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Abstract: In the past decades, technology-based agriculture, also known as Precision Agriculture
(PA) or smart farming, has grown, developing new technologies and innovative tools to manage
data for the whole agricultural processes. In this framework, geographic information, and spatial
data and tools such as UAVs (Unmanned Aerial Vehicles) and multispectral optical sensors play a
crucial role in the geomatics as support techniques. PA needs software to store and process spatial
data and the Free and Open Software System (FOSS) community kept pace with PA’s needs: several
FOSS software tools have been developed for data gathering, analysis, and restitution. The adoption
of FOSS solutions, WebGIS platforms, open databases, and spatial data infrastructure to process
and store spatial and nonspatial acquired data helps to share information among different actors
with user-friendly solutions. Nevertheless, a comprehensive open-source platform that, besides
processing UAV data, allows directly storing, visualising, sharing, and querying the final results and
the related information does not exist. Indeed, today, the PA’s data elaboration and management with
a FOSS approach still require several different software tools. Moreover, although some commercial
solutions presented platforms to support management in PA activities, none of these present a
complete workflow including data from acquisition phase to processed and stored information. In
this scenario, the paper aims to provide UAV and PA users with a FOSS-replicable methodology
that can fit farming activities’ operational and management needs. Therefore, this work focuses on
developing a totally FOSS workflow to visualise, process, analyse, and manage PA data. In detail, a
multidisciplinary approach is adopted for creating an operative web-sharing tool able to manage Very
High Resolution (VHR) agricultural multispectral-derived information gathered by UAV systems.
A vineyard in Northern Italy is used as an example to show the workflow of data generation and
the data structure of the web tool. A UAV survey was carried out using a six-band multispectral
camera and the data were elaborated through the Structure from Motion (SfM) technique, resulting
in 3 cm resolution orthophoto. A supervised classifier identified the phenological stage of under-row
weeds and the rows with a 95% overall accuracy. Then, a set of GIS-developed algorithms allowed
Individual Tree Detection (ITD) and spectral indices for monitoring the plant-based phytosanitary
conditions. A spatial data structure was implemented to gather the data at canopy scale. The last step
of the workflow concerned publishing data in an interactive 3D webGIS, allowing users to update the
spatial database. The webGIS can be operated from web browsers and desktop GIS. The final result
is a shared open platform obtained with nonproprietary software that can store data of different
sources and scales.

Keywords: precision agriculture; smart farming; FOSS; very high-resolution (VHR) multispectral
images; Unmanned Aerial Vehicle (UAV); WebGIS; information management; vineyards
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1. Introduction

Open Source (OS) software is a name for applications in which source code is available
for users, who can use, modify, and implement it. OS software lays its foundations in
collaborative programming of the early 1980s; since then, open source software has rapidly
widespread in many domains, including the geospatial field [1]. Today, under the label of
OS geospatial software, a broad range of libraries, tools, applications, and platforms are
developed and released with different Open Source Initiative (OSI) licenses [1]. Numerous
OS geospatial software packages for processing, analysing and visualising geospatial data
are available and promoted by governments, academia, and industry [2].

The variety and plentiful number of OS geospatial solutions stimulated the birth
of related organisations, such as the Open Source Geospatial Foundation (OSGeo, https:
//www.osgeo.org/, accessed on 2 February 2021), which aim to promote the collaboration
and interoperability of OS geospatial software [1]. OSGeo includes much software for
geospatial data, classified in [3,4]:

• The Desktop GIS applications, mapping software installed on a PC, allow users to
display, query, update, and analyse geographic information such as Quantum GIS [5].

• The open-source libraries, which are tools for vector and raster data processing as well
as SAGA [6], Grass [7] and Gdal [8].

• The Spatial Data Base Management Systems (SDBMS) include systems to manage and
store data, such as the open-source object-relational database PostgreSQL [9] with its
graphic interface PgAdmin and the spatial extension PostGIS.

• The WebMap Servers are tools to share maps. They support the OGC standards de-
scribed in paragraph 2.1.

• The Server GIS and WebGISclient, in the GIS domain, allow access to maps and
databases via the web. Some examples are Geoserver [10], MapServer [11] and
GeoNode [12].

• The Structure from Motion (SfM) OS solutions are photogrammetric software for 3D
reconstruction. Some examples are MicMac [13], Visual SfM [14] and Open Drone
Map [15].

