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Abstract: Fires are one of the most destructive forces in natural ecosystems. This study aims to
develop and compare four hybrid models using two well-known machine learning models, support
vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS), as well as two
meta-heuristic models, the whale optimization algorithm (WOA) and simulated annealing (SA) to
map wildland fires in Jerash Province, Jordan. For modeling, 109 fire locations were used along with
14 relevant factors, including elevation, slope, aspect, land use, normalized difference vegetation
index (NDVI), rainfall, temperature, wind speed, solar radiation, soil texture, topographic wetness
index (TWI), distance to drainage, and population density, as the variables affecting the fire occurrence.
The area under the receiver operating characteristic (AUROC) was used to evaluate the accuracy of
the models. The findings indicated that SVR-based hybrid models yielded a higher AUROC value
(0.965 and 0.949) than the ANFIS-based hybrid models (0.904 and 0.894, respectively). Wildland fire
susceptibility maps can play a major role in shaping firefighting tactics.

Keywords: wildland fire susceptibility mapping; meta-heuristic algorithms; adaptive neuro-fuzzy
inference system; GIS

1. Introduction

In the past decades, wildfires and forest fires have been one of the major and most
pervasive hazards in destroying natural ecosystems. Every year, millions of hectares of
rangelands and forests are destroyed by fire worldwide [1]. Lightning, global warming
and climate change, deforestation, land management decisions, insufficient precipitation,
hot winds, litter accumulation, and friction between dry litter are among the factors that
can cause natural fires in rangelands and forests [2,3]. Major climatic factors contributing
to increased forest fires include the spread of drought, rising global temperatures, and
increased incidence of foehn winds [4,5]. Every year, approximately 4 million hectares of
forests worldwide are damaged by fire [6]. Damage caused by fire can be minimized by
identifying areas with high fire susceptibility, implementing fire prevention, and taking
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fire safety measures [7]. To identify fire-susceptible zones, it is necessary to determine the
factors affecting the occurrence of fire, such as fuels, topographic and climatic conditions,
and human factors [8]. Consequently, the relationship between these factors and the
occurrence of fire must be determined. For this purpose, it is necessary to record areas
where fires occurred in the past and then match them with the layers of the factors affecting
fire susceptibility to determine the relationship between them [9].

Statistical modeling is performed using parametric or nonparametric methods [10,11].
There are several default parameters and limitations in modeling the relationships between
variables in parametric models. Considering a default distribution such as a normal
distribution for the response variables, linearity of the proposed relationship, equality of
error variance, and independence of the variables are among the limitations of parametric
models [12,13]. If the actual data do not satisfy the default conditions, it will not be possible
to use these models in practice, or their application will be accompanied by considerable
error [12]. In addition, none of the parametric models can model complex and nonlinear
relationships [14]. The limited amount of input data and the sensitivity of most parametric
models to missing data or outliers are among the other limitations [15]. Consequently,
parametric modeling techniques such as linear combination and logistic regression used in
previous studies lack the necessary precision and efficiency because of the complexity of
the relationship between forest fire locations and factors influencing them [8,16]. Therefore,
precise and new nonparametric models for predicting and spatial mapping of forest fire
susceptibility, including artificial neural networks or data mining methods, as well as
machine learning such as support vector machines (SVMs), can better model the complex
relationships between factors influencing fire occurrence. To date, many models have been
developed in this category and have been used in spatial and non-spatial fields [17-23].

The adaptive neuro-fuzzy inference system (ANFIS) and SVM are two of the most
powerful and successful models used in modeling various phenomena, such as forest
fires and flood susceptibility [24-28]. The present study used ANFIS and SVM combined
with the two meta-heuristic methods, i.e., the whale optimization algorithm (WOA) and
simulated annealing (SA), to prepare forest fire susceptibility maps for the Jerash Gov-
ernorate (Jordan). A total of four hybrid models (SVM-WOA, SVM-SA, ANFIS-WOA,
and ANFIS-SA) were obtained, compared, and evaluated. To the best of our knowledge,
no such study with these models has been conducted to date for forest fire susceptibility
mapping. Such studies are important in a country like Jordan, where the percentage of
cultivated land to the total area of the Kingdom is only about 3%, and the crops affected
by fires, especially in the summer and fall seasons of every year, are considered a major
source of income for farmers in the region affected by the fires.

2. Study Area and Data
2.1. Study Area

Jerash Governorate is located in the northwestern part of the Hashemite Kingdom of
Jordan and is the smallest Jordanian governorate among all 12 governorates with an area
of 420 km?. It is approximately 45 km north of Amman, the capital. Jerash city (32°16' N,
35°53' E) is the center of the Jerash Governorate (Figure 1). The total population of the
governorate is 262,100 people, with a population density of 639.6 people/km?.
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Figure 1. Location map of the study area.

Jerash is one of the richest regions in terms of biodiversity, especially in the field of
agriculture in Jordan, where many crops, especially olives, are cultivated. It also cultivates
fruits, grains, and field crops, and has pastures and natural forests. The climate of Jerash is
a Mediterranean climate, which is cold to moderate in winter and hot in summer, but it is
locally considered as one of the most temperate climates in Jordan, so that the temperature
in summer may reach 40 °C, while snow may cover many of the heights of Jerash in some
winters. Jerash is considered a mountainous region in Jordan, with altitudes ranging from
300 to 1247 m above sea level.

