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Abstract: The bus stop layout and route deployment may influence the efficiency of bus services.
Evaluating the supply of bus service requires the consideration of demand from various urban
activities, such as residential and job-related activities. Although various evaluation methods have
been explored from different perspectives, it remains a challenging issue. This study proposes a
spatial statistical approach by comparing the density of the potential demand and supply of bus
services at bus stops. The potential demand takes jobs-housing locations into account, and the supply
of bus services considers bus stops and their associated total number of daily bus arrivals. The
kernel density estimation (KDE) and spatial autocorrelation analyses are employed to investigate the
coupling relationship between the demand and supply densities at global and local scales. A coupling
degree index (CDI) is constructed to standardize the measurement of demand-supply balance. A
case study in Wuhan, China demonstrated that: (1) the spatial distribution of bus stops is reasonable
at global level, (2) Seriously unbalanced locations for bus services have been detected at several stops.
Related adjustments that can improve these defects are highly recommended.

Keywords: bus stop; jobs-housing locations; density; coupling degree index (CDI)

1. Introduction

Establishing an effective and efficient public transport system is important for sustainable
urban development, which may reduce car dependency and energy consumption [1–3]. Bus
stops and bus routes are essential components of public transit systems. Suitable locations
and distributions of bus stops are necessary to balance the efficiency and accessibility of bus
services. Bus stop distributions that are improper or redundant not only lead to poor service
quality but also waste public resources [4]. Therefore, evaluation researches towards the
proper allocation of bus stops are necessary and meaningful, moreover, relevant studies have
attracted considerable attention from the academic and policy-making communities.

Various approaches have been developed to evaluating the location-allocation of bus
stops, however, an efficient and flexible evaluation method that gives insight into the relation-
ship between demand and supply of bus services is in urgent need. Previous models mainly
investigate the effect of factors involving the access coverage of stops [5], the accessibility of
stops [6], and the spacing between stops [7]. One of the most widely used methods is the
buffer analysis of bus stops. However, this type of method is incapable of properly detect-
ing the relationship between demand and supply because of the ignorance of some critical
elements on the supply-side (e.g., service capacity). Focusing on the coincidence between
the deployment of public transit services and travel demand is vital for a decent evaluation
method [8,9]. In line with this point, some innovative methods, such as the accessibility-type
evaluation model [6,10], have been proposed. Nevertheless, the preliminary detection of the
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demand and supply relation still needs to be improved [11], moreover, the complexity of the
model and the high requirement of the raw data bring new dilemmas such as how to properly
set some key parameters [10,12], which may directly affect the accuracy and stability of the
model and restrict the widely use of a corresponding one.

This study proposes a density-based approach for evaluating the coupling degree be-
tween the supply and potential demand of bus services. For the potential demand, detailed
jobs-housing locations with the numbers of employees and residents are utilized. For the
bus supply, the locations of bus stops and their associated total number of daily bus arrivals
are taken into consideration. The approach compares the density of demand and supply
based on kernel density estimation (KDE) and spatial autocorrelation analyses. Based
on this approach, a coupling degree index (CDI) which reflects the balanced relationship
between demand and supply is developed, and a visual representative method combining
the Moran scatterplot and the CDI is also developed. The outcomes may effectively reveal
locations where the potential demand and supply do not match and classify the bus stops
in terms of the coupling relationship between demand and supply of bus services.

The remainder of the paper is organized as follows. The next section provides a literature
review on the evaluation methods of the bus stop layout. Section 3 discusses the study area
and data. Section 4 presents the methodology used in this study. Section 5 explains the results
of the case study. Section 6 highlights the value and discusses the feasible improvements of
the method. Section 7 concludes the paper.

2. Literature Review

There are four basic types of approaches for evaluating the suitability of a bus stop
layout to potential demand. The first type uses the Euclidean or network distances based
buffer approach to count the number of potential passengers within a given radius from
a bus stop or walking time (e.g., 5 min or 400 m) [5,13,14]. The number of people cov-
ered by a buffer can easily be computed and used to evaluate the distribution of bus
stops [5,14]. However, the access coverage models employed in these studies generally
applied a clear-cut service radius to all bus stops rather than considering the variations
in the service capacity (e.g., number of routes serving a bus stop) and other factors (e.g.,
walking environment or system accessibility) among bus stops. Therefore, conducting a
comprehensive evaluation according to the relationship between demand and supply of
bus services is hardly achievable. This defect undoubtedly leads to some biases in assessing
the deployment of bus stops.