The spread of Open Source geospatial software has not yet been stopped, and in
the future, growth for Open Source geospatial software is predicted in terms of users
and services [1]. The OS software is expected to keep pace with geospatial technology
advancements such as the Global Navigation Satellite System (GNSS); Remote Sensing (RS),
digital image processing and photogrammetry; 3D Geographical Information Systems OS-
GIS) [2], and digital mapping. This spread of OS geospatial software is expected to happen
in public and private sectors, and academia. This trend is already verified by several recent
OS applications [1] dealing with different research fields, such as hydrology [16], urban
studies [17–19], forestry management [20], and the development of dedicated software for
geospatial data treatment. RTKlib [21] for GNSS processing, Orfeo toolbox [22] and Qgis
Semi-Automatic classification plugin [23] for remote sensing, and Visual SfM [14] and Open
Drone Map [15] for SfM are only a few of the available OS geospatial software packages.

One of the sectors that should benefit the most from OS geospatial software is the agri-
cultural domain. Modern technology-based agriculture, known with different names such
as smart, digital or Agriculture 5.0 [24], needs geospatial information for crop management
and precision agriculture. Indeed, advanced sensing technologies and data management
tools in smart farming can collect and store a wide range of agricultural parameters. In
addition, the United Nations has recognised the pivotal role of OS in Precision agriculture.
Indeed, the Sustainable Development Goal (SDG) 12 calls for the provision of ICT services
in agriculture [25,26] and, since OS software ensures universal access to information and
knowledge, it contributes to digital inclusion remarked by SDG 16 [26].

Smart agriculture is based on the combination of Precision Agriculture (PA), Infor-
mation and Communications Technologies (ICT), and data management. PA applies
sensors and innovative techniques to obtain data on land and crops in a complete, cor-
rect and timely way for strategic and operational decisions. It can be defined as a green

https://www.osgeo.org/
https://www.osgeo.org/
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cyclic optimisation approach based on both spatial-wise and time-wise variability within
crops. It is made possible by using geospatial technologies such as GNSS, digital image
processing and photogrammetry, Geographical Information Systems (GIS), and digital
mapping [27,28]. These geospatial technologies can cover the whole precision agriculture
process that consists of three main steps:

• Data acquisition can be performed using either proximal sensing or remote sens-
ing techniques;

• Information extraction can be achieved by processing and transforming the raw data
acquired through sensing techniques and GIS software;

• Crop management can be performed using the information acquired as decision
support.

Hence, in this scenario of innovative technologies’ progress in managing and sharing
spatial data, a crucial role could be identified in developing new free, open and user-friendly
tools. Such platforms can archive, share, analyse, manage, and visualise knowledge and
information of detailed data regarding vineyard or crops [27,29].

The evolving concept of digitalization and the advanced techniques of automatic
information extraction lead to improving the efficiency, productivity and quality of the
PA process. The stakeholders indeed can be supported by tools for a rapid decision-
making process. As presented by [24], significant efforts have been made to accelerate
Smart Farming’s move from academics to actual farms in the past decade. Analysing
and visualising the data are operations that can be performed using mainly commercial
software and services. Indeed, the main limitations of using smart farming technologies
(SFT) in real farms are related to the costs of storing and analysing data, and the release
of private data to a commercial company [30,31]. In this realm, new affordable tools for
small-scale agriculture are needed. Since many OS geospatial software is free, called Free
and Open Source Software (FOSS), geospatial FOSS can be a powerful solution for the
technology call of real farms.

Open hardware and OS software are used for monitoring many agricultural param-
eters, such as biomass, Leaf Area Index (LAI), and chlorophyll [32–35]. Despite the fact
that OS software, and hardware, are widely applied for PA measures, the OS component is
seldom analysed in geospatial analysis and data management for PA. Although workflows
for agriculture geospatial data collection and management have been studied and carried
out using proprietary software [36–39], as far as the authors know, none has focused on
the open source issue. An open and free solution for agriculture data collection and man-
agement could permit the reuse of existing knowledge from regional and local geoportal,
datasets, SDIs (Spatial Data Infrastructure), and examples from consolidated case studies.
This knowledge can be later compared and combined with information of selected areas
of interest and real case studies of different crops or vineyards (both public and private).
The existing free and open tools for farming data management [40,41] do not consider the
spatial component of data and the relation between the information and its spatiality.

In this framework, the present research aims to propose an open source geospa-
tial workflow to create a free and open GIS platform for mapping, visualisation, and
agricultural information management. The paper considers three geomatics techniques
(photogrammetry, remote sensing, and GIS), which, although deeply related to each other,
need to be treated by several different OS geospatial software tools and require different
types of expertise.