This rich biodiversity in the study area leads to multiple human activities, and this is
a major cause of fires. Hikers, tourists, shepherds, and local people who move in the area
intensively, and some of them deal with dry weeds and crops during the harvest season in
a manner of indifference and lack of adequate awareness of the basics of environmental
conservation, which leads to the occurrence of fires.

The majority of these fires occur in the summer and autumn seasons, and the number
of fires increases significantly in the years in which the winter season is later than September
to October or November in some years, as dry weeds and crop residues remain after the
end of the harvest season without any care from the field owners.

2.2. Data Description

To determine the degree of susceptibility to wildfire in the area being studied, data
were collected from past wildfire outbreaks and factors that act as predictors. The selection
of factors affecting forest fire occurrence is based on a review of the literature, as well
as the characteristics of the study area and data availability. The General Directorate of
Civil Defense of Jerash Province reported 109 incidents related to fire, and 109 additional
randomly sampled points were created outside the fire zones. This resulted in a broad
range of points that were separated by 50 m or more, so that no neighboring points were
chosen in the same pixel. The random generation and distribution of sampling points
created a model of fire and non-fire incidents (Figure 2). Once the sampling points were
agreed, they were divided into training and testing datasets to facilitate model training
and validation [29]. Wildfire susceptibility mapping was used to calculate the success rate
values using the 70% training dataset (76 fire locations) and the 30% validation dataset
comprising 33 fire locations [30].

When assessing and mapping forest fires, various factors provide quantitative tools
that determine different elements, such as elevation, aspect, slope, land use, rainfall,
wind speed, temperature, the normalized difference vegetation index (NDVI), soil texture,
radiation, population density, distance to roads, topographic wetness index (TWI), and
distance to drainage systems.
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Figure 2. Factors involved in forest fire susceptibility mapping; (a) elevation, (b) slope, (c) aspect, (d) land use, (e) NDVI,

(f) rainfall, (g) temperature,

(h) wind speed, (i) radiation, (j) soil texture, (k) TWI, (1) distance to drainage, (m) population

density and (n) distance to roads.

2.2.1. Elevation

The study area elevation ranges between —227 and 1225 m above sea level (Figure 2a).
The topographic features were derived from a 30-m open-source digital elevation model
(DEM). This DEM was downloaded from the International Agriculture Research Con-
sortium for Spatial Information Shuttle Radar Topographic Mission (SRTM) data [31]
(http:/ /earthexplorer.usgs.gov, accessed on 25 December 2018). The DEM data were pro-
cessed using the ArcGIS 10.8 tool. Elevation is among the most critical parameters in most
spatial modeling and analyses [32]. Fire behavior is affected by a number of topographic
variables. Erten et al. [33] and Ireland and Petropoulos [34] stated that one of the key factors
that determines the seriousness and size of fires is elevation. Ramos-Neto and Pivello [35]
added that, at high altitudes, fires spread quickly because flames are fanned by the wind,
weeds tend to dry quickly in such places, and fire fighters encounter problems when trying
to access these areas. Elevation explains the shifts in temperature that follow the adiabatic
lapse rate at which temperature falls with altitude, particularly where the land’s surface
properties and material features are multifaceted.

2.2.2. Slope

The intensity of a fire is also affected by slope, as steep slopes result in greater pre-
heating of fuels, and an ever-increasing, faster rate of spread as the fire moves up-slope.
In addition, areas with higher slopes can only be tackled using complicated and chal-
lenging methods of fire control [33,36]. The slope position determines the likelihood of a
fire-moving uphill or retreating downhill, and backing fires are more commonly found on
lower slope positions, spread more slowly, and have shorter flame lengths. In addition,
slope position and elevation are associated with different types of vegetation, as upper
slopes contain thickened woody plants with small, hard leaves, whereas the lower slopes
contain significant amounts of medic vegetation. Figure 2b shows the slope map obtained
from the DEM.
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2.2.3. Aspect

Aspect plays a key role in the amount of solar radiation in an area, as well as moisture
availability, both of which directly influence the behavior of fires, and have an indirect effect
because they determine the type of vegetation found in a location, as well as its density.
The aspect map was derived from the DEM of the area and the results were subsequently
classified and divided into nine categories: “north, northeast, flat, west, northwest, east,
southeast, south, and southwest”.

2.2.4. Wind Speed

Landform trends and wind speed also play a major role in shaping firefighting tactics
and the occurrence of fires. Wind speed is also a very important factor in the creation and
spread of fires.

2.2.5. TWI

The topographic elevation, aspect, and slope all determine the amount of solar radia-
tion reaching a particular location. Conversely, TWI is a factor related to the structure of the
landscape and offers an explanation of the topographic states and settings that play a part
in shaping the pattern of the spatial soil and creating its texture [36]. As the catchment area
expands and the slope gradient falls, the values of TWI increase in parallel. The increase in
the TWI values concurrently raises the moisture levels in the soil and bolsters the greenness
of the vegetation, thereby causing a drop in the intensity and range of the forest fire.

2.2.6. Distance to Drainage

The vegetation close to the drainage networks also holds more moisture, and this
serves to make the plants very green, and in the process acts as a brake on its spread.
The distance from the drainage networks was calculated using Euclidean distance and
generated in ArcGIS 10.8.