The second type of method treats stop-level or route-level accessibility as the eval-
uation metric [6,10,12,15–18]. The relationship between the bus supply and bus demand
is computed. In these cases, social equality issues, like whether different income groups
experience the similar system accessibility of bus routes [10], are generally the main con-
cern. Notably, many relevant studies [6,10,12] have emphasized the relationship between
the demand and supply of bus services using accessibility-based measures. However, the
preliminary detection of the mutual relationship still needs to be improved [11] (e.g., the
oversimplified provision-to-population ratio in [6,12]). Moreover, the comprehensiveness
of models leads to highly complex parameters that may also impact the accuracy and
stability of the model [10,12].

The third type of approach involves finding the best stop locations along a bus route
based on stop spacing [7,19–24]. For a given bus route, deploying more stops reflects better
walking accessibility for bus passengers but longer running time for bus service. Therefore,
there should be a trade-off between the number of stops and system service capacity. In
this type of approach, the demand and supply relationship of bus services is described
by various complex mathematical models. For instance, the objective functions of the
bi-level optimization model proposed by Ibeas et al. [21], and of the hybrid optimization
model proposed by Chen et al. [24]. The stop spacing or the locations of bus stops will be
optimized in terms of minimizing the parameters related to user costs and operator costs.
However, most relevant studies [7,19,20] simplified the network form of an actual transit
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system or even considered a single route when focusing on the optimal spacing between
bus stops.

The fourth approach involves using a coverage model to create an optimized bus stop
set under various objectives, such as minimizing the number of stops [1] or maximizing
the covered demand points [25]. Coverage models can be adapted to optimize the stop
distribution in urban areas with or without existing bus services. In coverage models, the
potential transit demand is associated with the centroids of analysis zones [1,25–27] or with
candidate stops (using accessibility measurements based on distance decay functions) [4].

In general, bus stop layout evaluations are performed to address the question of how
many stops are needed to satisfy the overall demand or how much of the potential demand
can be satisfied by a given number of stops. Geospatial analysis and linear programming
are applied to fulfill these tasks. The potential demand (mostly zone based) is taken into
consideration for coverage calculations, but the service supply at each stop is often not
well-measured. Without a detailed detection of the supply at bus stops and of the mutual
relationship between demand and supply, it is unknown to what degree the supply matches
the potential demand. Therefore, finding an evaluation method that can effectively detect
the balanced relationship between demand and supply of bus services is the major aim of
this study.

3. Study Area and Data
3.1. Study Area

The case study area, Wuhan, is one of the most populated cities in Central China with
over 10 million people. As the capital city of Hubei Province, Wuhan has a strong position
in terms of political, social, educational, and economic development. The administrative
area of the city is 8494 square kilometers. This research focuses on the main urban districts,
largely within the third ring road, with an area of around 600 square kilometers (Figure 1).
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As an important part of daily life, the urban public transit system in Wuhan has under-
gone considerable development in recent years. According to the Wuhan Transportation
Annual Report released in 2016, by the end of 2015, the urban rail transit system includes
4 lines, 102 stations, and 124 km of route length, and the public bus system includes 467 bus
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routes, 8301 buses, and 1750 km of total route length. This study focuses on the public bus
system which still holds a principal position in daily commutes.

3.2. Data Collection and Preprocessing

This study utilized three types of point data, including residential location, employ-
ment location, and public bus data. These point data were, respectively, attributed with the
number of residents, number of employees, and number of daily bus arrivals.

The residential location data set was composed of the spatial locations of residential
buildings and the number of residents. These data were derived from the residential land
use parcels data sets of the Information Center of Wuhan Natural Resource and Planning
(ICWNRP). The residential land use parcels were comprised of residential buildings (at-
tributed to building area and the number of the floors in buildings) and census population.
To allocate the population to each building in a residential land use parcel, we employed
a “volumetric method” that had been tested and verified as suitable for micro-spatial
analysis [28]. The total number of residential location points is 289,772 for the year of 2015.

The employment location data included the spatial locations of employment units
and the number of employees. These data were derived from the social insurance data set
of ICWNRP. The number of employment locations is 12,378 for the year of 2015, and each
employment location is attributed with the number of employees.

