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Abstract: Transit-oriented development (TOD) is generally understood as an effective urban design
model for encouraging the use of public transportation. Inspired by TOD, the node-place (NP) model
was developed to investigate the relationship between transport stations and land use. However,
existing studies construct the NP model based on the statistical attributes, while the importance of
travel characteristics is ignored, which arguably cannot capture the complete picture of the stations.
In this study, we aim to integrate the NP model and travel characteristics with systematic insights
derived from network theory to classify stations. A node-place-network (NPN) model is developed
by considering three aspects: land use, transportation, and travel network. Moreover, the carrying
pressure is proposed to quantify the transport service pressure of the station. Taking Shanghai as a
case study, our results show that the travel network affects the station classification and highlights
the imbalance between the built environment and travel characteristics.

Keywords: node-place model; transport network; TOD; transit station

1. Introduction

Rapid urbanization and population growth worldwide have caused many urban
problems, such as air pollution, traffic congestion, and excessive reliance on fossil fuels.
An essential reason for this phenomenon is the absence of clear and effective integrated
development plans for land use and transportation. Transit-oriented development (TOD)
has been adopted as a commonly followed urban planning strategy for achieving such
integration, promoting efficient and mixed land use near public transportation hubs and
stations [1,2]. At the metropolitan scale, metro stations provide greater accessibility to their
catchment area and play a crucial role in the public transport network. Meanwhile, stations
offer sufficient opportunities to develop diversity and intensity land use, aiming at creating
walkable, activity-friendly communities. The implementation of TOD at station level has
been a major focus of attention in scholarly work.

Various researchers have attempted to establish comparable TOD typologies for better
strategic planning, investment guidance, and station quantification [3,4]. The best-known
approach for evaluating TOD typology is the node-place (NP) model developed by [5],
which is essentially a conceptual framework for assessing the transport supply and land use
characteristics of a station simultaneously. Based on the NP model, various modifications
to the original model have been introduced. The most notable modification is the extension
of design dimension, which represents a considerable improvement regarding walkability
and pedestrian comfort [6]. Specifically, three aspects need to be investigated to achieve
effective integration of transportation and land use: (1) multimodal accessibility of the
station, (2) land use diversity and intensity, and (3) pedestrian-oriented design [7]. In
a similar vein, Ref. [8] extended the model by adding the experience dimension with
indicators, which reflect the transit quality from a traveler’s perspective.
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Recently, traveler-related attributes, such as ridership, as critical indicators have
been studied. For example, Ref. [9] elaborated on the correlation between the travel
volume and NP index. Ref. [10] investigated the interaction between node value, place
value, and ridership. However, ridership has limitations to reflect the travel network
characteristics (e.g., transfer behavior). There is scant research on the synergies between
the actual rail transit travel characteristic and the functional configuration of its physical
context. To the best of our knowledge, Ref. [11] made the first exploratory study on the
relationships between travel network features and the classification results of the node-
place-design model.

Inspired by these efforts, we attempt to extend the node-place model by adding a new
dimension of network for metro station classification, which contributes to illuminating the
complex links between the built environment, land use, and travel network characteristics
of stations. The main contributions of this study are as follows:

1. Combined official data and open geographic big data, an extended node-place-
network (NPN) model was proposed to measure the synergy between the built
environment and travel characteristics around stations. Moreover, the carrying pres-
sure indicator was utilized for the quantitative evaluation;

2. Employed the proposed analytical methodology to complement empirical knowledge
concerning TOD of the station’s area in Shanghai, which verified the effectiveness of
the proposed NPN model.

The paper is organized as follows. The next section is a literature review of the NP
model and relevant theory. Then, we elaborate on the methodology used and a case study
of Shanghai. Afterwards, the results are discussed in Section 5, followed by conclusions in
Section 6.

2. Literature Review
2.1. The Node-Place Model

In the past, many researchers examined the gaps between public transport supply and
demand. Various approaches were employed to access the public transport performance, for
example, network supply model [12], Gini coefficients [13,14], and node-place model [4], etc.