2.2.7. Temperature

Eight rain gauges and meteorological stations, with records spanning a quarter of
a century, supplied the climatic variables, namely average yearly rainfall, average air
temperature, average solar radiation, and average wind speed, using the “inverse distance
weighted (IDW)” interpolation method. In this way, raster data layers of the particular in-
dices in the GIS environment were produced (Figure 2). Temperature impacts atmospheric
air mass, which dictates the relative humidity, air mass, and moisture content of the soil.
As the temperature rises, so does the tendency for fire rage and this is particularly true
if the increase in temperature is linked to a fast, dry wind. Conversely, the relationship
between radiation and temperature is positive, and radiation increases the likelihood of fire
accidents, particularly in regions where the land is covered by dry grass and field crops.

2.2.8. Radiation

Radiation differs from place to place, and these variations are determined by a range
of factors, such as texture, soil type, and degree of humidity.

2.2.9. Rainfall

Clearly, precipitation results in higher levels of moisture in the soil and encourages the
growth of green vegetation, both of which limit the intensity and spread of forest fires [37].

2.2.10. Population Density and Distance to Roads

The majority of wildfires are caused by human actions, including agricultural pursuits,
hunting, or any acts that allow or depend on naked flames touching inflammable woodland
biomass [38]. Human presence and activity in forest areas will have a major influence
on the likelihood of wildfires breaking out, and we therefore recommend combining two
features: population density and the distance to a road to tackle anthropic parameter
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factors. While the wildfire area will be at risk from nearby populations and their habitats,
the existence of local roads will help to flag and supply paths that can be used for fire
suppression responses.

2.2.11. Land Use Land Cover

Combustibility factors refer to the ability of vegetation to spread fire and burn up
fuels, and its characteristics therefore reflect the degree to which it is consumed by heat
masses [39]. The land use/cover of the area plays a part in promoting fire to various
degrees, depending on the make-up of the cover and the amount of human contact. For
example, the risk of fire rises when agricultural land is situated close to forests or orchards
whose undergrowth and dry trunks can be used as fuel, thus promoting fire spreading. The
Landsat 8 Operational Land Imager (OLI) imagery data for the study area on 25 December
2018, were downloaded from the United States Geological Survey (USGS) website [40]
(http:/ /glovis.usgs.gov/, accessed on 25 December 2018). The image was categorized
into nine LULC classes: bare soil, water bodies, vegetation, rural, urban, soil rocks, rocks,
valley, and sand (Figure 2g), using the maximum likelihood classifier algorithm [41]. An
error matrix was created for accuracy assessments by comparing the results of remote
sensing analysis with reference sample points [41]. A random number generator was used
to yield the random x and y coordinates of the total number of 196 reference sites within
the study area. All locations were then either visited in the field or assessed using the
Google Earth map service system. The results of the accuracy assessment showed that the
overall accuracy was 85.5%, and the Kappa coefficient was 0.79.

2.2.12. NDVI

NDVI measures the surface cover and density of vegetation, which is an essential
piece of information because it highlights the amount of potential fuel available for feeding
and spreading fire.

2.2.13. Soil Texture

Knowing the soil texture type is useful for uncovering the kind of vegetation that
can be planted and plays a major role in drawing up the land use/cover map, which is
why a soil texture map of the study area was compiled. The soil map of the study area
was produced by the Ministry of Agriculture (MoA) at a scale of 1:250,000. The map was
digitized and processed using ArcGIS 10.8. The soil texture of the area was divided into
four categories: loam, silt loam, clay loam, and silty clay loam.

3. Methodology
This section describes the methods used to build the proposed hybrid models as below:

3.1. ANFIS

ANFIS was first used by Jang in 1993 [42]. This model has been widely employed
in various scientific fields. ANFIS has the advantages of both fuzzy inference systems
and neural networks. In other words, ANFIS can be considered a powerful and efficient
model for predicting and modeling because it allows the modelers to use adaptive training
algorithms to train fuzzy system parameters, thus enabling them to exploit the advantages
of neural networks and fuzzy systems [42].

The Takagi-Sugeno fuzzy system, which has a linear relationship with its output
and parameters that can be estimated by combining the least squares with backward
propagation of errors based on gradient descent, is the most common fuzzy inference
system capable of being used in an adaptive network [43]. In these systems, the structure
of a model is selected first with defined factors that are proportional to the inputs, degree
of membership, and rules [44]. A part of the dataset was then selected and entered into the
training phase. In this phase, the values of the parameters and factors in the model must
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be close to their actual values by minimizing the amount of error. Data not used in the
training phase were used to validate the model.

Figure 3 presents the architecture of the ANFIS model as the structure of a progressive
network with five layers with two inputs, one rule, and one output. In the first layer (input),
the degree of belonging of each input to various fuzzy intervals is determined by the user.
Multiplying the input values of each node with each other yields the weight of the second
layer. The relative weights of the rules were calculated for the third layer.

A Ay !-5;11 (x)

B

®
g
=

By .
— Wz
W, w. =i
y | @ | H
B, Hg, ()
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 3. ANFIS structure [45].

The fourth layer is the layer of rules in which the relative weights of the rules (w;) are
computed. The last layer is the network output, which aims to minimize the difference
between the output obtained from the network and the actual output.

