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Abstract: With the rapid development of electric vehicles (EVs) around the world, debates have
arisen with regard to their impacts on people’s lifestyles and urban space. Mining spatio-temporal
patterns from increasingly smart city sensors and personal mobile devices have become an important
approach in understanding the interaction between human activity and urban space. In this study,
we used location-based service data to identify EV owners and capture the distribution of home and
charging stations. The research goal was to investigate that how the urban form in regions under
rapid urbanization is driven by EV use, from a geographical perspective. Using a case study of the
expanding metropolis of Beijing, GIS-based spatial statistical analysis was conducted to characterize
the spatial-pattern of the homes of EV owners as well as their charging preferences. Our results
indicate that the spatial clustering of the homes of EV owners in non-urban central areas—suburban
areas—is significantly higher than that in urban central areas. According to the records of visits to
charging stations, the spatial interaction distance between the dwellings of EV owners and their
visits to charging stations exhibits significant distance attenuation characteristics. 88% of EV owners
in this research travels within 40 km (Euclidean distance) between housing and charging stations.
At the same time, there were significant differences in the spatial patterns between working days
and non-working days which are affected by commuting activities. The three types of urban spatial
interaction patterns were identified and categorized by visualization. This transformation to EV use
in the city influences several aspects of people’s decisions and behaviors in life. Understanding the
impacts will provide valuable information for the development of EVs and their implications in the
electrification of transportation, smart planning, and sustainable urbanization.

Keywords: Geographic Information System (GIS); mapping; location-based service; electric vehicle;
spatial analysis; smart planning

1. Introduction

The use of electric vehicles (EVs) has been growing in large metropolises across
the world as an effective method of sustainable urban development due to their low
carbon emissions and clean energy consumption which have many environmental benefits.
Many countries, including Japan, China, members of the European Union, and the US,
have announced plans to promote new energy vehicles in the upcoming decades [1]. It
is estimated that by 2030, 50% of the world’s road traffic will be electrified (including
electric-autonomous driving) [2]. EVs are expected to mitigate urban pollutions caused
by fossil-fuel-powered internal combustion engine vehicles. These emerging concerns
are pronounced in China where power generation is highly dependent on coalfired units.
Researchers proved that higher fleet electrification ratios can synergistically deliver greater
air quality, climate, and health benefits [3]. Nevertheless, there are concerns that EVs
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reduce carbon emissions of air pollutions on roads with limited consideration of the
possibly increased emissions from electricity production processes [4]. In one recent
interdisciplinary research study proposed in the U.S, it was stated that it is ‘imperative’
to understand the characteristics and relationships among urbanization, electrification,
and cities [5]. The rapid development of EVs has caused tremendous changes in people’s
lifestyles and travel patterns [6]. In particular, the possible dynamics of neighborhood
change or transformation (e.g., the choice of residential location—suburban or urban—and
the trip preferences for recharging of EVs) will determine the infrastructure planning
strategy, further leading to fundamental impacts on the structural change of megaregions.

In earlier studies, researchers found that EV users tend to cluster in urban centers.
Registration data from Norway and Sweden show clustering around urban centers, thus
confirming earlier spatial analyses where a high-density charging infrastructure was de-
ployed at urban centers [7]. EVs were promoted as the mainly transportation choice of
renewable power sources in urban environments in that they bring many health benefits to
residents. As such, EVs were originally supposed to be more suitable for usage in cities,
where they can meet the needs of short-distance travel activities within the city, such as
commuting [8,9]. However, with the development of new energy technology and the
increasing numbers of EVs, researchers have begun to rethink the positioning of EVs in
the city and rethink the relationship between the use of EVs and the urban environment.
Some recent studies have found that the number of EV users in the Nordic region will
decrease with the increase in urbanization [10]. Some different opinions have emerged,
e.g., that the growth of EVs in suburban or rural areas will be faster than in urban centers.
One European experience survey shows that suburban or rural residents are more willing
to buy EVs than urban residents [11]. Studies from a consumer perspective support this
point and show that people living in the suburbs of cities can benefit more from the lower
operating costs of EVs [12]. Some studies claim that high-density urban areas are not the
best choice for EVs due to the demand for a certain amount of open spaces for new energy
infrastructure. Economically building charging stations will be challenging in high-density
built-up areas, where parking spaces in the city are inherently limited. For example, one
study from Germany shows that more than 40% of drivers do not have private parking
spaces in the city [11]. Due to the fewer public transportation options in the suburbs
and the sparse road network, EVs benefit residents who are more dependent on private
vehicles [13]. The changes brought about by the rapid development of EVs will further
affect the spatial structure of the city, as well as the layout and sustainable development
of the infrastructure network [14]. Scholars in the field of transportation geography and
planning are currently investigating the impact of the emerging electrification technologies
on the travel and lifestyle of residents and whether they will drive people to live beyond
the city and cause further decentralization.