The final goal is to create a unique web-based framework in which different actors
can share results, and advanced characteristics and parameters. Indeed, to reach and
validate the OS workflow, a selected vineyard area was chosen as a case study. In this way,
each step of the workflow was tested and evaluated showing the reliability of the whole
process. Section 2 of this paper presents the materials used, including some considerations
regarding the PA’s spatial database and the methodology’s workflow, showing FOSS tools
adopted from data acquisition to data store. Section 3 illustrates this method’s outcomes
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by the data analysis and classifications results, data visualisation and web publication.
Section 4 describes discussions, conclusions, and future developments.

2. Materials and Methods
2.1. Spatial Database and Smart Agriculture Data Sharing

The request for geospatial information systems and open spatial data to support
crops and vineyard management in precision farming is increasing everywhere. Recent
studies [37,42] reported the adoption of GIS application for precision viticulture and
agriculture and WebGIS solution; these examples demonstrate the massive demand for
new practical solutions. In this sense, the present research focuses on the fruition of
structured and classified spatial data in an OS and shared GIS platform. This solution
could allow different users involved in smart farming activities to query, manipulate,
and access, for instance, geographic data, documents, and historical archives stored in a
unique database.

In the past decades, many works presented application case studies of GIS and WebGIS
platforms to represent and query archaeological sites, built heritage, landscape, crops, and
city areas with different aims and purposes (such as documentation, preservation, fruition,
urban planning, and agriculture management) [43–47]. Many of these applications have
been selected for WebGIS solutions. It is a significant GIS milestone that provides tools
for people (technicians or not) to use geographic systems in real time and using the only
Web mean (without installing any software). These web geographic information systems
allow storing, processing, analysing, visualising, and spatial query data [42]. Furthermore,
thanks to the WebGIS or open datasets from national or regional SDIs or geoportals, it
is also possible to take advantage of the web services. The standards of the OGC (Open
Geospatial Consortium) are internationally widespread in the field of GIS and WebGIS.
They are Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service
(WCS). These concern access to data via the Web (HTTP) [48].

Moreover, the geographic information spatial standards play a crucial role in the
scenario of open spatial data. They have a significant impact on the interoperability
among different types of data. For example, the European Directive 2007/2/EC INSPIRE
(Infrastructure for spatial information in Europe) aims to create a European Union spatial
data infrastructure [49].

In the framework of the investigation of datasets and spatial information systems
able to manage smart agriculture data, it is possible to mention the works of [50] and [51].
They reported many useful parameters and data functions to drive viticulture activities
and production quality that could be taken into consideration. The main limitation of
these examples is the lack of a unique multiscale spatial system that stores the different
sets of data and their changes during the times. Despite this, these works could be the
base to potentially define entities and relations of a spatial database to manage precision
agriculture data.

2.2. Study Area

A vineyard located in Grugliasco (Northern Italy) is the test site of this work. It
is located inside the University of Turin campus (Figure 1), specifically at the School
of Agriculture and Veterinary Medicine in the Department of Agricultural, Forest and
Food Science.

The vineyard extends for half a hectare and consists of 20 rows of different vine
varieties, mainly Barbera, Nebbiolo, Moscato, Pinot Noir, and Sauvignon Blanc. The
presence of many types is due to research purposes.
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2.3. The Workflow

The workflow, shown in Figure 2, comprises three main phases:

• drone mapping, data analysis, and information extraction;
• database construction;
• web-sharing.

Each step requires specific FOSS software, which differs in functionality and purpose.

2.3.1. Data Collection

As a first operation, it is necessary to acquire a complete representation of the area
and therefore, a comprehensive survey of the entire area was carried out using a UAV.

Fifteen plastic markers, used as Ground Control Points (GCPs), were placed on the
ground to allow a subsequent georeferencing of the digital model. The coordinates of the
centre of each target were acquired using a Real-Time Kinematic (RTK) Global Navigation
Satellite System (GNSS) technique [52]. For this application, which aims, as full detail, to
identify the different plants within the rows, an accuracy of about 3–4 cm was enough for
the elevation model and the orthophoto.