3.2. SVR

This model was extracted from Vapnik’'s statistical learning theory for working with
regression problems and estimating and predicting data [46]. When using the SVR model
to solve nonlinear problems, a kernel function must first be defined to map the input data
into a higher-dimensional space [47]. In this study, the radial basis function (RBF) kernel
function was used owing to its high performance in previous research [48,49]. Equation (1)
shows this function.

kx,y) = exp(—,ylz lx—y| 2) M

where x, y, and <y are the input vectors of factors, the response or dependent variable, and
the RBF kernel parameter, respectively. The problem of SVR model optimization is solved
using Equation (2) [46]:

JwTw+C ¥ (6 + &)

yi — (whxj+b) <e+§; 2
Subjectto: ¢ (wlx;+b) —y; <e+¢&F
Gi,¢; >0

In Equation (2), ¢ is the deviation from the hyper-plane, ¢;, {; are noise levels of the
classes, C is a constant, and w is the vector orthogonal to the hyper-plane. By solving the
above equation by employing the Lagrangian method and using the Karush-Kuhn-Tucker
(KKT) conditions, the following equation is obtained:

™=

f(x) =) (a; —af)K(x;) +b 3)

1
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In this equation, a; and & are Lagrange multipliers, and b is derived from
Equations (4) and (5):
b=y, —wlx;—efor0<a; <C (4)

b:yi—wa,»+sforO<¢xl’-‘<C (5)

The quality of the SVR model depends on selecting a suitable kernel function and the
proper setting of its parameters. In the presented equations and the RBF kernel function, the
C and vy parameters must be tuned. The C parameter, which is used to prevent overfitting,
is called the regulation parameter. The y parameter controls the degree of nonlinearity of
the RBF kernel function.

3.3. WOA

Optimizing a system means minimizing or maximizing a function that is a mea-
sure of system performance [50-52]. Optimization methods have been used in various
fields [53-56]. One of the most important functions of these methods is to determine the
optimal values of the parameters in various mathematical problems. The WOA is a novel
metaheuristic algorithm for solving optimization problems that mimics the hunting behav-
ior of humpback whales [57]. A species of whales, the humpback whale, utilizes a specific
hunting mechanism known as the bubble-net (Figure 4). In this strategy, the whales dive
to the 12-m depth and blow bubbles in a shrinking circle around the prey, trapping them.
The whales then swim upward and reduce the bubble-net diameter, ultimately hunting
a group of fish. Inspired by the spiral bubble net, the authors in [57] presented the WOA
meta-heuristic algorithm.

0.5 = 1 l

Figure 4. The bubble-net mechanism in the whale optimization algorithm [57].

Similar to other population-based algorithms, this algorithm includes a set of solutions:
the exploitation phase, where the whales surround the prey once spotted. The algorithm
considers the position of the best solution as far as the prey location. Therefore, whales
move to the best location using Equation (6) [57]. D in Equation (6) is also calculated
using Equation (7).

X(t+1) = X*(t) — A.D ©)
B:F.%ﬂ-?@’ %)
A=2d7 -4 ®)
C=27 ©)

— —
The term X(f 4 1) denotes the whale position in the next iteration, X* is the position

- —
of the best solution, and A and C are the coefficient vectors. The symbol | | returns the
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absolute value, and the dot product is denoted by a dot. In Equation (8), 7 is a random
vector within the range [0,1], and 4 in Equation (8) decreased from two to zero in each

o
iteration. In Equation (6), which updates the position of whales in each iteration, the A

—
and C vectors can be adjusted to allow whales to move to different positions around the
best solution. The hunting strategy of humpback whales is composed of two phases. They
reduce the size of the circle around the prey and swim upward in a spiral path. To model

the shrinking circle, the parameter 4 is considered in Equation (8), which reduces from
—

two to zero during the different iterations of the algorithm. Consequently, parameter A,
which assumes a value within the range [—a, a], is reduced.

To model the spiral motion, the distance between the whale and prey (the best solution
so far) was first measured, and then the spiral motion of whales was simulated using the
spiral equation:

5

X(t+1) = 5’.ebl.cos(2nl) + }?*(t) (10)

— -

X*(t) = X(#)
that determines the shape of the logarithmic spiral, [ is a random number in the range
[—1,1], and is the dot product. The probability p is considered in the algorithm because
the shrinking circles and traveling of the spiral path are simultaneously carried out by the

whales. The search agent chooses to perform a shrinking circle or spiral motion with a 50%
probability. Hence, the position of the search agents is updated using Equation (11) [57]:

5
where D' = is the distance between the whale and pray, b is a constant

— - =
X*(t) — A.D if p<05

5
X(t+1) = — —
D'.e". cos(2ml) + X*(t) if p>05

(11)

Exploration phase: For the algorithm to be efficient and converge to a global optimum,
both the exploitation and exploration phases should be utilized. In this algorithm and
for the exploration phase, instead of selecting the best solution (search agent), the search

—
agents randomly select another search agent and move toward it. Vector A was used for
—
A

this purpose. In case < 1, the search agent moves toward the best solution, and if

N
‘A‘ > 1, it moves toward a random solution (Equations (12) and (13); [57]):

— — — =

X(t+1) = Xpgng — A.D (12)
— - = —
D= ‘c.xmd - X’ (13)

The WOA can be generally described as follows: an initial population of search agents
is randomly initialized, and the best solution is determined by assessing the solutions.
The search agents then attempt to improve the solutions based on Equation (14), which
expresses the overall structure of the model.