The residential and employment location data were merged into one data set using the
Merge toolbox of the GIS software. These new point data were used to represent the demand
for bus services. It should be noted that residential and employment activities bring about
different demand patterns of transit travel (e.g., the reverse commuting direction of them).
However, we choose to merge the two types of data based on the following considerations:
Each trip has an origin and a destination (e.g., residential location and employment location),
and both are regarded as “demand points”, and require transit service. Furthermore, we
intend to detect demand-supply balance for the whole day (working days), which reflects a
coupling relationship between the maximum potential demand and supply.

The bus stop location data with bus arrivals attributes were used to represent the
supply of bus services. The bus stop location and bus route data were obtained from
Gaode Map (https://developer.amap.com (accessed on 15 March 2021)) using web crawler
technology, and were verified using online text-based route information from Wuhan Bus
Company in the year of 2016. We simplify two bus stops located at the same location but
on opposite sides of the road as one stop point in our data set (bus stop location) because
these two stops serve the same bus route in opposite directions. The schedule information
of all bus routes was also obtained from the Gaode map. To measure the supply of bus
services at each bus stop, we calculated the total number of daily bus arrivals at each stop
according to the service duration and headway of the bus routes. Similar measures of
the service frequency were applied in service-related evaluation studies [17,29]. There are
1519 bus stops in the study area.

4. Methodology

The analysis in this study comprises three tasks. (1) KDE analysis was conducted to
estimate the densities of both jobs-housing locations and bus stops. This approach provides
the foundation for further spatial autocorrelation analyses. (2) Spatial autocorrelation
analyses, i.e., bivariate Moran’s I and bivariate LISA (Local Indicators of Spatial Associ-
ation), were performed to investigate the spatial pattern of the relationship between the
demand and supply of bus services at the global scale and local scale. (3) Spatial coupling
degree index (CDI) and a visual representative method were developed based on spatial
autocorrelation analysis. The new methods directly indicate the coupling relationship
between the demand and supply at each bus stop. To fulfill these tasks, we made use of
several python packages, including pysal and matplotlib, and arcpy.

https://developer.amap.com
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4.1. Generating the Density of Jobs-Housing Locations

KDE analysis was performed to identify the spatial clustering and convergence trends
of the demand and supply of bus services, and to minimize the influence of the imprecise
positions of the point sets [30,31]. The population at each jobs-housing location and the
number of bus routes for each bus stop are weighting attributes in KDE analysis. The
bivariate kernel estimator is defined as follows [32,33]:

f̂ (x) =
1

nh2

n

∑
i=1

k
(

x − Xi
h

)
(1)

where x is regarded as the location where the estimation is performed, and h is search radius.
n is the number of points located near x within distance h. Xi is the observed ith point (points
representing bus stops or a jobs or housing activity) located near x within h, and k is the
kernel weighting function with the distance decay characteristic. The population at each
jobs-housing location, as well as the number of bus service arrivals per day of each stop, are
adopted as weighting attributes in KDE analysis. The weighting attribute determines the
number of times that a bus stop is counted in kernel density calculation.

It should be noted there is the phenomenon of distance decay in the usage of bus
services, i.e., the closer to the stop, the relatively larger chance to take the bus services. We
utilize the kernel estimator to reflect the phenomenon of distance decay. In this study, the
search radius was set to 800 m. This is different from the commonly recognized 400 m, for
the fact that the distance decay function has an inclination to underestimate the number
of potential users of the bus stop. When utilizing the distance decay function, a longer
distance is more reasonable (e.g., one-third mile radius in research by Kimpel et al. [34],
and one-half mile radius in research by Zhao et al. [35]).

Based on the KDE maps of jobs-housing locations (demand) and bus stops (supply), we
made use of a bilinear interpolation method to calculate the demand and supply density values
at each bus stop. These two values were then used in the spatial autocorrelation analysis.

4.2. Detecting the Spatial Relationship between Demand and Supply

Bivariate Moran’s I was applied to test the spatial relationship between the demand
and supply of bus services at the global scale of the whole study area. The bivariate LISA
value reflects the spatial correlation between the demand and supply of bus services at
the local scale of the bus stop. The results of the spatial autocorrelation analysis reflect the
spatial association between the demand and supply of bus services, and to what extent the
demand and the supply match at each bus stop.