The UAV platform and the embedded sensors were selected according to the needs
of the survey. Specifically, information regarding the infrared part of the electromagnetic
spectrum was required to describe the vegetation efficiently [53]. Based on this, the
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multispectral camera SlantRange 4p+ was chosen. The kit of the camera consists of three
elements (Table 1):

• a multispectral camera with four optical sensors:

1. RGB (Center 470 nm (Blue) 520 nm (Green) 620 nm (Red), Width 110 nm);
2. Red (Center 650 nm, Width 40 nm);
3. Red Edge (Center 715 nm, Width 30 nm);
4. Near IR (Center 850 nm, Width 70 nm);

• a Precision Navigation Module (LiDAR Rangefinder and Integrated Dual Antenna
RTK GPS), which allows for obtaining better accuracy and quality of results in areas
of uneven terrain [54];

• An Ambient Illumination Sensor (AIS) that allows for gaining sunlight-calibrated
spectral images.
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The SlantRange system needs the compatibility of the DJI SKYPORT as regards the
UAV on which it is mounted. For this reason and, according to the SlantRange system
weight of about 350 g, a DJI Matrice 210 V2 was used.

Then, based on the sensor and UAV’s characteristics, the flight was planned. The
distance above the ground was about 70 m, to ensure a Ground Sample Distance (GSD) of
about 1.5 cm on the object, in agreement with the survey requirements. A grid-schemed
flight was carried out to obtain a total coverage of the area and an optimal overlap of
the acquired images. The flight resulted in 465 images acquired for each SlantRange
4p+ sensor.

2.3.2. Data Processing

As a first pre-processing operation, the images acquired by the SlantRange system were
calibrated with the software SlantView [54]. The sensor producer supplies this software,
and it is part of the SlantRange system product. It processes the raw data recorded by the
LiDAR module, the GPS/GNSS module and the Ambient Illumination Sensor, and extracts
images radiometrically calibrated [55]. Moreover, Slantrange software allows separate of
each band of the captured pictures in a single TIFF file.

After extracting the sets of calibrated images grouped by the band, the six datasets
(one for each band of the electromagnetic spectrum: Blue, Green, Red W, Red N, Red
Edge and NIR) were processed separately using the photogrammetric well-established
Structure from Motion (SfM) approach [56]. SfM is now implemented in several commercial
and FOSS software packages and, regardless of the software nature, it leads to the image
alignment and generation of dense point clouds.

In this study, the photogrammetric process was carried out using Visual SfM [14,57]
(FOSS). Several GCPs were collimated in the photos to georeference the photogrammet-
ric block.

3D dense point clouds were produced with a high level of detail (about 28 million
points for each set of images) (Figures 3 and 4).
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After generating six dense clouds, one for each set of images, they were imported
in CloudCompare, an Open-source tool for the point cloud and mesh processing first
developed by Daniel Girardeau-Montaut [58,59]. Finally, using the “rasterize” tool in
Cloud Compare, which allows for transforming a point cloud into a 2.5D grid by setting
the pixel size and the projection directions, the orthomosaics and the Digital Surface Model
(DSM) were generated with a pixel size of 3 cm.

2.3.3. Mapping and Classification

The orthomosaics generated with the SfM technique were used to (i) map the vineyard
rows and the single trees, and (ii) extract punctual information regarding the phenological
conditions of the inter-row herbaceous vegetation.

First, a pixel-based supervised classification was performed that identified six classes
(Table 2) using a Minimum Distance algorithm [60]. The classification was carried out
in QGIS environment (version 3.14.0), using Gdal and Grass algorithms, and the QGIS
semiautomatic classification plugin (SCP) developed by Luca Congedo [23].

The structure of the classification was organised at two levels. The first level defined
four classes (Shadows, Rows, Dense Herbaceous Vegetation, and Sparse Herbaceous Vegetation).
The second level consisted of the reclassification of Shadows class to distinguish between
Shaded Dense Herbaceous Vegetation and Shaded Sparse Herbaceous Vegetation. The Rows class
helped in the definition of health condition of the vines. Shadows classes served the single-
tree segmentation process and were used as geometry input, while the herbaceous vegetation
classes described where under-row weeds needed to be mowed at the time of the survey.

Five derivative features were extracted from the Slantrange spectral bands to improve
the classification’s final accuracy. These features are spectral indices that, along with the
six Slantrange spectral bands and the DSM, constitute the final classification input dataset.
Table 3 reports the list of the derivative features computed.
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Table 2. Qualitative description of the classes according to first level classification (Classification I) and second-level
classification (Classification II).

Class Description

I classification

Shadows The flight was realised in the afternoon. Well-defined shadows are
present on the scene.
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Table 3. List of derivative features selected and used in the classification dataset.