5
move toward best solution (eq.1)  if ‘A‘ <1

= shirink circle

X(t4+1) = i p<05 (19

R
move toward random solution (eq.7) if ‘A‘ >1

move along spiral shape path(eq.5) if p>05

The search agents continue this process until the termination criterion is met, at which
point the global optimum is probabilistically determined by the algorithm.



ISPRS Int. ]. Geo-Inf. 2021, 10, 382

13 of 28

3.4. SA

SA is one of the most popular meta-heuristic algorithms used for optimization prob-
lems [58]. This algorithm simulates the process of melting and cooling metals to alter
their physical properties (referred to as annealing in the field of metallurgy). At high
temperatures, the metal atoms move freely, but once the temperature drops, the movement
of atoms is restrained and they are held together in a regular crystalline structure with a
minimum energy level, providing the metal with a high physical strength [58,59]. These
modifications prepare the metal for high workloads.

In optimization problems, the objective is to find the solution minimizing/maximizing
the target function. For instance, in the minimization case, the SA algorithm regards the
minimization of the objective function as minimizing the energy level in the annealing
process. In the controlled cooling process, if a better solution exists in the vicinity of
the current solution in terms of minimizing the objective function, it is selected by the
algorithm; otherwise, the algorithm selects the worst solution by evaluating a set of criteria.
This approach allows the algorithm to escape local minima [58,59]. The probability of
selecting the worst solution is calculated as follows [59]:

= exp (;(ATE> pel0,1] (15)

AE = Enext state — Ecurrent state (16)

where T is the temperature, AE is the change in energy level, and K is a constant. At the
beginning of the search, when the temperature is high, the algorithm is more likely to accept
worse solutions to explore different parts of the search space [60]. As the temperature
drops, the search space is gradually reduced, and the tendency of the algorithm gravitates
more toward accepting better solutions and disregarding the worse ones, allowing it to
focus on the better regions of the search space [60]. As the process continues, the algorithm
ultimately converges to a good solution. Hence, the probability of selecting worse solutions
helps the algorithm to search for different parts of the search space without being trapped
in local optima, ultimately converging to the global optimum [58,59].

This algorithm can solve different optimization problems that are regarded as unsolv-
able by traditional methods. As its most important advantage, this algorithm escapes local
minima and tends to find the global optimum. However, the optimization duration can be
long for large-scale problems [61,62].

3.5. Hybrid Models

ANFIS and SVM are among the most widely used and powerful models in machine
learning and data mining, and both have been used in various spatial and non-spatial
problems. However, both algorithms need to tune their parameters to obtain accurate and
powerful models. In SVR, the model’s performance is highly dependent on the C and
gamma parameters, and it needs to be fine-tuned. In the ANFIS algorithm, two sets of
parameters, used in the adaptive layers of the model (the first and fourth layers in Figure 2),
require fine-tuning. In this study, we used the SA and WOA metaheuristic algorithms to
tune these parameters and obtain accurate models.

3.6. Frequency Ratio (FR)

FR determines the quantitative relationship between the occurrence of fires and each
class of variables [63]. The ratio of fire occurrence in each class is an influential factor in
relation to the total number of fires. The FR was calculated using Equation (17):

FR = Q (17)

| =i
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where A is the number of fires occurring in each class, B is the total number of fires, C is the
number of pixels in each class, and D is the total number of cells in the study area.

3.7. Feature Selection Process

The selection of effective features in modeling is one of the most important steps [64].
Before modeling, feature selection was performed to eliminate irrelevant factors based on
the two models of ANFIS and SVR and meta-heuristic algorithms of SA and WOA. For
feature selection using the SA algorithm, we defined an initial solution as a binary vector
F=(f1, fa,.-., f14), fi € {0, 1}, where zero means that the variable is not present in the
model, while one means that the variable is used in modeling. The initial solution was
randomly generated and assumed to be the optimal solution. The neighboring solutions
are created using the initial solution by applying a slight change in the vector, for example,
by changing one or two bits. In the next step, the solutions are evaluated using a fitness
function. In this study, the SVM and ANFIS models were created using the variables
corresponding to each solution. Then, the RMSE metric was used as the cost function to
evaluate these models, and the algorithm tries to select the features that minimize this
metric. In this process, the three major parameters of the SA algorithm, namely, the initial
temperature, temperature reduction rate (TRR), and termination condition, also need to
have appropriate values. Various studies have shown that the initial temperature should
be sufficiently high to allow for sufficient transactions to occur. In this study, we set this
parameter to 100, while the TRR was set to 0.99. In addition, the termination condition
was selected to be after 200 iterations. For feature selection using WOA, as in other meta-
heuristic algorithms, we need to define which form the solutions would take. In this
population-based algorithm, each solution is modeled as a one-dimensional vector with N
binary variables, where zero means that the feature is not present in the model, and one
means that the feature is used in modeling. As in the SA algorithm, first, an initial set of
solutions (whale population) is generated. Then, the RMSE metric was used to evaluate
the fitness values of the SVM and ANFIS models corresponding to each solution. Once the
solution corresponding to the best fitness value denoted as X* is considered, the algorithm
enters a loop. The whales’ positions, that is, the solutions, are updated at each iteration. To
do this, at each iteration, the values of the A, a, C, |, and p parameters (introduced in the
equations explained in Section 3.3) are updated. In this algorithm, if A > 1, the exploration
phase is executed by searching the neighborhood of a random solution. However, if A <1,
the exploitation phase is executed, and the neighborhood of the current best solution is
searched. This process continues until the stop criterion is satisfied. All models were
executed using the MATLAB software. In addition, owing to the small size of the training
dataset, the implementation of the models was not time consuming.

