant 2

The repeating mechanism determines the quality of the report,
according to other previously asked questions, by asking the
same question but in a different way.The mechanism studied
and proposed in two variants of robustness (variant 1: less
robust; variant 2: more robust) (Materials and Methods,
Section 2.2).

Sq sequence mechanism
The sequence mechanism was applied to exclude user
automatism in providing answers (Materials and Methods,
Section 2.2).

CV (CV1,
CV2)

cross-validation mechanism
in variant 1 and variant 2

The cross-validation mechanism was used to reject responses
using three essentially related questions.The mechanism
studied and proposed in two variants of robustness (variant 1:
less robust; variant 2: more robust) (Materials and Methods,
Section 2.2).

TC time-loop check mechanism

The time-loop check mechanism was used to eliminate reports
that did not align with the geolocation of the citizens, according
to the length of their stay in the place, in comparison to the
duration of their symptoms (Materials and Methods,
Section 2.2).

SWB subjective well-being
Reflects the philosophical notion of people’s good life, a proxy
of their life satisfaction, momentary experiences, and stress
(Introduction).

sCS human-sensed CS
Citizen science measurement relying on one of the human
senses (Introduction).

APSM
air pollution symptom
mapping

Air pollution monitoring, expressed on the map as the severity
of human health symptoms caused by combined factors of
anthropogenic and biophysical ambient air pollutants
(Introduction).

APS air pollution symptoms
Human health symptoms related to air pollution, caused by
combined factors of anthropogenic and biophysical ambient air
pollutants (Introduction).

AP air pollution

Air pollution refers to six major air pollutants: inhalable
particulate matter (PM10), fine particulate matter (PM2.5),
ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and
carbon monoxide (CO) (Introduction).

AQ air quality

Air quality refers to the AQI as well as to classifications,
opinions, and feelings (including citizens’ experiences) of air-
and air-quality-related SWB. However, a consensus about
urban air quality terminology has not been reached, and
researchers distinguish air pollution through pollen exposure
[49] (Introduction).

AQI air quality index

The AQI tracks six major air pollutants—inhalable particulate
matter (PM10), fine particulate matter (PM2.5), ozone (O3),
sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon
monoxide (CO)—to describe the air quality with the use of an
objective scale (Introduction).

AGOL ArcGIS Online WebGIS platform by Esri Inc. (Materials and Methods).

Q1–Q12 question 1–question 12

The 12 questions about air-pollution-related symptoms and
factors related to APS, but also additional information about
subjective well-being, asked to citizens in the mobile survey
(Materials and Methods, Section 2.2).

Con.1–
Con.17

conditional statement
1–conditional statement 17

The 17 conditional statements that, in specific combinations,
are the basis of the developed data quality assurance
mechanisms (QAm) (Materials and Methods, Section 2.2).

Survey123,
cascade,
time
slider

Survey123 for ArcGIS mobile
app, Esri Story Map Cascade
app template, Esri Time
Aware app template

Configurable mobile apps and web app templates based on
ArcGIS.

PM particulate matter

A mixture of particle pollution, both solid and liquid droplets
found in the ambient air. PM is characterized by particle size
and chemical composition. A PM fraction of 2.5 µm or less
(PM2.5) is especially important for evaluating health as well as
environmental risks (Introduction).
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Appendix A APSM-Dedicated GeoWeb Tools Supporting Quality Assurance

The tools for the APSM project were based on GeoWeb. We used ArcGIS platform
components, which were available to the technologist as a puzzle structure, which allowed
for direct customization of the applications to implement the APSM assumptions and
requirements. For the project, we configured the mobile app and a set of web apps was
publicly shared for citizens.