In many aspects, EVs are different from traditional fuel vehicles. Specifically, EV
batteries have a certain mileage limit, and EV charging requires a long charging session
time (about 1.5–2 h for fast charging, and more than 4 h for slow charging) [15]. Generally,
recharging is an essential issue that EV owners need to consider when planning a route,
particular for long-distance trips [16]. Accordingly, studies have also shown that EV users
place a higher priority on route optimization compared to non-EV users, in order to achieve
a high efficiency of battery energy consumption [17]. With the increasing number of EV
owners, it has been found that EV owners have a higher frequency of short-distance trips,
but a longer total mileage compared with traditional fuel vehicles [18,19]. Some studies
have simulated and modeled the charging and route choice behavior of EV drivers. A
case study in Australia demonstrates that mileage anxiety tends to lead EV drivers to
take advantage of any possible opportunity to recharge their vehicles, regardless of the
remaining available mileage [17]. EV drivers tend to take into account the travel range and
charging time when planning a trip. A case study from Beijing showed that EV drivers
are more likely to choose a charging station closer to the origin or the destination of their
trips. One case study from Southern Germany discussed destination charging demands
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and highlighted the importance of EV users’ behavior [20,21]. Different scenarios were
discussed, including the convenience of charging at a given destination, as EV users can
then do what they like during the charging period [22]. In the above-mentioned research
on EV driver behaviors, the spatial activity in the urban context is not clear, although the
origin or destination of one trip can explain the results.

Multiple data sources have been used to understand the characteristics of EV own-
ers. Most of these studies focus on factors affecting who purchase EVs and why [11,23],
travel behavior and charging choice [20,21], and the location planning of charging sta-
tions [7,24,25]. Extensive discussions about influencing factors have been widely conducted
in the geoscience literature, such as cost/price, topography, impression of safety, conve-
nience, income, education level, infrastructure accessibility, etc. [10,11,21,26]. However,
clear results are missing in terms of the impact of EVs on cities, which calls for more
investigation. There is little research on the possible changes in the residential location of
EV users with urbanization or on travel preferences for charging. Currently, data on EV
users are still limited. Since EVs only account for a small proportion of traffic flow data, it is
difficult to distinguish EV from non-EV users [27]. The most direct information on EV users
is mainly derived from questionnaire surveys or EV registration data [10]. Nevertheless,
recent studies have pointed out that there are different EV consumer groups [28].More
specifically, people in the suburbs may become the main force purchasing EVs so the
deviations in sample acquisition may affect the conclusion. Charging consumption data
from charging stations are another data source mainly used to study charging behavior
and energy demand estimation, while the accessibility and feasibility of obtaining data are
determined by operators in different regions [29]. In addition, traditional survey data gen-
erally lack temporal and spatial characteristics and human–land interaction processes, and
there are few studies on the distribution pattern of charging spaces from the perspective of
the travel mode of residents. The impact of EV development on urban space is not clear.

With the widespread application of smart sensors and mobile internet, location-
based service (LBS) big data provide a new perspective for studying the spatiotemporal
characteristics of the activities of urban residents [30,31]. For example, the LBS network and
mobile apps (such as map services and social media data) generate substantial amounts of
big data with individual and spatio-temporal semantic information and have been widely
used in urban studies. Derived from studies with different research goals, many data
mining algorithms have been developed for the identification of job-housing locations [32],
the category of urban functional areas [33,34], and the observation and analysis of the
characteristics of residents’ spatio-temporal activities in specific areas [35,36]. For example,
LBS-based interactions between residents’ visits and urban POI have been used to re-
define urban functional areas, namely the land use functional type, from the perspective
of residents’ actual usage [37,38]. The job–housing balance of urban residents and the
temporal characteristics of travel behavior have been used to evaluate the rationality of
urban spatial layouts. Changes in the activity volume/density of urban residents reflect to
some extent the vitality of the urban functions undertaken by the region. The interaction
between urban spaces can be characterized as the mobility or energy flow driven by
travel [39]. At present, the application of LBS big data in the study of EV mobility or travel
behavior is under exploration and mostly focuses on planning public charging stations.
For example, Tu et al. used the GPS data of EV ride-hailing groups to estimate charging
demand [15]; Weldon et al. used the GPS-tracked EV fleet in Ireland to support charging
station planning and Pedge et al. discussed the available data sources for charging behavior
modelling [40,41]. Distinguishing between EV users and non-EV users and establishing
an acceptable data security mechanism also become challenging when using these types
of data.

Based on findings and discussions from existing studies, this study aims to fill the
research gaps and explore the impact of EV development on people’s lives and the patterns
of travel to charging stations from a geographic perspective. Regarding the data security
and regulations, we designed an applicable data mining strategy and technical workflow
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to obtain the desensitized data products of EV groups derived from the LBS provider
Baidu. Taking Beijing as a case study, LBS big data were used to identify EV groups and
analyze the clustering features of residential locations—is the clustering present in urban
centers or non-urban areas? Combined with the residential and employment land use
data, we further analyzed the interactive features between the urban spaces driven by the
EV user’s ‘dwelling–travelling for charging’ activity, considering the differences between
weekdays and weekends. We use GIS-based spatial statistics methods, a distance attenua-
tion model, and density-based spatial aggregation to investigate the research questions,
moving the debate to issues connected to time, space, and distance, and mapping the
spatial interaction patterns.