Among these models, the node-place (NP) model, as the best-known approach leading
to a TOD typology, was developed by [4]. It defined the double nature of the station: nodes
of networks and place in the city. The funding principle of the NP model is balancing
transportation with land use to achieve a state of cooperative development between them.
An analysis framework, based on a dual axis of node and place indexes, is used to represent
the conceptual model (Figure 1). The node dimension measures the offer of transport
services (e.g., number of directions served, daily frequency), reflecting the accessibility
of the station area by several transportation modes. The place dimension measures the
land use features (e.g., density and diversity of activities) found around a station area,
reflecting the potential demand for transport services. By identifying five types of station
areas (Figure 1), the conceptual framework provides an integrated quantitative indicator
for measuring the integration level of transportation and land use as well as assessing the
evolution of a system over time [15,16].
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search from a user-based perspective. For instance, the experience value [8] is added to 
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ity in the studies, are identified. Two approaches have been suggested to include travel 
features in the NP model. The first approach highlighted the importance of the passenger 
frequencies [20] and adds passenger volume to calculate the node index [26,28]. Given 
unique characteristics and importance of travel flow data, the second approach made a 
comparative analysis between the travel characteristics and the results of station classifi-
cation. According to this point, Ref. [29] explored the intersection of two created classifi-
cations for New York City and unveiled the consistency between context and use of the 
station. Similarly, Ref. [11] added the centrality analysis of the movement network to in-
vestigate the performance of the Greater London metro station areas at both local and 
system levels. They found that there were substantial discrepancies in the criticality of 
station areas within the same cluster with similar node-place-design, suggesting the vari-
ous roles they played at multiple levels. 

  

Figure 1. The NP model [17].

During the last two decades, the dimension of NP has been extended in many diverse
aspects [18,19]. One major modification is its expansion to the urban design dimension. [6]
first investigated the usefulness of adding the walking environment evaluation to the
NP model as an urban planning tool. Based on that evaluation, Ref. [20] emphasized the
functional and morphological interrelation between transportation and urban conditions,
and extended a third, ‘oriented’ dimension to quantify the accessibility of station areas.
Likewise, [7] considered different access modes to stations and introduced the design
index to measure the influence of the pedestrian accessibility of the station areas. Other
feeder modes, such as bicycles, cars were considered in the work of [21], which focused on
geographical contexts characterized by medium or low population densities. In a similar
vein, several extra dimensions, such as ‘proximity’ [22], ‘user-friendliness’ [23,24], and
the spatial configuration of the street network design [25,26] were also investigated in
previous studies.

In addition to the extension of the design dimension, some scholars conducted research
from a user-based perspective. For instance, the experience value [8] is added to reflect the
traveler’s experience at the station in terms of comfort (sheltered waiting, toilets), ambient
elements (architecture and recent renovation), and social elements (presence of personnel).
The people dimension proposed by [27] includes motivation (education, work, and other),
ridership (using the station as an origin station, destination), and effort (walking, biking,
and travelling a farther distance).

Furthermore, the high salience of transit-related attributes, especially human mobil-
ity in the studies, are identified. Two approaches have been suggested to include travel
features in the NP model. The first approach highlighted the importance of the passenger
frequencies [20] and adds passenger volume to calculate the node index [26,28]. Given
unique characteristics and importance of travel flow data, the second approach made a com-
parative analysis between the travel characteristics and the results of station classification.
According to this point, Ref. [29] explored the intersection of two created classifications
for New York City and unveiled the consistency between context and use of the station.
Similarly, Ref. [11] added the centrality analysis of the movement network to investigate
the performance of the Greater London metro station areas at both local and system levels.
They found that there were substantial discrepancies in the criticality of station areas within
the same cluster with similar node-place-design, suggesting the various roles they played
at multiple levels.

2.2. TOD and the Travel Network

Although improvements of the NP model varied to some extent, they have the com-
mon objective to increase transit ridership and create a more sustainable transit system.
Compared with other NP indicators, travel flow has its own unique characteristics. First, it
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is the objective data generated by individual travel, reflecting the actual demand of people.
Second, travel distribution reflects the characteristics of the entire travel system rather than
those of a local station. Based on that, it is reasonable to think that taking travel flow as an
indicator of the node index within the classification of TOD has limitations.