Appendix A.1 Mobile App for Crowdsourcing

The mobile app was based on Survey123 for ArcGIS components and is available at
the public link https://arcg.is/0HWXrO. The survey consists of six information pages to
facilitate its use and clear navigation (Figure A1a). It is available in two languages, Polish
and English (Figure A1b). The app starts with an introduction with a short user guide
(Figure A1c) in order to explain the research rules and how to use the survey app (page 1),
followed by the user’s basic information (nickname, four-digit code, and student/non-
academic status; Figure A1d), helping the users in the citizen group to control the data
collection process (page 2). The next pages (3–5) include 12 APSM questions, which are
completed with the user’s geolocation and the date of the report (page 6). All obligatory
questions are marked with a red star (Figure A1e). The third page focuses only on the
general well-being level of the citizens (Figure A1f), which is the basis for the start-check
mechanism. Then, the citizens answer questions about their individual symptoms using
drop-down lists of answers (Figure A1g). In the summary (page 5), the citizens specify their
level of well-being, choosing from a star rating scale, where one star means the lowest and
three stars indicate the highest level of well-being (Figure A1h). Then, using the calculator
appearance widget, the users report the length they have stayed in their location and the
symptoms observed. These values are expressed in minutes, provided for question 11
(Figure A1i). Question 11, regarding the length of the observation of symptoms, is fixed
in the app as relevant only when any APS are observed. If Q2–Q7 are answered as “no
symptoms,” then Q11 does not appear in the survey. On the last page of the app, a map
widget is presented to mark the current location and date (Figure A1j). Here, app users
are told that all reports with a horizontal positioning accuracy error greater than 100 m
are automatically eliminated, as these values are considered GNSS positioning accuracy
outliers. When completing the survey, the user can check the current location status at any
time (i.e., latitude, longitude, and horizontal accuracy; Figure A1k). The default date is set
to the current date. The geolocation defaults to the current GPS location of the user, as well.
When the survey is completed, a bottom-right submit tick is made active, and the report is
ready to send to the cloud geodatabase.

https://arcg.is/0HWXrO
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Figure A1. Six-page mobile survey app user interface: (a) six-page navigation, (b) button to choose a language, (c)
introduction and user guide, (d) user’s basic information, (e) obligatory question mark, (f) general well-being question, (g)
health symptom questions, (h) repeated well-being question, (i) length present in the place report, (j) location and date, and
(k) current location status.

Appendix A.2 APSM: Result Sharing through Web Apps

The resulting web app is available at https://arcg.is/1iDD18 as an open application
for each person interested in the project results. The site is primarily used to provide result
feedback for the citizens engaged in the study. The app was configured based on the Map
Series template and consists of five applications, which can be opened by selecting five
buttons: 1, Introduction to the project; 2, Field data collecting app; 3, Real-time data (before
logic-based QA check); 4, APSM results (after logic-based QA check); and 5, APSM time
slider (Figure A2).

https://arcg.is/1iDD18
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The first app—Introduction to the project (Figure A3)—is based on the Esri Story Map
Cascade template, which is used for building narrative web mapping apps by combining
images, maps, and multimedia context with narrative text (https://storymaps-classic.
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Figure A3. Educational part of the application: cascade story map.

Button number 2 links to a web version of the Survey123-based application for data
collection.

Application 3 presents the raw data collected before the QA process and contains
the operations-dashboard-based interface, which consists of five modules: a map with
the raw-data APSM reports collected during the crowdsourcing campaign (Figure A4a);
a legend (Figure A4b); an indicator counting the total number of reports (Figure A4c);
a histogram of the citizen activity from the beginning of the crowdsourcing campaign
to the current moment (Figure A4d), which changes dynamically, according to the map;
and a citizen activity ranking, divided for each month and cumulatively (Figure A4e), as
described in Section 2.1.
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The APSM result application (number 4) is a six-module app that presents the results
of the APSM data checked with QAs8, the most robust variant of the QA system. The
application includes a map (Figure A5a) with eligible symptom-related layers (Q1–Q8;
Figure A5b), a legend for the map (Figure A5c), a pie chart for the severity of each symptom
(Q2–Q8) indicated with question-related bookmarks (Figure A5d), a bar chart presenting
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the level of general citizen comfort (Figure A5e), a pie chart presenting the percentage
robustness of the QA system (Figure A5f), and an indicator counting all the QA-checked
reports (Figure A5g).
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layer list, (c) legend, (d) pie chart presenting severity of each air pollution related symptom, (e) bar chart of citizen general
comfort, (f) pie chart of QA system robustness, and (g) indicator of QA-checked reports changing according to the map
extent.

The time slider app (number 5) is based on the Esri Time Aware configurable template.
It includes a map of point-symbolized QA-checked reports accompanied by a time slider
tool, which displays the increase in collected data over the entire duration of the crowd-
sourcing campaign. The time slider can move automatically (with a play button) or can be
moved manually to the required date (Figure A6).
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