The article is arranged as follows. The second section gives an overview of the context
of the research area and introduces the big data sources and the data preprocessing method,
with a focus on how to use LBS data to identify EV users and obtain their home location.
The third section introduces the spatial statistics and analysis and the visualization methods
used in this research. The fourth part shows the research results and discussions. The fifth
part summarizes the conclusions and contributions and details the recommendations for
urban planning and transportation infrastructure layouts.

2. Research Area and Data Preprocessing
2.1. Research Area

The research area is Beijing, the capital city of China. This city has a total area
of 16,410 km2 and a permanent population of more than 21 million. During the rapid
expansion and development of urban areas, the issues of severe traffic congestion and
environmental pollution highlight the importance of sustainable development. Among
a series of urban governance policies, transportation electrification has become one of
the strategies for environmental pollution control. Research indicates that transportation
accounts for 25% of air pollution in the city [42]. Since 2014, the Beijing metropolitan area
has largely promoted the usage of EVs, becoming the first city in China to implement
transportation electrification. The current number of private EV cars in Beijing has reached
about 230,000. The public charging network consisted of 3075 public charging stations
in 2019 [43]. Therefore, this case study is expected to be a reference for the promotion of
EVs in other cities, providing forward-looking suggestions for the impact of EVs on the
development of urban space.

No common definition of urban/suburban/rural boundary has been formed due to
different research contexts. From the perspective of the administrative map, Beijing is
divided into 16 districts, and six urban areas make up the main urban area. Built and
developed over 3000 years, many historical and cultural buildings are preserved within the
second ring road of Beijing, namely the urban central areas. With the rapid development
of urbanization, the spatial expansion of urban areas has been spreading outward from
a single core marked by the ring roads. Most studies on Beijing’s urban spatial patterns
use the ring roads as the primary framework as they correspond with the city’s centrifugal
growth from the perspective of transport geography [44]. This study adopts the same
approach for analyzing the impacts of EVs. The areas within the six ring roads is 2267 km2,
accounting for 13.8% of the all administrative city areas. From the urban core center, namely
Tian’anmen, to the sixth ring road, the maximum linear distance is about 35–40 km. There
are 179 town-neighborhood units, also called ‘Jiedao’. This Jiedao unit is used as the basic
geographic analysis unit in this study.

Figure 1 shows presentational research area overlay on satellite images, illustrating
the urban forms of Beijing within the ring roads. From the second to sixth ring roads,
representative regions marked by R1 to R7 are zoomed out to show the landcover details
of urban space. The north and east of the city areas host the main vitality areas of the city
(a high-density of population and employment). It can be seen from the satellite images
that there are high-density buildings in the urban central areas (R1). Beyond the second
ring road, this city has expanded significantly towards the six ring roads. High-density
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residential (R2) and commercial areas (R3) are formed along the third ring road. Notably,
the area between the fifth and sixth ring roads is experiencing rapid development, showing
uneven spatial distribution of urban land use, with a certain amount of unbuilt land.
During the process of rapid urbanization, this region initially formed a spatial pattern of
employment-driven housing (e.g., R4 and R7).
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Figure 1. Research areas overlaid on satellite images from Google Earth. The urban core center named Tian’anmen Square is
marked by the yellow star. The regions R1–R3 regions are located within the Fifth Ring Road, representing the high-density
built-up areas with high density population and employment centers (R1–R3). R4–R7 are located between the fifth and sixth
ring roads, as suburban areas (R4–R7). R5 is the sub-center of the city supported by the local policy, namely Tongzhou New
Town. R4 is a high-tech industrial park with a large number of employment facilities (R5). R6 and R7 are large residential
areas with a single type of land use (R6,R7).

2.2. LBS Data

The LBS requests contain multi-dimensional information, temporal and spatial in
particular, that has been widely used to mine the spatial and temporal distribution of the
population in cities. The LBS data used in this study were derived from Baidu, the leading
LBS provider and big data operator in China. The accumulative datasets over six months
can reach more than 1 trillion, which is used to generate these population products by the
XGBOOST machine learning algorithm [45]. The accuracy of these data mining results
exceeds 90% (Urban population data product, from Baidu map big data. Available on-
line: https://mp.weixin.qq.com/s?__biz=MzA4MzcxNjg5MQ==&mid=2651042375&idx=
1&sn=c48cea76a6bcea57520d540dec1e44e2&chksm=84052c33b372a525be491f5cb52ec21c2f6
7898339b3a142e7fe4aa6017b2d53e525dfa0da0b&scene=21#wechat_redirect, accessed on 18