Feature Name Formula

Chlorophyll Index Red edge (CI Re) [34] NIR
RedEdge − 1

Enhanced Vegetation Index (EVI), [61] 2.5 × NIR−RED
NIR+RED−1

Hue Index [62] arctan
(

2×RED−GREEEN−BLUE)
(GREEN−BLUE)

)
Normalised Difference Vegetation Index (NDVI), [63] NIR−RED

NIR+RED

Normalised Difference Water Index (NDWI), [64] GREEN−NIR
GREEN+NIR

Once the input dataset was created, a supervised classification was performed. Su-
pervised classification algorithms require the definition of training samples. Thus, areas
of class-homogeneous pixels and regions of interest (ROIs) were manually identified and
made up the training dataset. Each ROI extends for 4180 pixels on average. Figure 5 shows
the spectral signature of the classes and the scaled distance between each other.
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Figure 5. Spectral signatures of the classes. The values were scaled on a −1—1 range to facilitate the reading of the graph.

The first level classification (Classification I) was performed using the Minimum
Distance algorithm, with a threshold (standard deviation from the mean) of 2-sigma for
classes Rows, Shaded Sparse Herbaceous Vegetation, Shaded Dense Herbaceous Vegetation, and
Sparse Herbaceous Vegetation and 3-sigma for Shadows and Dense Herbaceous Vegetation. The
result was then postprocessed applying a 15-pixel sieving filter and 4-pixel dilation on
the Rows class. The areas classified as Shadows were masked and used for the second
classification (Classification II). It was realised with the same algorithm and settings of
Classification I. The main accuracy measures based on the error matrix (Producer’s accuracy,
User’s accuracy, Overall accuracy, and F1-score) were computed for both classifications
using 100 randomly placed points per class. The resulting classifications were merged.

The database built in this work also needs to store information at the single-tree level.
The cultivation structure consisted of several grape trees in which vines grow together
on three metal wires parallel to the ground. This structure made it impossible to detect
each tree from the nadiral view of the rows. Thus, the single trees were segmented using
the information derived from the shadows. The segmentation was performed on vector
data. First, an intersection between the directional buffer of each row’s major axis and the
shadows was computed and the centroids of the intersections were extracted.

Then, the centroids were snapped on the major axis of the rows. Voronoi polygons
were computed on the centroid and clipped according to the row borders. Finally, the
results were transformed from multipolygons to single polygons and visually checked.
Figure 6 summarises the entire segmentation process.
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The modal values of the spectral indices EVI, NDVI, NDVI Red Edge, and Chlorophyll
Index were then calculated and plotted for each object (tree) to scale the tree health [65].

3. Results and Discussion

The following sections present the outputs and outcomes of the described FOSS
methodology: UAV survey processing products, classified data of rows and single-tree
identification, and 2D and 3D web visualisation of data and attributes according to a
structure geodatabase.
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3.1. Orthophoto and DSM

Thanks to the operations described in Section 2.3, it was possible to extract orthophoto
and DSM with the pixel size of 3 cm for each of the six bands separately. Figure 7 shows the
DSM and the RGB orthomosaic obtained by the multichannel visualisation of Red, Green,
and Blue bands.
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Figure 7. (a) Digital Elevation Model (DEM), and (b) RGB orthophoto obtained by combining Red W,
Green and Blue orthophotos.

It is worth notice that the SfM process required some practical measures to process
multispectral data. The five multispectral bands were processed separately since Virtual
SfM cannot deal with the 4p+ dataset.

3.2. Classification of the Rows and Single Tree Detection

The first classification was performed using the Minimum Distance algorithm on four
classes with about 16,000 pixels as training. Its result shows some “salt and pepper” effect;
indeed, some single pixels were not classified and some were misclassified (see Figure 8).
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Nevertheless, these inaccuracies were corrected in the postprocessing phase through
the sieving and dilation processes.
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The final accuracy assessment on classification was measured on 400 points randomly
placed, and it had an overall accuracy of 95% (Table 4). The Dense Herbaceous Vegetation
represents the most critical classes and the Shadows as the F1-score indicates (respectively,
90% and 94%). This is mainly due to the difficulty of classification in the edge areas between
the two classes. It is worth underlining that the shadows of the canopies’ upper parts
are irregular and the illumination conditions are not uniform. The Producer’s accuracy is
particularly low for the Dense Herbaceous Vegetation (only 0.87).