Equation (2) demonstrates how to generate the standardized variables of density
values. Xi represents the density of the jobs-housing locations or density of bus stops.
µ and σ represent the mean value and standard deviation value. Equations (3) and (4),
respectively, give the bivariate Moran’s I and bivariate LISA formulas [36]

Zi =
Xi − µ

σ
(2)

I =
n ∑n

i=1 ∑n
j=1 wijzxizyj

∑n
i=1 ∑n

j=1 wij ∑n
i=1 zxizyj

(3)

Ii = zxi

n

∑
j=1,j 6=i

wijzyj (4)

where n is the number of bus stops in the study area; zxi and zyj represent the standardized
variables of the two different values (density of the jobs-housing locations and density of
bus stops) of the stops i and j (two adjacent bus stops). wij is the spatial weight matrix
(constructed using the queen contiguity). I is the Bivariate Moran’s I. Ii is the bivariate
LISA index of stop i.
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In Equation (3), ∑ wijzyj is the spatially lagged variable that represents the density of
bus services in the areas surrounding stop i. zxi and ∑ wijzyj are also utilized to obtain the
Moran scatterplot, which is used to decompose the spatial association into four compo-
nents: low–low and high–high positive associations and low–high and high–low negative
associations [37]. In this study, bus stops will be classified into these four components by
the Moran scatterplot.

4.3. Coupling Degree Index (CDI)

The standardized variable and spatially lagged variable represent the demand and
supply of bus services, respectively. However, the LISA index could not denote the coupling
degree between the two variables. Although a higher value of the LISA index may denote
a stronger relationship, it is still difficult to judge the extent of demand–supply coupling as
the bound of the LISA index could also be very large. Inspired by related studies exploring
coupling relationship between two variables [38–40]. A new CDI is proposed to overcome
this weakness. It can be used to subdivide the classification results of bus stops. Equation
(5) give the formula of the CDI.

Ci =


2 zxi ∑n

j=1,j 6=i wijzyj

zxi
2+∑n

j=1,j 6=i wijzyj
2 (zxi

2 +
n
∑

j=1,j 6=i
wijzyj

2
6= 0)

1 (zxi
2 +

n
∑

j=1,j 6=i
wijzyj

2
= 0)

(5)

The function of CDI has three basic characteristics. First, the function has zero-order
homogeneity, which is essential for a coupling model [41]. Second, the calculation results
are consistent with the basic classification results of Moran scatterplot and the LISA index.
The CDI values of bus stops belonging to the first or third quadrant are positive, and
those of bus stops in the second or fourth quadrant are negative. Third, the CDI values
are between −1 and 1. For every standardized variable and spatially lagged variable that
satisfies zxi

2 + ∑ wijzyj
2 6= 0, if zxi = ∑ wijzyj, the CDI takes the maximum value of 1, and

if zxi = −∑ wijzyj, the CDI takes the minimum value of −1.
To better illustrate the Equation (5), four function images are plotted in graphs in

Figure 2a–d. In the spatial rectangular coordinate system O− xyz, the X, Y, and Z axes
represent the standardized variable, spatially lagged variable and CDI variable, respec-
tively. The xOy plane is the plane where the Moran scatterplot is plotted. For a given
CDI value Cα, the projection of the contour lines of the function in the xOy plane are two
straight lines that pass through the origin O of the plane (the red lines in Figure 2d). The

corresponding functions of the two lines are inverse functions with slopes k =
1−
√

1−cα
2

cα

or k =
1+
√

1−cα
2

cα
(i.e., 1+

√
1−cα

2

cα
∗ 1−
√

1−cα
2

cα
= 1). As Cα approaches 1 (or −1), the two

contours gradually approach the function y = x (or y = −x). This phenomenon embodies
two other characteristics, i.e., first, if the coupling degree index of a bus stop is Cα, the

standardized value multiplied by 1+
√

1−cα
2

cα
(or 1−

√
1−cα

2

cα
) equals the spatially lagged vari-

able. This characteristic indicates that a certain kind of coupling relationship between the
standardized variable and spatially lagged variable can be represented by a corresponding
CDI value. Second, given Cα and Cβ (satisfying −1 ≤ Cα < Cβ ≤ 1), in the xOy plane,
for all the bus stops falling between areas encompassed by Cα and Cβ (i.e., the four areas
marked with ‘ 1©’ in Figure 2d), their corresponding CDI values are between Cα and Cβ.
Therefore, the CDI may serve as a clearer and more comparable index for illustrating the
coupling degree of bus demand and supply at each bus stop.
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5. Results
5.1. Spatial Patterns of the Demand and Supply of Bus Services