https://mp.weixin.qq.com/s?__biz=MzA4MzcxNjg5MQ==&mid=2651042375&idx=1&sn=c48cea76a6bcea57520d540dec1e44e2&chksm=84052c33b372a525be491f5cb52ec21c2f67898339b3a142e7fe4aa6017b2d53e525dfa0da0b&scene=21#wechat_redirect
https://mp.weixin.qq.com/s?__biz=MzA4MzcxNjg5MQ==&mid=2651042375&idx=1&sn=c48cea76a6bcea57520d540dec1e44e2&chksm=84052c33b372a525be491f5cb52ec21c2f67898339b3a142e7fe4aa6017b2d53e525dfa0da0b&scene=21#wechat_redirect
https://mp.weixin.qq.com/s?__biz=MzA4MzcxNjg5MQ==&mid=2651042375&idx=1&sn=c48cea76a6bcea57520d540dec1e44e2&chksm=84052c33b372a525be491f5cb52ec21c2f67898339b3a142e7fe4aa6017b2d53e525dfa0da0b&scene=21#wechat_redirect
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July 2018), compared with other datasets, such as communication signaling data. The data
has been widely used in urban studies, and the validity of the data has been extensively
verified [46,47]. Based on these basic population distribution datasets, we further proposed
a data mining strategy and technical workflow to identify EV users. Three rules were
designed to determine EV users and identify their dwelling/home location: (1) The EV can-
didate user had to have records of visiting public charging stations by using the LBS service.
Indexed by this record, the EV users were distinguished from non-EV users—assuming
that non-EV users would not have charging visits. (2) Referring to existing data products
and previous studies [48,49], the place determined to be the home location depended on
where the user stayed the longest during the interval from 10:00 p.m. to 6:00 a.m. (3) The
home location had to be located within the Beijing City Region.

The data collection period was November 2019. Considering the data security and
privacy protection regulation, anonymization, and down-scaling are key points for data pre-
processing. Specifically, the original data were desensitized (privacy information removed
and ID anonymized), and deduplicated by day. The output data product was resampled
and stored in a 100 × 100 m grid (down-scaling), retaining the information of dwelling
locations, the charging station location visited, and the number of people in the grid (the
location was the latitude and longitude of the center point of the 100 m2 grid). In this study,
these data were spatially joined with the Jiedao-level units for geographic spatial analysis.
This processing flow means that the statistics were performed in down-sampling gridded
units (one statistic value for a whole 100 m grid and Jiedao unit), so that no individual data
or precise location was involved.

A total of 31,717 data records were collected, corresponding to the records of 32,068
visits of EV users to charging stations. This consisted of 21,351 records on weekdays and
10,717 records on weekends (4 weeks of data were collected, with one extra Friday and
Saturday). It was estimated that an average of 1016 records of EV users were generated
per day on weekdays. The average number of visits on weekends was higher than that
on working days. The overall average total for weekends was higher than the average
total for weekdays—1017 records, as shown in Table 1. The distribution of the dwellings of
EV users was statistically analyzed in the regions divided by the ring roads, as shown in
Table 2.

Table 1. Overview of electric vehicle (EV) groups derived from location-based service (LBS) data
(collection and description).

Weekdays 1 Weekends 2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Count 4048 4047 4014 4145 5097 6115 4602
Mean 1012 1012 1004 1036 1019 1223 1150
Total 21,351 10,717
Total
mean 1017 1191

1 21 days; 2 9 days.

Table 2. Descriptive statistics of the job-housing proportion of the ring roads.

Region Residential
pp (%)

High
Density Areas

Employment
pp (%)

High
Density Areas

EV Residential
(%)

Within 2nd
(urban central

area)
5%

N3RR, S3RR,
SIH, WAJ

7%
CBD, ZGC, JRJ,
WAJ, WKS, FTP

4%

2–3 9% 11% 9%
3–4 13% 15% 13%
4–5

(Urban area) 16% 16% 17%
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Table 2. Cont.

Region Residential
pp (%)

High
Density Areas

Employment
pp (%)

High
Density Areas

EV Residential
(%)

5–6
(Suburban) 36% HLG, TTY, QIH,

DFZ, TZNT 30% SHD, LGY, YIZ 40%

Outside of 6th ring
road 22% 21% 16%

(Rural)

2nd = second ring road, 2–3 = region between the second and third ring road; 3–4 = region between the third and fourth ring roads;
4–5 = region between the fourth and fifth ring roads; 5–6 = region between the fifth and sixth ring roads.