As for the specific index calculation method of the passenger travel dimension, most
previous studies have used passenger frequency as an indicator [3,30,31]. One exception
is [11], who introduced a strategic network (criticality) component to enhance the value of
the NP model from a perspective of network analysis. As pointed by [32], ‘characterizing
the network anatomy is important because structure always affects function and vice versa’.
The study of networks pervades all of science. In particular, this new wave of spatial
networks and flows in cities using moving data provides new insights into understanding
traffic network systems and urban spatial structure. For example, Refs. [33,34] used three-
year smart card data to reveal a polycentric urban development phenomenon in Singapore.
Similarly, Ref. [35] constructed a multi-layer network from three sources (i.e., bus GPS
observations, smart card data, and roadside Blue tooth detector records) to identify the
network structure at each layer and reveal comparable features of the network organization
for different spatial layers. In addition, some scholars also used other moving flows, such
as the bicycle sharing flow and social media check-in stream to reveal the hierarchical
structure of urban space [36,37].

Numerous empirical studies have shown that the importance of nodes and the type of
metro stations can be further identified using the metrics of complex network theory [38].
For example, Ref. [39] developed a new weighted composite index to position hub stations
in a subway network. Ref. [40] used several improved network indexes to distinguish the
key stations and sections of the metro network in Beijing, China. Ref. [41] used human
mobility patterns and improved the PageRank algorithm to evaluate station importance.

Consequently, we develop a new model, which is called the node-place-network
(NPN) model with an extended network dimension, as a complement to the NP model.
Below we discuss how we developed and applied this extended model in a case study
of Shanghai.

3. Methodology

In this section, we first introduce the node-place-network model including the index
selection and station classification with the K-means++ method. Second, we calculate the
carrying pressure to verify the meaning of travel network dimension. Taken Shanghai as
case study, our methodology has been depicted in Figure 2.

Figure 2. Research methodology (Taken Shanghai as case study).

3.1. Node-Place-Network Model

As discussed in Section 2, the actual travel characteristics of passengers and the
importance of the station in the network system were ignored in previous node-place
model. Hence, an extended node-place-network model, as shown in Figure 3, is proposed.
The node and place dimension represent the traffic services and land use around the
stations, respectively. The network dimension indicates the importance of the station in the
whole subway network system.
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Figure 3. Illustrations of the node-place-network model. (a) Overall structure, (b) the node-place-
network network (NPN).

3.1.1. Index Selection

(1) Network indicators
Based on the smart card data (SCD), we first construct an OD (origin-destination)

matrix of travel between all metro stations, and then convert it to an undirected weighted
network form, viewed as a passenger movement network:

G = (V, E, W), E = W * W (1)

where V is a list of vertices (i.e., stations) of network G. E is a set of edges of network G, and
W, which includes the weights wij denoting the volume of travel between stations i and j.

Degree centrality and centrality betweenness are the two most representative indica-
tors in complex network studies [42,43].

• Degree centrality

The degree centrality refers to the number of links connected to a node in the network,
which is the number of travel records of a metro station in our study.

Si = ∑
j∈Ni

wijNi (2)

where Ni is the set of adjacent stations of node i, and wij is the weight between nodes i and
j. In our study, it indicates the number of travel flow between stations i and j.

• Betweenness centrality

Betweenness centrality is an index that measures the level of node connectivity, which
is a key indicator for identifying metro network hubs. A node has a higher centrality
Cbetweenness(k), the greater the number of shortest paths that traverse it and is defined
as follows:

Cbetweenness(k) = ∑
ij

δij(k)/δij (3)

where δij(k) is the number of shortest paths between any two stations i and j that pass
through the station k and δij is the total number of such paths between i and j.

One point to note here is that both centrality indicators are calculated based on the
passengers’ movement network instead of the features of transit infrastructure network.

(2) Node indicators
Node indicators can be divided into two groups depending on the transit mode: the

transit quality of rail and feeder transport (Table 1).
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Table 1. Indicators of the node dimension.

Node Index Description

Rail
Number of directions served by metro n1 = number of metro services offered at station
Daily frequency of metro services n2 = number of metro departing from station on working day
Number of stations within 20 min of travel n3 = number of stations reachable within 20 min by metro
Feeder transport
Number of directions served by other public transport n4 = number of public transport services offered at station
Number of car parking places n5 = number of car parking within 600 m.
Distance from the closest motorway access n6 = distance to closest motorway access

(3) Place indicators
In terms of place indicators, three aspects of the station’s area are measured following

the ‘three-Ds’ principle, namely density, diversity, and design [2]. Based on previous
studies [20,27,44], the indicators of place are summarized in Table 2.

Table 2. Indicators of the node dimension.