3.8. Relative Operating Characteristics (ROC)

The ROC [63] was used to evaluate the performance of the models. The ROC curve is
a graphical representation of the trade-off between the negative and positive error rates for
each possible sample. This metric is a curve whose vertical and horizontal components are
calculated using Equations (18) and (19) [65]:

X1 True Negative (TN) (18)
N True Negative (TN) + False Positive (FP)
_ True Positive (TP) (19)
| True Positive (TP) + False Negative (FN)

The TP, TN, FP, and FN values were obtained from the confusion matrix (Table 1)
with the definition of the threshold between zero and one.
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Table 1. Confusion matrix.
Model
Positive Negative
Reality Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

In addition, the precision—recall curve is another evaluation metric for machine learn-
ing models. This metric is suitable for small and skewed datasets [66]. Precision and recall
are calculated using Equations (20) and (21).

TP
Precision = ——— 2
recision TP+ FP (20)
TP
Recall = TP+ EN (21)

4. Results

Table 2 present the results of FR method. In the elevation factor, the class 533-724 m
and areas with height below 318 m have the highest and lowest weight, respectively. In
the aspect factor, flat class has the least weight, whereas the areas with northeast direction
have the greatest impact on forest fire occurrence. Likewise, the values of FR weights for
all classes of the factors can be seen in Table 2. After building the training and validation
datasets and preparing the factors affecting fire occurrence, the modeling was performed
using four hybrid models. Feature selection was performed prior to the modeling procedure
to prevent correlations among the factors (Table 3). In this study, for feature selection, we
followed the approach of [26,67]. The major factors selected by the SVR-WOA model were
solar radiation, population density, TWI, distance to drainage, temperature, rainfall, NDVI,
land use, slope, and elevation. However, the factors selected by SVR-SA were radiation,
population density, TWI, distance to drainage, temperature, rainfall, NDVI, land use, slope,
aspect, and elevation. Furthermore, the factors selected by ANFIS-WOA consisted of
radiation, population density, TWI, distance to drainage, temperature, rainfall, NDVI,
land use, slope, wind speed, and elevation, whereas the ANFIS-GA selected radiation,
population density, TWI, distance to drainage, temperature, rainfall, NDVI, land use, slope,
soil, and elevation (Table 3).

Table 2. Spatial Relationship Between each class of the factors and forest fire occurrence by the FR.

Factors Classes No. of Pixels No. of Fires FR Weights
<318 40,604 4 0.57
318-533 100,277 13 0.75
Elevation (m) 533-724 113,580 32 1.63
724-917 98,876 10 0.59
>917 94,337 18 1.11
Flat 3155 0 0
North 45,764 4 0.51
Northeast 40,550 16 2.29
East 57,810 12 121
Aspect Southeast 68,725 5 0.42
South 86,407 12 0.8
Southeast 55,591 9 0.94
West 52,336 14 1.56
Northwest 37,333 5 0.78
0-5 81,146 11 0.79
Slope 5-15 267,384 44 0.96
15-30 92,246 22 1.39

>30 6895 0 0




ISPRS Int. ]. Geo-Inf. 2021, 10, 382 16 of 28
Table 2. Cont.
Factors Classes No. of Pixels No. of Fires FR Weights
300-350 113,527 8 0.41
350-400 154,167 30 1.13
Rainfall 250-300 721 0 0
400-450 145,311 28 1.12
450-500 33,945 11 1.88
—0.46——0.12 9921 4 2.34
—0.12-—0.05 30,689 16 3.03
NDVI —0.05-0.00 87,641 22 1.5
0.00-0.04 164,081 23 0.81
0.04-0.28 155,339 12 0.45
<9 121,081 27 1.3
TWI 9-13 217,055 32 0.86
>13 109,535 18 0.96
0-150 133,092 22 0.96
150-300 107,127 20 1.09
Distance to rivers 300-450 87,220 9 0.6
450-600 60,126 12 1.16
>600 60,106 14 1.35
15.80-17.38 102,494 19 1.08
17.38-18.48 101,010 10 0.58
Temperature (C) 18.48-19.48 122,338 34 1.62
19.48-20.48 85,621 13 0.88
20.48-22.50 36,208 1 0.16
0-150 336,475 67 1.16
150-300 77,584 7 0.52
Distance to roads 300450 23,018 3 0.76
450-600 7010 0 0
>600 3584 0 0
<2 44,027 14 1.83
. 2-4 297,820 45 0.87
Wind speed (m/s) 46 99,681 17 0.98
>6 2231 1 2.58
Water 1612 0 0
Bare soil 159,679 48 1.75
Vegetation 256,798 25 0.57
Urban 2020 2 5.76
LULC Rural 20,120 1 0.29
Soil rocks 3953 0 0
Rocks 1049 0 0
Valley 1296 0 0
Sand 1144 1 5.08
5.43-5.64 18,272 3 0.95
. 5.64-5.70 81,265 17 1.22
Radiation (watt/m2) 5.70-5.75 180,178 43 1.39
5.75-5.82 167,956 14 0.48
Loam 4698 1 1.24
. Silty Clay 481 0 0
Soil texture Silty Loam 261,932 14 0.98
Clay Loam 180,560 32 1.03
Population density 0.29-2.36 227,182 31 0.79
(person/km?) 2.36-5.46 124,104 26 1.22
5.46-9.90 413,38 8 1.13
9.90-15.28 39,838 11 1.61
15.28-26.65 15,209 1 0.38
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Table 3. Optimal features selected by SVR-SA, SVR-WOA, ANFIS-SA, and ANFIS-WOA models.