The KDE maps of Figure 3 illustrates the spatial clustering patterns of the demand
(jobs-housing) and supply (bus stops) of bus services. In Figure 3a, the hotspots of jobs-
housing locations are in the core area of the city. On the northwest side of the Yangtze
River, hotspots are mainly distributed in districts (e.g., Jiang’an, Jianghan, and Qiaokou
districts) that are the financial, business, and trade centers of the city. On the southeast
side of the river, hotspots are mainly distributed in districts (e.g., Wuchang and Hongshan)
characterized by the political (government), research, and education (universities and
research institutions) sectors. Due to the fact that large-scale enterprises or institutions are
only represented as individual points, there are several ‘island-type’ hotspots in the KDE
map (notably, the hotspot at the BaoWu Steel Group Corporation).
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The spatial clustering pattern of the supply of bus services shown in Figure 3b displays
a trend similar to that of the spatial distribution of jobs–housing locations, i.e., with high
and low hotspots, although some mismatches can be observed in several local areas.
However, such findings cannot be directly used to determine the statistical significance
of the relationship between the demand and supply of bus services. To overcome this
limitation, spatial autocorrelation analysis is introduced to obtain a better understanding
of the coupling degree between the demand and supply of bus services at the stop level, as
discussed in the next sections.

5.2. Spatial Association between Demand and Supply at Bus Stops

A Moran scatterplot with a regression line is shown in Figure 4a. The horizontal axis
describes the standardized data of the demand for bus services. The vertical axis represents
the spatially lagged variables representing the supply of bus services. The bivariate
Moran’s I indicator reflects the spatial dependency between the demand and supply of
bus services, which is 0.558. With 9999 permutations, the z-value that corresponds to the
computed Bivariate Moran’s I is 24.272. These values indicate a notable positive spatial
autocorrelation. Therefore, high (low) density bus stops are generally clustered around
areas with high (low) density jobs-housing locations. This finding further suggests that the
spatial distribution of bus stops is reasonable at the global level from the perspective of the
spatial relationship between demand and supply.
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As shown in the Moran scatterplot, bus stops are divided into four groups. The
upper right and lower left quadrants indicate the spatial associations of similar values (i.e.,
high–high and low–low). The upper left and lower right quadrants indicate the spatial
associations of dissimilar values (i.e., low–high and high–low). Based on the method of
standardizing variables (i.e., density values subtracted from the mean and divided by the
standard deviation), a low or high value means that the density is below or above the mean
value. For instance, a high–low bus stop association indicates that the demand for bus
services around the bus stop is higher than the average level and the supply of bus services
in this area is lower than the average level.

Based on the relationship, bus stops are classified into four groups, i.e., high–low,
low–high, low–low, and high–high, Figure 4b shows the spatial locations of bus stops
belonging to each group. The high–high and low–low groups are viewed as well-located
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bus stops because of the proper balance between the demand and supply, and these groups
account for 31.01 and 45.29% of all bus stops, respectively. The high–high groups of bus
stops are mainly distributed in the traditional downtown areas of the city (e.g., Jianghan
and Jiang’an districts), which are densely occupied by financial institutions, companies,
and residential areas. The locations of low–low results illustrate that relatively limited
public bus services are related to relatively inactive demands, and stops in this group
can be regarded as being properly located. These bus stops are mainly located in the
periphery of the study region, where the economy and infrastructure are less developed
compared with those in core areas. In general, bus services are rationally distributed in
areas where they are needed. This outcome also indicates that the classification results
meet the actual situation in general terms, which offer support for the effectiveness of the
proposed method.

The high–low and low–high groups, respectively, accounting for 12.38 and 11.32%
of bus stops, demonstrate that the demand and supply of bus services are imbalanced.
High–low bus stops are mainly located on the west and north side of the south lake (Boxes
A and B in Figure 4b), and near the Xingye Road (Box C). Stops in this group indicate an
insufficient supply of bus services compared to the high density of jobs–housing activities
there. For instance, Box A is the area where a densely residential zone is located. The car
dependency problem and overcrowded buses there (especially in morning and evening
peaks) have aroused wide public attention. The quantitative evaluation result leads to one
of the main reasons that caused this dilemma.