Table 4. Error matrix of classification I. PA = Producer’s Accuracy; UA = User’s Accuracy; OA = Overall Accuracy.

Classification I Sparse
Herbaceous Vegetation

Dense
Herbaceous Vegetation Rows Shadows Total

Sparse herbaceous vegetation 95 4 0 1 100
Dense herbaceous vegetation 2 94 1 3 100

Rows 0 3 96 1 100
Shadows 0 7 0 93 100

Total 97 108 97 98
PA 0.979 0.870 0.990 0.949 OA=
UA 0.950 0.940 0.960 0.930 0.945

F1-score 0.964 0.904 0.975 0.939

Classification II was realised using the Minimum Distance algorithm on the pixels
classified as Shadows from classification I. Only two classes are included in classification II:
Shaded Sparse Herbaceous Vegetation and Shaded Dense Herbaceous Vegetation. Similarly
to classification I, the results present some “salt and pepper” effect all over the scene of
unclassified pixels, which was corrected in the postprocessing phase.

The accuracy assessment was measured on 200 randomly placed points, and it has an
overall accuracy of 95% (Table 5). Eight validation points of Shaded Dense Herbaceous
Vegetation were classified as Shaded Sparse Herbaceous Vegetation, and only two are
in the opposite condition. The results of the accuracy measures are outstanding: both
User’s and Producer’s accuracies were never below 92%. The presence of only two classes
undoubtedly influences these positive results.

Table 5. Error matrix of classification II. PA = Producer’s Accuracy; UA = User’s Accuracy; OA = Overall Accuracy.

Classification II Shaded Sparse Herbaceous
Vegetation

Shaded Dense Herbaceous
Vegetation Total

Shaded sparse herbaceous vegetation 98 2 100
Shaded dense herbaceous vegetation 8 92 100

Total 106 94
PA 0.925 0.979 OA=
UA 0.980 0.920 0.950

F1-score 0.951 0.948

The segmentation of single trees resulted in 1269 plants distributed on 20 rows. It
is worth mentioning that the method does not provide the precise size of the canopies,
but it assumes that the canopy of a grapevine is symmetrically developed on the metal
wires and it extends until mid-distance to the next plant. This assumption is the base for
using Voronoi polygon construction. Figure 9 shows the results of the classification and
the segmentation.

Finally, the EVI, NDVI, NDVI Red Edge, and Chlorophyll Index were calculated on
the entire scene. The pixels’ mode value corresponding to single-tree geometries was
calculated and scaled to identify the unhealthy plants.
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Figure 9. The result of the classification and the segmentation of the single trees. The image shows
the example of NDVI values calculated on the Red Edge band for each plant. NDVI-Red Edge was
classified in BAD (<0.00), GOOD (0.00–0.20) and VERY GOOD (>0.20).

3.3. Data Storage, Visualisation, and Querying

Following data generation, analysis and classification, the ending phases of the pre-
sented workflow aim to organise, store, visualise and query the postprocessed data. This
final step, carried out by adopting open-source software, aims to develop a spatial database
storing knowledge of vineyard and publishing information in a web- and user-friendly
platform. This last process consists in the steps reported in Figure 10.
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Figure 10. Data visualisation and querying process.

For the generation and publication of the spatial dataset of the vineyard, different
FOSS solutions were adopted. QGIS (version 3.14.0) was used for the database creation
and for visualising 2D and 3D data, as Figure 6 shows (Section 2.3), while for the data
publication, PostgreSQL with its interface PgAdmin, was selected. The spatial extension
PostGIS was added for the geometry population. GeoServer, OpenLayer and Google Earth
were used for the online publication of the database with three-dimensional visualisation
and query elements. Figure 11 graphically describes the data storage, visualisation, and
querying process.
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3.3.1. 3D Visualisation of Data in QGIS and Spatial Database Creation

The first part of the methodological workflow regarded the QGIS project creation
(Figure 11). This operation aimed to defined entities useful for the database creation to
store information of the site area. Thanks to the 2D and 3D maps of Qgis, it was possible to
plan a possible user-friendly web interface (explained in the next section). The following
entities were selected to populate the table of attributes of the GIS project:

• DSM, raster data from drone acquisition;
• orthomosaic, raster data resulting from the SfM elaboration (Section 3.1) visualised in

real colour (RGB);
• vineyard row, polygons obtained from the vectorisation of the class Rows;
• single trees and plants, centroid-points of the single tree;
• state of health, a classified vector composed polygons of single trees. It contains

information regarding vegetation health indices.