Explanatory Variables SVR-SA SVR-WOA ANFIS-SA ANFIS-WOA
Elevation | 4] ™ M
Slope aspect 4] - - -
Slope | 4] ] M
Land use | - ™ |
TWI 4] 4] | 4]
NDVI | ] ] |
Distance to drainage | 4] ] M

Distance to roads

K

Soil texture - -
Wind speed - 4] - |
Solar radiation 4] 4] 4] 4]
Rainfall | 4] o o
Temperature | ] 4] M
Population density 4] 4] 4] 4]

After the selection of the main factors, they were entered into the ANFIS and SVR
models. As discussed earlier, SA and WOA were employed to determine the premise and
consequent parameters in the ANFIS model, as well as the C and y parameters in SVR.
Figures 5 and 6 show the real and modeled values of the training and validation data in
addition to the RMSE and MSE for the ANFIS-WOA and ANFIS-SA models. Accordingly,
the ANFIS-WOA model had a smaller RMSE (0.317) in the training phase than the ANFIS-
SA model (0.324). However, in the validation phase, the RMSE of the ANFIS-SA model
(0.371) was slightly lower than that of the ANFIS-WOA (0.376).

Figure 7 presents the best fitness (best RMSE) and mean fitness (mean RMSE) for each
solution in each generation for the SVR-WOA and SVR-SA models. In the SVR-WOA,
20 generations and a total number of 500 iterations were set. Similarly, 500 iterations are
selected for SVR-SA. Figure 7 shows that SVR-SA outperformed SVR-WOA in terms of the
best fitness (best RMSE).

The ROC is one of the key metrics used to evaluate the model accuracy in various
fields. Figure 8 shows the AUROC values for the four hybrid models in the training and test
datasets. Accordingly, the SVR-WOA and SVR-SA models obtained the highest AUROC in
the validation phase. In addition, Figure 9 shows the precision-recall curves for the models
in the training and test datasets. Accordingly, SVR-based models have higher average
precision (AP) than ANFIS-based models.

The AUROC value of SVR-SA in the training phase (0.927) and in the validation phase
(0.966) clearly shows that unlike the other three models, this model is less accurate in the
training phase than in the validation phase. This can be due to the small size of the training
and test samples, as well as the sampling method [27]. After modeling, all cells in the
study area with features obtained by feature selection phase were prepared by combined
analysis in a GIS environment and were entered into the four models, and the probability
of forest fire occurrence for the entire area was calculated. After obtaining the output for
all cells, join and look up analyses were used in the GIS environment to prepare forest fire
susceptibility maps. Figure 10 shows the wildfire susceptibility maps for the four models.
These maps are classified into five classes: very low, low, moderate, high, and very high.
Table 4 shows the areas occupied by the five classes of the four models. As can be seen in
Table 4, the two land use classes of bare soil and vegetation have the highest number of
high- and very high-risk cells, and only 0.32% of these two classes occurred in the urban
land use class. On the other hand, there were 5785 urban cells in the study area, of which
only 387 cells (6.68%) were in high and very high classes. Bare lands are almost covered by
dry weeds in the summer and autumn seasons, which make them a target of fires due to
human activities in the area, which is consistent with the results of many similar studies.
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Figure 5. (a) Target value and output of ANFIS-WOA model for training data, (b) target value
and output of ANFIS-WOA model for test data, (c¢) MSE and RMSE values of training samples,
(d) frequency errors of training samples, (e) MSE and RMSE value of test samples, and (f) frequency
errors of test samples.
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Figure 6. (a) Target value and output of ANFIS-SA model for training data, (b) target value and
output of ANFIS-SA model for test data, (c) MSE and RMSE values of training samples, (d) frequency
errors of training samples, (e) MSE and RMSE value of test samples, and (f) frequency errors of

test samples.
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Figure 7. Convergence plot of (a) SVR-WOA and (b) SVR-SA models.
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Figure 8. The ROC curves for four hybrid models in the training and testing runs.
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Figure 10. Wildfire susceptibility maps obtained from SVR-WOA, SVR-SA, ANFIS-WOA, and ANFIS-SA models.

Table 4. Overlap of high and very high susceptibility classes with each land use class.