Among the low–high group, bus stops in several areas deserve some exploration.
These areas are marked with box D, box E, and box F. Bus stops in the area of box D are
located close to the Hankou railway station. Bus stops in the area of box E are located near
Hankou River beach park and some protected historical zones. Bus stops in the area of
box F are located near the Wuchang railway station. The high supply of bus services in
these areas has multiple functions, for example, transferring train passengers and serving
tourists, rather than only serve daily commuters. Thus, they are detected as unbalanced
when simply applying jobs–housing activity as the demand.

In general, while the bus stops in the high–low group represented locations where
bus services were indeed insufficient, bus stops in the low–high group did not necessarily
imply a situation of imbalance, as these stops might serve as other types of demand (in
addition to the jobs–housing demand).

5.3. Identifying Bus Stops with Dismatched Demand and Supply

In this section, the significant local spatial clustering of bus stops is assessed using
bivariate LISA analysis based on 9999 random permutations. A significant filter of 0.1 is
used to detect the local spatial clusters of bus stops, and the results are shown in Figure 5a.
To obtain a comprehensive and meaningful statistical outcome, Figure 5b also shows the
local spatial clusters of bus stops at a significance level of 0.01.

When 0.1 is chosen as the significance filter, although many bus stops are removed by
filtering, 859 of 1519 observations are still significantly clustered in the study area. These
bus stops can also be called as leverage points [36,42]. This finding indicates that the
local values at these points are very different from the mean values and that they strongly
influence the spatial association of the jobs-housing demand with bus services.

Here, we focus on the significant high–low and low–high clusters of bus stops. The
corresponding points are marked in the Moran scatterplot (the red points in Figure 4a). It
can be concluded from the figure that all leverage points are located in areas where a notable
disparity between the jobs–housing demand and bus services exists. For instance, each
red point in the fourth quadrant indicates that a relatively high value of the standardized
variable (significantly higher than the mean value in contrast with the blue points in this
quadrant) or a relatively low value of the spatially lagged variable (significantly lower than
the blue points in this quadrant) has been detected in the area around the corresponding
bus stops. Here, two bus stops located on Xingye Road (the No. 1 and No. 2 bus stops
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in Figure 5a) are marked as examples. A visual evaluation of Figure 4a indicates that
the two bus stops are far from the main body of the point cloud. The spatially lagged
variables at these two points are, respectively, −0.812 and −0.740, indicating the supply of
bus services in the corresponding area is significantly lower than the average service level.
The standardized density values at these points are, respectively, 0.067 and 0.357, reflecting
that the demand values in the areas around these stops are higher than the average level.
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Based on the abovementioned approach, the high–low clusters of bus stops on the
Xingye Road and the Xiongchu Expressway are regarded as seriously unbalanced locations
for bus services. This result also indicates that bus stops with unbalanced demand and
supply trend to cluster in spatial locations.

5.4. Coupling Degree Index of Each Bus Stop

In this section, four CDI values are selected to subdivided the classification results of
the Moran scatterplot. The outcome can demonstrate the coupling relationship between the
demand and supply of bus services at the bus stop level. To better illustrate the new index,
a visual representative method combining the Moran scatterplot and the CDI is proposed.

In spatial rectangular system O− xyz shown in Figure 6, the X, Y, and Z axes repre-
sent the standardized variable, spatially lagged variable and CDI variable, respectively.
Figure 6b–d is the three views of the Figure 6a. Notably, Figure 6d can also be regarded as
the Moran scatterplot. This visualization method can help to understand the subdivided
principle and visualize the overall coupling relationship between the demand and supply
of bus services.