Place Index Description

Density
Population density p1 = density of population within 600 m
Number of residences p2 = number of establishments in residence within 600 m
Number of workers in business p3 = number of establishments in business within 600 m
Number of workers in green space p4 = number of establishments in green space within 600 m
Number of workers in transportation p5 = number of establishments in transportation within 600 m
Number of workers in public service p6 = number of establishments in public service within 600 m
Number of workers in industry p7 = number of establishments in industry within 600 m
Number of POIs p8 = number of points of interest (POIs) within 600 m
Diversity
Land use mix p9 = −∑7

i=2(pi1·lnp1i)
6 , where p1i is the normalization of pi

Design
Intersection density p10 = density of intersections per hectare
Accessible network length p11 = length of the accessible network (meters)

(4) Data normalization
The first step in descriptive statistical analysis is data transformation. With formula (4)

and (5), all indicators were box-cox transformed [45] and rescaled to reduce the skewness
of their univariate distribution and improve their comparability.

x′i =

{
xλ

i −1
λ , i f λ 6= 0;

logxi , i f λ = 0.
(4)

where x′i is the transformed variable; λ is the transformation parameter, ranging from −5
to 5. The optimum value of λ is obtained using the maximum likelihood estimate.

x∗ =
max

(
x′i
)
− x′i

max
(

x′i
)
−min

(
x′i
) (5)

Then, the two-sided Spearman correlation analysis was also conducted to understand
the direction and strength of the relations between the indicators. Furthermore, the relative
importance of independent variables will be explored with the entropy method [46].

3.1.2. Station Classification

After data preprocessing, the similarity of metro stations was explored by applying the
K-means++ method [47]. K-means++ can choose the initial cluster centers as far apart from
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each other as possible. The silhouette coefficient, ranging of [−1, 1], is used to evaluate the
clustering performance [48].

3.2. Carrying Pressure

To verify to what extent the travel network dimension adds meaning to the findings
of a traditional NP type of classification, we conduct a comparative analysis based on two
classification strategies. The first strategy primarily focuses on the original NP model,
which describes the built environment properties around the station. The second strategy
focus on the NPN model, including extended passenger travel characteristics, which
describes the real travel flow distribution of rail transit externally.

Furthermore, a new index called the carrying pressure of the node was proposed to
quantitatively describe the development synergy between the travel flow and the support-
ing physical environment of the station. The carrying pressure value of the node can be
determined using the following formula:

cp(i) =
T(NPN)

T(NP)
=

[Index(Node) + Index(Place) + Index(Network)]/3
[Index(Node) + Index(Place)]/2

(6)

where T, the score of model, is the average of integrated indices, representing the compre-
hensive measure of TOD development status of the station. Index(.) represents the score of
one dimension. For example, Index (Node) represents the composite score after weighting
node indicators.

4. Study Area and Data
4.1. Study Area

China has been experiencing rapid urbanization and a massive expansion of infras-
tructure construction during the past decades. Shanghai, as China’s largest economic
center, has a 548 km network, which is officially the largest network by route length in
the world [49]. In 2018, the daily ridership of Shanghai Metro exceeded 10 million on
weekdays and 7 million on weekends. The total number of subway passengers reached
approximately 3.7 billion, which increased 1.62 billion over that of 2017.

According to the Master Plan, officials intend to have over 1000 km of network by
track length, and over 600 metro stations, forming an extensive network covering the entire
city. In particular, the conception of TOD has been introduced and considered a promising
solution by local governors in land use planning. In this regard, it is necessary to have
a universal approach to identifying the TOD variations and typology among the metro
station areas and providing general knowledge on understanding the complex relationship
between metro trip demands, transportation, and land use. Based on our data source, all
286 metro stations, covering over 600 km that are part of the analysis, are shown on the
map (Figure 4).
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Figure 4. Study areas and the metro system in Shanghai (2018).

4.2. Data

This study used three sources of open data, including 642,724 POIs extracted from
Gaode Map, LandScan, OpenStreetMap (OSM), government website data, and a month of
smart card data (SCD) from Shanghai Metro during March 2018.

The recorded SCD contains detailed information on each trip, including the card ID,
time, fare, and the station name. From the fare field, the state of travel can be detected (i.e.,
whether boarding or alighting). The government website data offers the basic information
of the metro network, such as the metro daily frequency, number of directions served by
metro, etc. In addition, road-related information, like intersection density and accessible
network length, can be obtained from OSM data. The population distribution data was
from the LandScan (http://web.ornl.gov/sci/landscan, accessed on 1 September 2020).
The description of data can be seen in Appendix A.