Land Use Class Pixel No.
Water 0 (0.00%)
Bare soil 67,614 (55.23%)
Vegetation 50,032 (40.87%)
Urban 387 (0.32%)
Rural 3117 (2.55%)
Soil 552 (0.45%)
Rocks 67 (0.05%)
Valley 143 (0.12%)
Sand 183 (0.15%)
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5. Discussion

Considered important sources of information, wildfire susceptibility maps can help
managers and decision-makers to prevent fires or mitigate potential risks. This study
proposed four hybrid models, namely SVR-WOA, SVR-SA, ANFIS-WOA, and ANFIS-SA,
for wildfire susceptibility in the Governance of Jerash in Jordan. In this study, we concluded
that the SVR performed better. Similar results have been reported in other studies [68,69].
Nevertheless, such conclusions may vary from one area to another; therefore, researchers
should compare SVR with other models, especially ANFIS, in terms of performance in
order to obtain more accurate modeling outputs.

The results obtained in the present study include factors influencing wildfire occur-
rence in the Jerash Governorate in Jordan, as well as the wildfire susceptibility maps. A
study of the important factors identified by feature selection algorithms revealed that tem-
perature, distance to drainage, TWI, population density, solar radiation, elevation, slope,
land use, NDVI, and rainfall were the 10 most important factors among the 14 factors.
These 10 factors were considered for wildfire susceptibility mapping. Generally, the effect
of elevation on fire occurrence is related to a set of other factors that are human factors,
such as the development of residential areas, population density, and intensity of land use
changes or factors related to the environment and climate, such as rainfall, temperature,
moisture, and evapotranspiration [70]. In general, the probability of fire occurrence is
much higher at lower to medium elevations in a region compared to the other elevation
classes because of their relatively higher temperature, lower moisture, and easier human
access. In the study region, all elevation classes (—227 to 1225 m), including forests and
agricultural lands, along with the mentioned factors, provide the conditions for fire oc-
currence by making available a sufficient amount of combustible materials. Many studies
have proved the effect of steep slope areas on the occurrence of fire [71]. Nevertheless,
the present research indicates that slopes of over 30% exhibit lower susceptibility to fires
because they are covered with rocks and are devoid of combustible materials. Moreover,
Oliveira et al. [72] showed that areas with high temperatures and low rainfall increased
fire risk if combustible materials were available. In the present study, areas with high
temperatures and low rainfall had the highest risk of fire. Land use is also considered
as one of the most important factors influencing fire occurrence. In fact, the presence of
sufficient combustible materials was the main reason for fire occurrence in rangelands,
forests, and agricultural lands. In addition to natural fires in these areas, human factors play
a substantial role in fire occurrence by causing intentional fires to remove crop residues,
repelling harmful and destructive animals in agriculture, and accelerating the regeneration
of herbaceous species in the rangelands. It is noteworthy that population density is an
important human factor in fire occurrence in the present study. Distance to drainage was
also considered an important factor among the 14 studied factors. Some studies have
attributed this factor to tourist hubs. However, studies in the region suggested that this
factor was not an important factor in the occurrence of fire in the present study. Areas
distant from the drainage network faced a high risk of fire, and the solar radiation factor
was closely related to forest fuel moisture. In the present study, areas with high solar
radiation intensity had a low susceptibility to fires. TWI and NDVI factors influenced fire
occurrence which is also corroborated by [73].

The combination of machine learning models with meta-heuristic algorithms has
been repeatedly used by researchers. However, the number of studies comparing ANFIS-
based hybrid models with SVM-based hybrid models is small. As the SVM algorithm
has obtained better results in many studies [68,74], the development of hybrid models
with this algorithm and its comparison with other algorithms such as ANFIS can help
modelers and planners in choosing the optimal model. Therefore, the present study
showed that the combined SVR-WOA and SVR-SA algorithms are more efficient in forest
fire susceptibility mapping.

Overfitting occurs when the learning performance is very good, but the performance
on the validation dataset is poor. In addition, under-fitting occurs when learning perfor-
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mance not good and it is also not good on the validation data set. Therefore, as can be
seen from Figure 8, these two problems did not occur for all models. The AUROC in the
training and validation phases for all models had close values. For the SVR-SA model,
the AUROC in the validation phase was greater than that in the training phase, but there
was not much difference between them. [27] showed that there are three reasons for this
case: (1) feature selection process, (2) small size of training and test data sets, and (3) the
sampling technique used for training and validation datasets. For more details, please
refer to [27].

6. Conclusions

This study employed four hybrid models, namely SVR-WOA, SVR-SA, ANFIS-WOA,
and ANFIS-SA, to analyze forest fire susceptibility in the Jerash Province of Jordan by
providing forest fire probability maps. Fourteen parameters were selected as factors
affecting the occurrence of fire in the study area. Among the considered variables, solar
radiation, population density, TWI, distance to drainage, temperature, rainfall, NDVI,
land use, slope, and elevation were identified by all hybrid models as variables affecting
the occurrence of fire. The results indicated that there is a small difference in the AUC-
ROC between the SVR-WOA, SVR-SA, ANFIS-WOA, and ANFIS-SA models. However,
according to the research findings, the SVR-based hybrid algorithms outperformed the
ANFIS-based hybrid algorithms. FFSMs can be used to help managers control and prevent
fires. In high-risk areas, measures such as building water tanks, prohibiting construction,
and building emergency aid stations can be adopted to improve the situation.
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