To illustrate how the CDI values can be used to subdivide the bus stops. A group of
bus stops with CDI values falling in [−0.2, 0.2] is taken as an example. The red points in
Figure 6 are the corresponding visualization results. The blue and red lines are the contour
lines of the CDI function. They correspond to the CDI values −0.2 and 0.2, respectively.
Based on the visual results showing in Figure 6a–c and the basic mathematical properties
mentioned in Section 3, in Figure 6d, the CDI values of the points encompassed by the four
lines are all between [−0.2, 0.2]. Therefore, viewing from the Moran scatterplot showing in
Figure 6d, these bus stops are subdivided by the CDI values which have actual meanings.
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To better il lustrate the practical meanings of certain CDI values. A group of bus
stops with CDI values falling in (0, 0.2] is taken as an example. The corresponding
points fall in the orange region in the first quadrant of the Moran scatterplot (“ 1©” area in
Figure 7a). The practical meaning is that the demand for bus services around the stop is
above the average level, whereas the supply of bus services in the surrounding area is
above the average level by more than 10 times the former degree. The 10 times is calculated
by 1 ≈ 10 (This calculation formula is constructed in basis of the mathematical properties
of CDI mentioned in Section 3). It implies the demand and supply are not higher than
the average in a consistent way (which means that the index does not equal 1). Some
bus stops with indices in [−0.2, 0] are also selected as an example. The corresponding
points fall in the orange region in the fourth quadrant of the Moran scatterplot (“ 2©” area in
Figure 7a). The practical meaning of this group of bus stops is that the demand for bus
services around the corresponding bus stop is above the average level, whereas the supply
of bus services in the surrounding area is lower than the average level; however, the latter
degree is less than 0.1 times the former degree. This finding indicates that the demand
and supply are not completely opposite (which means that the index does not equal −1).
Generally, these two types of bus stops represent a situation in which the coupling degree
between the demand and supply is “not that good” or “not that bad”.

In this study, four CDI values which are C1 = −0.8, C2 = −0.2, C3 = 0.2, and C4 =
0.8 are selected to subdivide the classification results of the Moran scatterplot (shown in
Figure 7a). In total, four CDI values actually make six value intervals which are [−1, −0.8),
[−0.8, −0.2), [−0.2, 0), [0, 0.2), [0.2, 0.8), and [0.8, 1]. However, according to the actual
meaning, we merge the intervals [−0.2, 0) and [0, 0.2) together. In total, five value intervals
are name as Class I, Class II, Class III, Class IV, and Class V (corresponding to the I, II, III,
IV, V regions of the Figure 7a and indicating the coupling degree are bad, relatively bad,
not that good, relatively good, and good, respectively). Figure 7b shows the corresponding
bus stops subdivided results.
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To sum up, the CDI overcome the weakness that the Moran scatterplot and the LISA
index cannot explicitly exhibit the coupling degree between demand and supply. In this
paper, we choose the value intervals [0.8, 1] to represent the ‘good’ coupling group, and
most of the bus stops belonging to high–high or low–low groups are subdivided into the
‘good’ coupling group in terms of the CDI outcomes. In practice, other combinations of
value intervals may be chosen for satisfying specific requirements.

When evaluating the bus stop layout in terms of the new index, the coupling degree
index should be utilized in combination with the spatial autocorrelation approach. For
example, based on the analysis results in Sections 4.2 and 4.3, the No. 3 and No. 4 bus stops
in Figure 7b (they are also marked out in Figure 5a) are classified as seriously unreasonable,
which means the demand for bus services is significantly higher than the average, and
the supply of bus services around bus stop is significantly lower than the average. The
corresponding coupling degree indices are −0.931 and −0.977, which means the degree
of the above-average characteristic is almost totally opposite the degree of the below-
average characteristic. Therefore, based on spatial clustering analysis and coupling degree
index analysis, the bus services around these bus stops, which are located near Xiongchu
Expressway (Figure 7b), are considered to be seriously unbalanced.

This result reflects the actual situation in the corresponding area. The No. 3 and 4 bus
stops are deployed at a demand hotspot where one hospital, two large universities, and
several residential communities are located. Although the service supply on corresponding
stops looks enough (e.g., 489 daily bus arrivals at the No. 3 bus stop), we think that the
relatively sparse distribution of bus stops still leads to the seriously unbalanced status
between the demand and supply of bus services there.

6. Discussion

Urban bus transit systems should be planned and deployed as to effectively meet
the travel demand. This study has proposed a density-based statistical approach for
evaluating the coupling degree between demand and supply of bus service. We made
use of KDE analysis to derive densities of demand and supply, in which population and
employment locations were merged to generate demand density, and bus stops with daily
served buses were utilized for supply density. The search radius was set to 800 m to reflect
the phenomenon of distance decay. Based on spatial autocorrelation analysis, a coupling
degree index (CDI) has been developed to indicate demand–supply balance, allowing
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assessing individual stops, as well as a comparison between stops. Our experiment in
Wuhan has demonstrated the effectiveness of this approach.