5. Results and Discussion

In this section, we first carried on the variable selection and the comprehensive score
calculation of node, place, and network dimensions. Then, the indexes of NP and NPN
were clustered respectively to obtain different station categories. Finally, the difference of
station categories under NP and NPN were investigated and the guidance for individual
stations are discussed.

5.1. Node-Place-Network Model
5.1.1. Variables

The direction and strength of correlations between the indicators were examined
(Pearson’s), and the results show a high and significant correlation between the variables
(see Appendix B). Nevertheless, the high correlation between some variables was not
considered problematic, as the indexes of each dimension are then given different weights
and finally integrated into one index.

Table 3 shows the relative importance of independent variables with the entropy
method. For the node index, the number of directions served by the metro is the most
important variable, which emphasizes the importance of a transfer station. For the place
index, the density and diversity of land use have greater weight, followed by the mixing
degree of land use, and finally, the density of intersections. This result is consistent with

http://web.ornl.gov/sci/landscan
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the previous study [50] that the population density and employment density are strongly
positively associated with ridership. For the network index, the degree and betweenness
indicator have identical weights, which indicates that these two variables are equally
important in reflecting the importance of stations.

Table 3. Indicators of the node dimension.

Dimensions Independent Variables Rank Relative Importance (%)

Node

n1: Number of directions served by metro 1 23
n2: Daily frequency of metro services 3 16
n3: Number of stations within 20 min of travel 2 27
n4: Number of directions served by other public transport 5 14
n5: Number of car parking places 4 15

Place

p1: Population density 3 10
p2: Number of residences 1 15
p3: Number of workers in business 3 10
p4: Number of workers in green space 6 9
p5: Number of workers in transportation 2 11
p6: Number of workers in public service 3 10
p7: Number of workers in industry 6 9
p8: Number of POIs 8 8
p9: Land use mix 9 7
p10: Intersection density 11 4
p11: Accessible network length 9 7

Network
c1: Degree 1 50
c2: Betweenness 1 50

5.1.2. Indexes

A descriptive statistical analysis of the three dimensions is shown in Table 4. The
ranges of data indicate that the distribution of real passenger flow distribution between
subway stations has a greater variation (which is 0.046) than the node dimension (0.020).
The result indicates that the average network accessibility is not being fully incorporated
into transportation development.

Table 4. Descriptive statistics of the node, place, and network indexes.

Index Minimum Maximum Mean Std. Deviation

Node 0.1480 0.8674 0.4908 0.0204
Place 0.1135 0.8167 0.5351 0.0231

Network 0.1556 1 0.5235 0.0457

The geographic distribution of the node and place indexes follows a broadly concentric
circle-shape, generally radiating away from the central area of Shanghai (Figure 5). The
node and place with better development status are basically located in the central region,
while the relatively underdeveloped regions occur on the outskirts of the city, which
also reflects the strong monocentric urban structure of Shanghai. Notably, the spatial
distribution pattern of the network dimension shows a substantial difference between node
and place indexes. A higher value of network index is no longer located in the central
area and appears in the periphery of city. It is evident that the periphery/suburbs of the
city have a high travel demand, whereas the supply of these places is in relatively short
supply with an undeveloped physical environment (including traffic facilities and land
use allocation).
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Figure 5. Node, place, and network indexes of the metro stations.

In addition to the spatial analysis of all station areas, the relationships among these
indexes were also analyzed to reveal the complex links between stations. As shown in
Figure 6, Shanghai metro station areas exhibit substantial differences among these indexes:
the results of a positive relationship between node and place (r2 = 0.69) indicate that the
public transport accessibility has a good synergy associated with land use patterns. The
relationship between network index and the other two dimensions is relatively low (0.36
and 0.48), which is consistent with [11] and that there is a significant difference between
network centrality and the attribute of local station areas.

Figure 6. Node, place, and network indexes of the metro stations.

5.2. Cluster Analysis
5.2.1. Typologies of the NP Model

Through K-means++ cluster, five clusters are chosen with the best silhouette value
0.38. The F-statistics of clusters of the place index are 541, higher than node index, which
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are 428. The lower descriptive power of the node index indicates that the transportation
service level does not differ greatly. The reason for this situation may be that we mainly
analyzed the urban area of Shanghai, which has developed public transportation.