2.3. Land Use Data of Residential Areas and Employment

This paper uses land use maps of residential areas and employment as a base map to
understand the patterns of ‘dwelling–travelling for charging’ activities of EV users. Notice
that the land use map shows the spatial distribution characteristics, but it does not show
the spatial heterogeneity of the population or employment density. As such, we marked
the representative regions with high density residential populations and employment,
combined with the report from the wireless signaling big data, as shown by the descriptive
statistical data in Table 2 and the map in Figure 2. In general, 78% of the residents and 79%
of the jobs were concentrated within the sixth ring road in Beijing. The land use map was
provided by Baidu Maps, and the big data report was provided by the Beijing Transport
Institute, both of which were updated in 2019.
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Table 2 shows that the residential population within the fifth ring road accounts for
42% of the total (the area within the fifth ring road is about 667 km2, and the residential
population density reaches 13,550 people per km2). Combining Figures 1 and 2, the
population is mainly distributed in the areas along the North (Figure 1 R2) and South Third
Ring Road (N3RR and S3RR), Zhongguancun (ZGC), Sihui (SIH), and Wangjing (WAJ);
correspondingly, the many employment locations within the Fifth Ring Road account for
49% of the total in the city, including the Central Business District (CBD, Figure 1 R3), ZGC,
Financial Street (JRJ), WAJ, and Fengtai Science Park (FTP). Between the fifth and the sixth
ring roads, some of the urban villages have developed rapidly with urbanization. The
residential areas cluster sparsely, carrying 36% of the residential population (the area is
about 1600 km2, and the population density is about 4850 people per km2, which is lower
than the level within the fifth ring road). Large high-density residential communities have
appeared, such as Huilongguan (HLG, Figure 1 R7), Tiantongyuan (TTY, Figure 1 R6),
Qinghe (QIH), Dingfuzhuang (DFZ), and Tongzhou New Town (TZNT, Figure 1 R5). The
employment facilities between the fifth and sixth ring roads account for 30% of the jobs
in the city, mainly in Shangdi (SHD), Laiguangying (LGY), and Yizhuang (YZIP, Figure 1
R4) in emerging high-tech industrial parks. Based on the built-up areas and population
density, this study regards the region within the fifth ring road as the urban area, the region
between the fifth to sixth ring roads as the suburbs [4], and the region outside the sixth
ring road as the rural area.

3. Method

Based on the EV group information obtained from the LBS data, we focused on
analyzing the spatial clustering features of the dwelling places of EV users using geographic
dimensions, and further investigated their “Dwelling–Travelling for Charging” (DTFC)
relationship. The D represents the EV owners’ home location, and the TC represents the
location of the public charging station that the EV owner visits. The DTFC flow is defined
between the EV users’ home location and the public charging location, which represents the
spatial preferences of their dwelling and charging station. In terms of the spatial-dimension,
the distance and the intensity of interactions between urban space units were considered,
and the influence of working days and non-working days was considered in terms of the
time-dimension. The study used the ‘Jiedao’ unit as the geographic analysis unit, employed
Moran’s I to measure the spatial autocorrelation and distribution characteristics of EV users’
dwelling, and used a single exponential function to quantify the distance characteristics of
DTFC. We mapped the interaction between urban spaces based on the ‘Jiedao’ units driven
by the DTFC flow of EV users.

3.1. Spatial Autocorrelation

Moran’s I is the most widely used indicator to measure the existence of spatial auto-
correlation, or spatial dependencies. According to the first law of geography, “Everything
is related to everything else, but near things are more related than distant things” [50].
Spatial autocorrelation is an important research field of spatial statistics, and it is also
one of the core theoretical methods to study the distributional correlation between spatial
geographic features. Moran’s I was first proposed by Moran in 1950, and was later applied
and developed by many scholars. In 1995, Anselin proposed the Local Indicator of Spatial
Association (LISA) [51]. The value of Moran’s I range is [−1, 1]. The formula is

I =

(
∑n

i=1 ∑n
j=1 wij(Xi−X)(Xj−X)

∑n
i=1 ∑n

j=1 wij

)
(

∑n
i=1(Xi−X)

2

n

) (1)
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LISA provides a method to measure the spatial association of each regional unit in a
larger research area, which is a local value of the global Moran’s I statistic. For region i, the
value of the Local Moran’s I at location i is computed using the formula

Ii =
n

∑n
j=1 wij

∑n
j=1 wij

(
Xi − X

)(
Xj − X

)
∑n

i=1
(
Xi − X

)2 (2)

where X is the mean of the variable X—it is the number of EV residents in a geographic
unit; Xi is the variable value at a particular location I; Xj is the variable value at another
location j; wij is a weight indexing location of i relative to j, representing the geo-spatial
relationship between region i and j, using the Queen Neighbor weight matrix. n is the
number of observations (points or areal units). As explained in global Moran’s I, LISA is
more effective in detecting the spatial clusters or hot spots locally (when variable values in
a local area are significantly higher or lower than the average). The results can be explained
as follows:

(1) Large positive values (close to 1) indicate that there is strong (positive) autocorrelation
(i.e., similar values tend to cluster together);

(2) Large negative values (close to −1) indicate that there is strong negative autocorrela-
tion (i.e., areas with similar values of a variable tend to repel each other; dispersion);

(3) Values around 0 indicate that there is no spatial autocorrelation (random pattern).