Compared with the buffer analysis that seldom considers the service capacity of bus
stops [5,14], the proposed approach carries out a detailed modeling of the service supply
and directly detects the seriously unbalanced locations for bus services based on the spatial
autocorrelation analysis. Compared with the accessibility-type evaluation method [10,12],
the mathematical characteristics of the coupling degree index ensure the proposed method
is able to reveal the specific balanced relationship with a corresponding index value (or
with a value interval), which means the interaction between the demand and supply is
investigated more comprehensively. Moreover, for some practical cases that are short of
accurate or timely demand-side or supply-side data sets, other meaningful inputs, e.g.,
the number of routes serving the stop or community-level demographic data, can also be
regarded as an alternative in the estimation of the demand or supply density. This feature
of flexibility is valuable when conducting the quick evaluation of the bus stop layout in an
evolutionary urban context.

Our density-based approach also takes a different perspective from those comprehen-
sive transit assignment models [43,44] that may calculate the volume-capacity ratio for
each bus route. For trip-related demand modeling, detailed information is necessary at the
individual level of bus transit travelers, which costs much time and effort [45]. By avoiding
the complex assignment tasks, our approach takes a statistical logic and aims to quickly
and directly assess the coupling degree at both the global and bus stop scale. Therefore,
this density-based approach may be regarded as falling between the simpler and more
comprehensive transit demand modeling approaches.

The selection of source data for KDE analysis deserves additional attention. For the
demand-side, while population and employment may only indicate potential demand in
general terms, more accurate measurement necessitates incorporating detailed socioeco-
nomic status (e.g., income, age, car ownership, etc.) and considering the time-varying
characteristics of the travel demand (e.g., the reversed commuting direction in morning
and evening peaks). For example, the transport need index [46] consisting of various
socioeconomic characteristics has been proven effective in the identification of the public
transport demand. Incorporating this indicator into the proposed method may substan-
tially improve the estimation of the spatial pattern of demand (i.e., taking the indicator as
the weighting attributes). Additionally, incorporating demand-side data with high tem-
poral resolution (e.g., ridership flow data) may also lead to evaluation results with a high
temporal resolution. For instance, the evaluation results of the morning and evening peaks
can be obtained separately. Related outcomes have the potential to act as the guideline
towards the flexible placement of bus stops. Meanwhile, for the supply-side, bus stops
were weighted by their daily bus services, which also implied a simplification. A more
reasonable improvement would be applying accessibility measurement as the weighting
attribute to the stops. The accessibility model here should indicate the number of places or
jobs that may be reached by the existing bus network given a specified time or monetary
budget. There is also the possibility of making use of origin–destination data, from records
of public transport IC cards or mobile phones, for assessing the demand–supply balance
via the spatial autocorrelation analysis.

To sum up, we think that the characteristics of the method present policy implications
at two levels: (1) At the macro level, the flexibility and efficiency of the density-based
method ensure its value in quickly responding to scenarios of bus route and stop de-
ployment or land use development in an evolutionary urban context; (2) At the detailed
level, specific improvements including deploying more bus stops or increasing service
frequencies of corresponding routes can be directly carried out in areas where extremely
unbalanced phenomena are detected (e.g., high–low clusters of bus stops with a small
coupling index value).
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7. Conclusions

The density-based spatial autocorrelation analysis is advantageous to evaluating the
coupling degree between demand and supply of bus transit service. The experiment
in Wuhan has demonstrated the effectiveness of the approach. The bivariate Moran’s I
indicated that bus services in Wuhan city generally satisfy bus travel demand at a global
scale. However, the Moran scatterplot revealed there are significantly unbalanced bus
stops in terms of bus demand and supply. The local spatial clusters of unbalanced bus
stops could be identified with the bivariate LISA statistics based on a random permutation
approach. The newly constructed coupling degree index further illustrated the coupling
relationship between the demand and supply at each bus stop. This analyzing framework
may effectively contribute to evaluating scenarios of urban bus system planning in a
growing socio-economic context.

Further studies may be carried out from two perspectives. First, the methods of
density generation can be improved for both the demand and the supply side. For the
demand side, the socio-economic features of the bus travelers may be added to reflect the
need for bus service more precisely. Trips with other special purposes such as education
and shopping could also be taken into account. For the supply side, there is a good
chance to incorporate accessibility measurements based on bus network configuration and
operational dispatching. Second, the coupling degree between demand and supply of bus
service can be regarded as an indicator of urban transport, and therefore may be applied in
such studies as equality analysis for sustainable urban development.
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