Using the geographic map and NP scores, the node index and place index in Shanghai
are generally in a state of equilibrium (Figure 7 and Table 5). The geographic distribution
follows a broadly concentric circle-shape radiating from the central area of Shanghai. For
instance, cluster 1 and cluster 2, two better performing clusters, are primarily located in
central urban areas with good traffic accessibility and diverse land use. Followed by cluster
3, which is mostly located from the edge of the central city area and has a moderate level of
development in terms of urban traffic and land use. The last two clusters, cluster 4 and
cluster 5, are located at the edge of the city or at the end of the rail transit station.

Figure 7. Results of the NP model.

Table 5. Summary of the five clusters.

ID Num Example of Stations Node (Avg.) Place (Avg.) All (Avg.)

1 62 People’s Square, Jing’an Temple 0.67 0.72 0.69
2 80 Hongqiao railway station, Xinzhuang 0.57 0.59 0.58
3 70 Jiuting, Huinan 0.44 0.49 0.47
4 48 An’ting, Nanxiang 0.32 0.41 0.36
5 26 Xinchang, Zhoupu east 0.27 0.22 0.25

5.2.2. Typologies of the Node-Place-Network Model

The same cluster analysis was again applied to the NPN model and five clusters are
identified (the best silhouette value is 0.32). The F-statistics (network index = 345, place
index = 204, and node index = 205) shows that higher descriptive power of the network.
Further, in the case of similar built environment, the actual travel flow distribution among
different stations is quite different. This result once again proves the necessity of travel
flow for site classification.

Each of the five categories has its own distinctive characteristics (Table 6 and Figure 8).
Cluster 1 (the number of stations is 57) is characterized by the three highest indexes,
predominantly located in the central area of the city. Two exceptions are Hongqiao Railway
Station (0.69, 0.66, 0.87) and Xinzhuang (0.59, 0.65, 0.89), which are clearly positioned as
sub-centers of urban development according to the Master Plan of Shanghai (2017–2035).
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Table 6. Description summary of the five clusters.

ID No. Stations Node (Avg.) Place (Avg.) Network (Avg.) All (Avg.)

1 57 People’s Square, Jing’an Temple 0.65 0.70 0.79 0.71
2 84 Baoshan Road, Longqiao Road 0.60 0.62 0.56 0.59
3 49 Jiuting, Zhuanqiao 0.39 0.46 0.61 0.48
4 61 An’ting, Longhua 0.41 0.47 0.36 0.41
5 35 Longyao Road, Luoshan Road 0.28 0.28 0.16 0.23

Figure 8. Results of the NPN model.

Cluster 2 (the number of stations is 84) has most stations, which has a balanced
development status. Cluster 3 has a similar score for network with cluster 2, with relatively
high scores for the network but a low score for node and place. This is possibly because
around these stations, the land use is usually dominated by residential types, and more
commuters need to travel between workspace in the city center and residential areas in the
suburbs. One typical case is Sijing station (0.32, 0.42, 0.78), a typical living place, located
in an area with a dense residential population, large travel flow during the peaks and
insufficient facilities.

Cluster 4 (the number of stations is 61) and cluster 5 (the number of stations is 35), are
generally located at the end of a metro line. Both of them have a relatively low score of
network, corresponding to lower demand for transportation. Furthermore, the cluster 5
needs to be improved comprehensively in terms of travel demand, transport services, and
land supply.

5.3. Comparative Analysis

Figure 9 provides an alluvial diagram that depicts how the clusters in different strate-
gies interact with one another. Between the two categories, there are thick edges that
connect the clusters. This situation indicates that the set of nodes that form a particular
cluster within the NP model constitutes a substantial portion of another cluster within the
NPN model, reflecting the similar development consistencies under different dimensions.
Cluster 1 to 5 is arranged in order of the average score from large to small. A large number
of thin edges change to the neighbor cluster IDs, which indicates that some stations perform
slight differences between the two categories. However, several thin edges change to the
non-neighbor cluster IDs, reflecting the significant mismatches between environmental
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attributes and travel demand. For example, Jinke station (network = 0.82, node = 0.55,
place = 0.49), which belonging to cluster 3 under NP classification, is transferred to cluster
1 under NPN classification.

Figure 9. Clusters for different classification strategies and the relationships between them (clusters 1
to 5 are arranged in order of TOD values from largest to smallest).