In this paper, we analyzed the distribution of EV users’ residential locations based
on the Jiedao unit, and further employed LISA to highlight the spatial autocorrelation,
where the EV users’ dwellings cluster significantly. The calculation and mapping process
are conducted with GeoDa software, version 1.18.

3.2. Distance Decay Modeling

The distance decay states that the spatial interaction between two spaces declines as
the distance between them increase. In this study, we use the Euclidean distance between
the EV users’ homes and their choice of charging location, namely the distance of DTFC. It
represents the EV users’ preferences for living and charging, which can be interpreted as
whether or not EV users prefer to choose areas close to their residence when they choose
public charging stations. The formula of Single Exponential Function used here is

y = A1 × exp
(
− x

t1

)
+ y0 (3)

where y represents the spatial interaction intensity (that is, the number of the DTFC flow
of EV users), x is the Euclidean distance between the residential location (point D) and
the point of the visited charging station, A1 is the amplitude, y0 is the positive coefficient,
and 1/t1 is the attenuation coefficient. The higher the attenuation coefficient, the greater
the influence of distance on the interaction strength. The abscissa represents the distance,
and the ordinate represents the number of interactions. Considering the differences in
travel activities over time, we used the data on weekdays and weekends for analysis. The
modeling process and curve fitting graph were completed in ArcGIS Desktop 10.3 and
Microsoft Excel in Office 365.

3.3. Spatial Aggregation

Urban space (using Jiedao units) interacts and connects within the city in the form
of energy, human mobility, and information. This geographic process is called spatial
interaction [39]. We used the spatial flow between Jiedao units driven by the user’s DTFC
to characterize the interactive features of urban space. It is expected that the common
geographic locations or mobility features will be discovered and spatial regions with
high-density interactions will be identified. In other words, we aimed to find the places
where EV owners are distributed with a high density and their charging preferences.
The original DTFC flow contains more than 30,000 flow records that are highly spatially



ISPRS Int. J. Geo-Inf. 2021, 10, 320 10 of 19

superimposed so it fails to form a directly visualization of the high density of spatial
interaction. Accordingly, this study used a density-based smooth approach to highlight
the spatial interactions. Specifically, we aggregated the spatial DTFC flows with the
same residential unit (located in Jiedao i) and the same visited charging location (located
in Jiedao j), taking the Jiedao as the basic unit of spatial aggregation. The DTFC flow
direction was not considered. According to the density of spatial interaction, the DTFC
flow pattern with high interaction was identified. In particular, there were zero distances
of DTFC flow, which means that the EV owners lived and charged at the same Jiedao
unit. These spatial self-interaction samples were represented by a point file that classified
different sizes. A conceptual diagram of spatial aggregation is shown in Figure 3. This
spatial aggregation process for the DTFC flow was completed in ArcGIS Desktop 10.3.
Finally, combined with the land use of residential and employment areas in Figure 2, we
summarized and categorized the spatial interaction features, and identified the common
findings for planning future urban sustainability.
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Figure 3. Spatial aggregation of “Dwelling–Travelling for Charging” (DTFC) flow based on the town-neighborhood
unit (Jiedao).

4. Results and Discussion
4.1. Distribution of EV Residential Areas

Table 2 shows that the ratio of the EV owners’ residential distribution is statistically
close to the proportion of the total residents of Beijing, while significant differences exist
between the fifth and the sixth ring roads, and outside the sixth ring road. This indicates
that over 56% of the EV users dwell outside the fifth ring road, namely beyond the main
urban areas. Forty percent of EV users are distributed between the fifth and sixth ring
roads, which is a suburban area. Only 4% of EV owners are living in the urban core
center—within the second ring road. When interpreted in combination with Figure 4, it
can be seen that the proportion of EV owners’ housing gradually decreases towards the
inner-city center. The distribution map of public charging station deployment is also shown
for comparison. Notice that the charging network has basically covered all administrative
areas. Most of the charging infrastructure is located within the sixth ring road, particularly
in the business centers with a large amount of employment facilities, including SHD, WAJ,
LGY, FTI, and YIZ.