In addition to the attributes derived from the data collected in the field, the classified
vectors contain new attributes useful for the vineyard’s agricultural management, such
as the identification number (ID), the grape variety, the number of rows, the history of
phytosanitary treatments, and the number of vines. Further information can be added
anytime. For example, as reported in the studies analysed in Section 1, it is possible to add
additional data from national and international standards or based on the necessity of the
performed analysis (such as soil description, climate conditions, characteristics of treetops,
and variety of grape). Thanks to the new 3D Map implemented in QGIS, it was possible to
visualise vector data on the surface model in 3D.

Then, the structure of the database was designed to support queries and data retrieval.
A table of entities was created in PostgreSQL (Figure 12), and the column geometry was
added thanks to the PostGIS extension. Then the geometries were populated connecting
the database in QGIS by the DB manager tool, by setting the correct reference system (for
this area WGS84-32N) and adding user and password of the localhost (PostgreSQL server
works on port 5432).



ISPRS Int. J. Geo-Inf. 2021, 10, 236 16 of 21ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 12. Database tables creation in PostgreSQL (in the PgAdmin interface). 

3.3.2. The WebGIS Platform 
As mentioned before, the final output of this FOSS methodology consists of the 

WebGIS publication that allows any actors involved in the production of the grapes to 
interact with the 2D/3D database. To obtain a web address of the 2D model of the project, 
we selected GeoServer. It is an Open Source server for sharing geospatial data that pro-
vides maps and data such as web browsers and desktop GIS. Hence, it is possible to store 
spatial data in many formats, and users are not required to have GIS data structure 
knowledge. Moreover, GeoServer provides different types of data as well as vectors; 
Shapefiles; External WFS; PostGIS, ArcSDE, DB2, Oracle Spatial, MySql, SQL Server; Ras-
ter; GeoTiff, JPG and PNG; pyramids, GDAL formats, Image Mosaic, Oracle GeoRaster. It 
supports the EPSG projection as the WGS84-32N one. 

Here the main steps are listed: 
• Connection of the PostGIS Database in GeoServer with the localhost http://lo-

calhost:8080/geoserver/web; 
• Workspace creation: Grugliasco vineyard (URI: http:// localhost:8080/ge-

oserver/Grugliasco vineyard, accessed on 18/12/2020), Figure 13; 
• Inserting layers from PostGIS (vectors and raster) with their style of visualisation. slt 

as defined in the QGIS project; 
• Publication of the Grugliasco vineyard WebGIS in GeoServer; 
• Visualisation of the 2D Map with OpenLayers (it is a JavaScript library for viewing 

interactive maps in web browsers) (Figure 14); 
• Downloading.kml, JSON or WFS file and 3D viewing in GIS environment or in 

Google Earth for a fast and for not-GIS specialised users’ immediate visualisation. 
Finally, thanks to previous steps, it was possible to query the spatial data and the 

vineyard’s geometries, such as rows, trees, and plants, to gain all the information inserted 
in the QGIS project for the crop management. 

The present research also tested another FOSS WebGIS solution using the QGIS 
plugin “QGIS2web” viewer and visualising the data of the WebMap with Leaflet (an 
open-source JavaScript library for mobile-friendly interactive maps [66]). 

Despite the fact that this solution is faster and already integrated in the QGIS soft-
ware, it does not provide the possibility to modify and implement the vineyard data into 
a spatial relational database structure. Indeed, it is not editable directly on the web using 
a FOSS GIS server. 

Figure 12. Database tables creation in PostgreSQL (in the PgAdmin interface).

3.3.2. The WebGIS Platform

As mentioned before, the final output of this FOSS methodology consists of the
WebGIS publication that allows any actors involved in the production of the grapes to
interact with the 2D/3D database. To obtain a web address of the 2D model of the project,
we selected GeoServer. It is an Open Source server for sharing geospatial data that provides
maps and data such as web browsers and desktop GIS. Hence, it is possible to store spatial
data in many formats, and users are not required to have GIS data structure knowledge.
Moreover, GeoServer provides different types of data as well as vectors; Shapefiles; External
WFS; PostGIS, ArcSDE, DB2, Oracle Spatial, MySql, SQL Server; Raster; GeoTiff, JPG and
PNG; pyramids, GDAL formats, Image Mosaic, Oracle GeoRaster. It supports the EPSG
projection as the WGS84-32N one.