To quantitatively describe the development synergy between the travel flow and the
physical environment of the station, we compare the carrying pressure within different
categories across these two classifications. As shown in Figure 10, the score of NPN shows
more variability and comparability, while there is no clear distinction in the NP model. The
results from the NPN model also clearly show that the nodes in cluster 3 have a higher
T(NPN) score, while cluster 5 shows a lower performance in the public transport system.
The results of the comparison study show the validity of the extended NPN method.

Figure 10. Score of the NP and NPN models.

5.4. Guidance for Individual Stations

The carrying pressure analysis on different clusters provides us not only a general
impression of station groups, but also specific details for 286 stations in Shanghai (see
Table 7). The stations with a high carrying pressure can be characterized as follows:
(1) transportation hubs, such as Hongqiao Railway Station and Pudong International
Airport, which are reasonable for having large travel demand because of the dominant
position of transportation; (2) large residential districts, such as Jiuting and Guanglan Road
stations, which are generally located on the edge of a main urban area or outside the city.
These areas serve as sub-centers for future urban development. (3) The terminal stations,
such as Shenshe Road station, which have a low degree of the physical environment but
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a large travel demand. Moreover, our findings are consistent with the Shanghai Master
Plan 2017–2035. For instance, four integrated and promoted town clusters are found
in Figure 11 (Areas 1 to 4), in planning that includes Nanxiang-Jiangqiao, Jiuting-Sijing-
Dongjing-Xinqiao, Pujiang-Zhoupu-Kangqiao-Hangtou, Tangzhen-Caolu-Heqing. There
are also two prominent clusters, which correspond to the planned central towns, Jiading
and Nanhui.

Table 7. Top 10 stations of carrying pressure.

Station Clusters
(NPN)

Clusters
(NP)

Score
(NPN)

Score
(NP) CP

Hesha Hangcheng 3 5 0.37 0.26 1.46
Xinchang 3 5 0.33 0.23 1.40

Zhoupu East 3 5 0.36 0.26 1.39
Sijing 3 4 0.51 0.38 1.36

Shenshe Road 3 4 0.51 0.38 1.33
Nanxiang 3 4 0.53 0.41 1.30

Jiuting 3 3 0.59 0.47 1.27
Guanglan 3 3 0.53 0.42 1.26

Jiading North 3 4 0.45 0.36 1.26
Jiading Xincheng 3 4 0.40 0.32 1.23

Figure 11. Carrying pressure of stations.

6. Conclusions

In this paper, we extended the existing node-place (NP) model by adding a third
dimension—the network dimension, which results in a new model, the node-place-network
(NPN) model. The NPN model can be used to assess the extent to which the cooperation
between the land use and public transport as well as travel demand. An empirical case
study of Shanghai demonstrated the effectiveness of our method. Three key findings are
obtained: First, the results show that the TOD guidelines have already been implemented
in Shanghai, although there is also a large mismatch between the travel demands and the
surrounding environment of stations. This result is largely due to the complex relationship
between transport systems and travel patterns. Second, a comparative analysis of the
discrepancies between two classifications, the stations that need possible improvements are
identified. Third, through the index of the carrying pressure, the matching degree of travel
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characteristics and environmental development can be quantitatively evaluated, which
provides a guideline for the development of multi-center cities.

Our results also provide recommendations for policy making. The stations with a
relatively high carrying pressure have the potential for encouraging densification and
diversification to increase the land use efficiency. We recommend planners to apply our
methodology to a selection of potential places as sub-centers. Moreover, the reason for
the occurrence of stations with a high carrying pressure is worth monitoring. Heavy com-
muting burdens pose a major challenge to improving the quality of public transportation.
In particular, the rapid growth of urban populations has placed enormous pressure on
transportation services and land use allocation [51].

This study can be extended in several directions for future investigations. First, we
only used the entire travel records during a day, while more fine-grained event resolution,
such as 1-h temporal interval can be considered. In other contexts, Ref. [29] used smart
card data to conduct station classification, which brings finer resolution for boarding and
alighting information. Second, we chose a buffer zone of 600 m in this study, which is the
service scope planned by the Shanghai Municipal Government. Due to the presence of the
modifiable areal unit problem (MAUP) [52,53], the influence of different research scopes
and research scales can be considered in the future. Third, the different methods of index
weighting can be adopted, e.g., the fuzzy approach and ANN [54,55]. Furthermore, as
Shanghai is a monocentric city, further research will be carried out in cities with polycentric
development to verify the performance of the proposed method.
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Appendix A. Data Description