Confirmed by the results of the LISA cluster map shown in Figure 5, there is significant
spatial autocorrelation distributed in the suburban areas, namely the high–high region,
between the fifth and sixth ring roads. Combined with Table 1, these areas include the large
residential communities and the high-tech industrial parks. Specifically, the dwellings of
EV owners are significantly clustered close to the periphery of the main urban areas. Being
consistent with the general characteristics of urban areas, the clustering is distributed in the
northern and eastern parts of the city areas, which carry the majority of urban vitality (as
mentioned in Section 2.1). The inconsistent features show that the clustering of dwellings
of EV groups are distributed in the southern and western part of the city. They are all
beyond the urban center areas and refers to the newly developed high-tech industrial
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parks. The southern clustering corresponds to the YIZ. The western clustering corresponds
to FTI, a recently developed industrial park. These residential cluster were developed
due to the large-scale employment in those areas. These clustering results confirm certain
international research results about the distribution of EV householders [10,11]. In general,
the residential areas of EV owners in Beijing are mainly concentrated within the sixth ring
road. The sub-urban areas show higher clustering features than urban center areas. Fewer
EV owners live in rural areas, where there is a low–low clustering feature.
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Figure 4. Distribution of public charging stations and EV users’ residential areas at the town-neighborhood level. The
majority of EV users live between the fourth and sixth ring roads, especially in the northern and southern regions. In
contrast, the deployment of public charging stations shows partly consistency with this pattern, regarding it indicates a
certain correlation with large employment areas.
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Figure 5. LISA cluster map and LISA significance map (weights: Queen Weights): the high–high
cluster is highlighted in red, and the corresponding significance results highlight in green. It shows
an obvious clustering trend beyond the urban core areas but along with the fifth and sixth ring roads.
Clearly, the rural areas outside the sixth ring road show low-low cluster features.

4.2. Spatial Interaction Characteristics

In this study, we used the DTFC distance of EV owners to represent their preferences
of charging location when travelling or planning a trip for recharging. The results in
Figure 6 show that the single exponential function fitting worked well and the value of
R2 was 0.96. Thus, the interaction between spaces driven by DTFC activity decays with
distance. In other words, most EV owners tend to consider the travel distance to their
home when choosing a public charging station. We also considered time influences and
conducted modeling on weekdays and weekends. On weekdays, EV owners usually drive
different routes than that during leisure time due to different travel purposes. However, the
distance decay model indicated that this travel activity shift over time do not affect people’s
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preferences of charging stations choice. Figure 7 shows no significant influence on the
results of EV owners’ preference for charging locations near their home. The attenuation
coefficient of weekdays was slightly higher compared to weekends, indicating that the
spatial interaction of working days was more affected by, or sensitive to, distance.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 6. Interaction strength with the DTFC distance distribution of EV owners’ charging-trips. 

The blue curve represents the observation data, and the yellow curve show the fitted results. There 

was a significant turning point at 10km. Besides, it can be seen that a peak appears at the 20km 

and 35km point respectively.  

 

Figure 7. Influences by time factors: no significant influence on weekdays and weekends. Never-

theless, there are statistical differences between workdays and non-workdays. For weekdays, there 

are drop and peak at 30km and 35km point respectively; in contrast, the curve over the weekends 

show more fluctuates, with two peaks both at 20km and 30km point. 

This finding also evaluates the spatial characteristics of the public charging prefer-

ences of EV owners with Beijing's current comprehensive charging station networks. 

Comparing with some results from existing simulation or models [20,21], our result high-

lights the geo-location in urban context that EV users choose public charging stations not 

far from their home. It confirms that EV owners would consider the travel distance 

(mainly the short-distance trips [18,19]) from home when travelling. In this research, the 

statistical results show that about 88% of EV owners’ DTFC distances are less than 40 km 

(46% within 10 km, 67% within 20 km, and 80% within 30 km).  

4.3. Visualization of DTFC Flow Patterns 

We mapped the DTFC-driven spatial interaction features on weekdays and week-

ends, as shown in Figure 8. The interaction features between different spaces were classi-

fied according to the density of DTFC flow. The high-density flow represents strong in-

teractions between places considered common. On weekdays, three categories of strong 

Figure 6. Interaction strength with the DTFC distance distribution of EV owners’ charging-trips. The
blue curve represents the observation data, and the yellow curve show the fitted results. There was a
significant turning point at 10 km. Besides, it can be seen that a peak appears at the 20 km and 35 km
point respectively.
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This finding also evaluates the spatial characteristics of the public charging preferences
of EV owners with Beijing’s current comprehensive charging station networks. Comparing
with some results from existing simulation or models [20,21], our result highlights the
geo-location in urban context that EV users choose public charging stations not far from
their home. It confirms that EV owners would consider the travel distance (mainly the
short-distance trips [18,19]) from home when travelling. In this research, the statistical
results show that about 88% of EV owners’ DTFC distances are less than 40 km (46% within
10 km, 67% within 20 km, and 80% within 30 km).

4.3. Visualization of DTFC Flow Patterns

We mapped the DTFC-driven spatial interaction features on weekdays and weekends,
as shown in Figure 8. The interaction features between different spaces were classified
according to the density of DTFC flow. The high-density flow represents strong interactions
between places considered common. On weekdays, three categories of strong spatial
interaction features were identified and are represented by A, B, and C, and their features
can be summarized as follows:

(1) Category A: A1–A4 are the most high-density regions and are in suburban
areas. They consist of strong interactions between large residential communities and
high employment opportunity areas. These regions are located between the fifth and
sixth ring roads. The community-driven mobility on weekdays that creates a strong
connection pattern is significantly weakened on weekends. In Figures 1 and 2, we
marked specific region names. In the northern area, A1 and A2 refer to the high-
tech industrial parks. In the southern area, A3 refers to economic and technological
development zones, and A4 refers to the university town, which is developing rapidly.
The findings of the housing clustering of EV users corresponds to the areas surrounded
by a high amount of employment facilities. It is reported that the average daily travel
distance and travel time for household EV drivers in Beijing was 40.0 km and 1.5 h,
respectively [15]. This pattern may indicate that the households of EV drivers consider
their commute when they choose their dwelling places.