Here the main steps are listed:

• Connection of the PostGIS Database in GeoServer with the localhost http://localhost:
8080/geoserver/web, accessed on 5 April 2021;

• Workspace creation: Grugliasco vineyard (URI: http://localhost:8080/geoserver/
Grugliascovineyard, accessed on 18 December 2020), Figure 14;

• Inserting layers from PostGIS (vectors and raster) with their style of visualisation. slt
as defined in the QGIS project;

• Publication of the Grugliasco vineyard WebGIS in GeoServer;
• Visualisation of the 2D Map with OpenLayers (it is a JavaScript library for viewing

interactive maps in web browsers) (Figure 13);
• Downloading.kml, JSON or WFS file and 3D viewing in GIS environment or in Google

Earth for a fast and for not-GIS specialised users’ immediate visualisation.

Finally, thanks to previous steps, it was possible to query the spatial data and the
vineyard’s geometries, such as rows, trees, and plants, to gain all the information inserted
in the QGIS project for the crop management.

The present research also tested another FOSS WebGIS solution using the QGIS plugin
“QGIS2web” viewer and visualising the data of the WebMap with Leaflet (an open-source
JavaScript library for mobile-friendly interactive maps [66]).

Despite the fact that this solution is faster and already integrated in the QGIS software,
it does not provide the possibility to modify and implement the vineyard data into a spatial
relational database structure. Indeed, it is not editable directly on the web using a FOSS
GIS server.

http://localhost:8080/geoserver/web
http://localhost:8080/geoserver/web
http://localhost:8080/geoserver/Grugliascovineyard
http://localhost:8080/geoserver/Grugliascovineyard
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4. Conclusions and Future Perspective

This paper presents a complete workflow based on FOSS procedure and software
compared to the previous knowledge and the already published studies. The structure
of the proposed workflow is the base for any applications based on SfM and automatic
information extraction techniques. Indeed, it has a wide application range and can also be
adapted to non-agricultural purposes, such as inventory management of cargo and urban
green monitoring.

The paper aims to present and validate a FOSS workflow for smart farms and, at the
same time, to point to possible future developments in this application field. This open-
source research workflow starts with the acquisition phase of data with a multispectral
sensor and traces the traditional photogrammetric process via SfM, classification of spatial
data, and GIS visualization and querying processes adopting OS tools, combined under the
precision agriculture hat. Moreover, the present study proposes a webGIS and user-friendly
solution for smart farming, capable of garnering, updating, and querying information
about crops and vineyard processes in a unique spatial database system. The reliability of
the whole process is demonstrated with a real case study used for testing the single steps
and validating them.
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Although the three main steps of the workflow could be applied and validated sep-
arately, the methodology assessment could be improved. With this in mind, the present
research tends to set the base for the following developments. Hence, future works should
focus on evaluating the workflow in terms of effectiveness and replicability. The effective-
ness concerns the workflow’s appropriateness to answer the PA’s needs and can be evalu-
ated via subjective qualitative methods, such as questionnaires and interviews to final users,
and objective methods, through reliable indicators. This evaluation needs to be carried out
after a significant time of usage of the webGIS platform and its data implementation.

The presented solution is easily replicable by many use cases and by different stake-
holders involved in various tasks concerning precision agriculture. As mentioned in [67],
the integration of geomatics techniques and methods (such as remote sensing and aerial
photogrammetry by different sensors) with a geographic information system could im-
prove the resilience of modern agriculture, managing and monitoring every step (seeding,
crop growth, and harvesting and production).

Additionally, the methods’ replicability can be assessed on similar case studies or
compared with commercial solutions. It is worth mentioning that the three main steps
of the proposed workflow remain unaltered regardless of the study case. Nevertheless,
from the replicability point of view, adjustments could be necessary for what concerns the
classification. The classification parameters depend on the defining characteristics of the
vineyard and the possible input data type (i.e., RGB, multispectral).

Moreover, the spatial database can be implemented and organized to store precision
farming information collected by OS hardware, making a step toward OS smart farming.
Total OS smart farming is the expected direction for future research.

Another fundamental aspect to take into consideration regards the possibility of
targeting a wider audience, now designated to not-academic or not-GIS expert users,
enriching the web-GIS DB-based platform with analysis tools and giving different level of
access depending on the degree of expertise.

Future steps of our research could consider creating a new web service able to support
field operation for treatments of grapes and crops, providing online digital content (also
accessible from mobile devices). Even if some valuable examples of digital tools are
already developed in the vineyard management field, none of these present map services
or spatial datasets.
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