(2) Category B: B1–B3 are mainly self-interaction point in the main urban area of the
city, with a certain interaction with surrounding employment regions. They are located
within the fifth ring road in large employment areas, including JRJ and WKS around the
western second and third ring roads, and the CBD area from the eastern fourth and fifth
ring roads. The distribution of this category shows a clear trend around the main road
network, particularly close to the central axis of the city.

(3) Category C: C1–C2 are residential areas of newly developed areas (namely new
towns) in suburban areas, without large employment regions. C1 refers to the large
residential communities in TZNT, which is being rapidly developed as a suburban center
of Beijing, with policy support. C2 also refers to the large residential areas in DXNT, which
is being developed as a new transportation hub in the city.

In comparison, on weekends, the high density of spatial interaction (Category A) is
significantly weakened, indicating the different EV groups. The DTFC characteristics of
these people living in urban areas (Category B) do not show great differences between
weekends and weekdays. These spatial interactions indicated EV-driven urban vitality
distributions, and in particularly high-density interaction was located in the suburbs.
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5. Conclusions

This study investigates the impacts of rapid-developing EVs on the city of Beijing,
with a focus on the distribution of residential location and preferences for public charging
locations. A new perspective generated using geography and urban space was created
using LBS data to rethink EV popularity and the effects on the urban spatial pattern. We
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have formed the following main conclusions: (1) The residential areas of EV owners are
significantly clustered in non-urban central areas. The suburban areas, between the fifth
and sixth ring roads—the periphery of the main urban area—have formed a ring-like
clusters with high–high spatial autocorrelations. Fewer EV owners’ dwell in the rural
areas of the city. (2) EV users are more likely to choose a short DTFC distance (88% within
40 km). This distance attenuation characteristics is not significantly affected by the time
factor, although people usually have different travels between weekdays and weekends.
This short-distance DTFC determines that their activities are mainly within the urban limits
(within the six ring road, radius of 40 km), while a long-distance travel to rural areas is
a minority. (3) The different patterns of spatial interaction on weekdays and weekends
indicate the different EV users that are affected by time. Some high-densities patterns
with short-distance (interaction between adjacent Jiedao units) are discovered during
workdays, indicating that a type of EV owners have fixed travel pattern due to commuting.
This interaction was significantly weakened on weekends, although the average visits to
charging stations on weekends were higher than that on weekdays.

We summarize the contributions made by this paper corresponding to the above
three conclusions: (1) In terms of the impacts of EVs on urban forms, it partly supports
the previous research discussions from other related studies—will EV drive people live
beyond the city and EV owners who live in non-urban areas benefit more? Beijing case
study show EV dwell in suburban with higher clustering than both urban center and
rural areas. (2) It enables in-depth spatial analysis of the charging-preferences of EV users
with respect to housing location. This fills the research gaps to draw a clear picture of
geo-locations in an urban context, in terms of existing results from simulations or models
on EV charging at “origin or destination” point [20] or charging choice behavior [21].
(3) The temporal (working or non-working days) and spatial (short-distance commuting)
characteristics, as well as the high-density interactive between urban space, could inform
some recommendations for decision makers. For example, when there is concentrated
charging at night in a certain Jiedao, it may have pressure on the electric power grid. As
such, it is recommended that charging stations in residences and employment centers can
set up incentives such as adaptive charging prices at different time periods to balance the
city’s electric energy and improve the utilization rate of each charging station.

With urbanization, suburban areas have been the main dwelling places of EV own-
ers. The common features of these clustered residential areas are that they are near the
surrounding large-scale employment locations. These employment facilities mainly refer
to the high-tech or high-education locations, which may drive the emerging job-housing
pattern of EV owners. Regarding the limitations of the data applicable in Beijing, the
workflow for data mining and the acquisition of observational data needs to be redesigned
in accordance with the policies and regulations in other regions around the world.

In addition, this study still has some areas that need to be further explored. Specifically,
the main factors that affect spatial-temporal patterns and EV owners’ choices of home
location need to be identified. Nevertheless, we must also claim the limitation of this
research results. EV development in cities and people’s lifestyles will differ with time,
regional space, and local policies. Therefore, we propose to develop structured data-
driven method to create realistic scenarios for how these emerging and rapid electrification
transportation effects may play out in China and other cities around the world. This
novel data mining strategy of identifying EV groups based on LBS network is expected to
understand EV owners from an urban geographical perspective.
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