Approximately one million POI data were acquired from Gaode Map (https://www.
amap.com, accessed on 1 September 2020) in 2018, which has detailed information of
addresses, titles, and the coordination of spatial location. They were coded into several
levels of catalogs, depending on their attributes. Referring to urban land classification and
planning construction land standard, we reclassified the POIs, and some POIs with a low
public awareness were removed, such as public toilets, kiosks, and house numbers. After
deletion and integration, the raw data were reclassified into commercial service, industry,
residence, green space, public services, and transportation, as shown in Figure A1. And
642,724 POI data points were obtained (Table A1).

https://lbs.amap.com/
https://www.openstreetmap.org/
http://service.shmetro.com/
https://www.amap.com
https://www.amap.com
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Table A1. The results of reclassification POI.

Code Category Number Percentage

1 Business 158,938 24.7%
2 Transportation 41,283 6.4%
3 Residence 119,818 18.6%
4 Industry 206,724 32.2%
5 Green space 3749 0.6%
6 Public service 112,212 17.5%

Figure A1. POI distribution around People’s Square.

The recorded SCD contains detailed information on each trip, including the card ID,
time, fare, and the station name (Table A2). From the fare field, the state of travel can
be detected (i.e., whether boarding or alighting). And based on the travel time, we can
construct a travel chain for every user, which contains the concrete origin and destination of
the station. As shown in Figure A2, more than one million trips were carried by Shanghai’s
metro system during the morning peak hour.

The government website data offers the basic information of the metro network, such
as the metro daily frequency, number of directions served by metro, etc. And road-related
information, like intersection density and accessible network length can be obtained from
OSM data. The population distribution data was from the LandScan (http://web.ornl.gov/
sci/landscan/, accessed on 1 September 2020).

Table A2. Examples of the SCD.

Card ID Date Time Line Station Name Fare

2900***4556 1 March 2018 19:04:05 Line1 Jinhong Road 0
2900***5306 1 March 2018 16:02:03 Line3 Minhang 4
2900***5324 1 March 2018 08:05:02 Line7 Xinzhuang 5
2900***5339 1 March 2018 22:45:50 Line1 People’s Square 0

http://web.ornl.gov/sci/landscan/
http://web.ornl.gov/sci/landscan/
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Figure A2. Average daily distribution of the passengers’ travel flow.

Directed Weighted Network Analysis

To estimate the actual distribution of travel flow of the Shanghai subway system, we
used SCD data to construct the directed weighted travel network. This network consists of
286 nodes (stations) and 78,375 edges. The average clustering coefficient is 0.946, which is
much larger than the value of the random network (which is 0.5), which shows that the
small word characteristics and degree distribution obeys a power-law distribution. As
shown by Figure A3, the first weighted node is People’s Square station, which has the
largest travel flow all day. This is because People’s Square station is the transfer station
of Shanghai Metro Line 1, Shanghai Metro Line 2, and Shanghai Metro Line 8, which
are also the central point of the Shanghai metro network structure. Moreover, Shanghai
People’s Square is also the political, economic, cultural, tourism, and transportation hub of
Shanghai. The next highest value of weighted degree is Shanghai Railway station, which
is the largest transit hub in Shanghai. And Jing’an temple, Xujiahui, East Nanjing Road,
and Zhonshan Park are no longer transfer stations, but also have plenty of commercial,
residential and recreational facilities. Lujiazui is well known as one of the top business
circles, with excellent business facilities, and Xinzhuang is a mature leisure area.

The direct weighted network of travel flow, it shows that the subway around Shanghai
is closely connected with the subway station in the central area, while some regional central
stations are distributed along the inner ring road to share part of passenger volume. The
direct evidence is in Table A3, which shows that the top station interaction pairs are located
between Sijing and Caohejing Development Zone metro stations. Sijing is located outside
the inner ring line, while Caohejing Development Zone metro station is inside the inner
ring line. This situation also indicates that there remains a high demand for travel in the
surrounding areas of Shanghai, with substantial interaction intensity between stations.
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Figure A3. (a) Rank of the weight degree (log). (b) Direct weighted network of travel flow.

Table A3. Top 5 station interaction pairs.

Rank Station Name Station Name Volume

1 Sijing Caohejing
Development Zone 7145

2 Jiuting Caohejing
Development Zone 5551

3 Qibao Sijing 4839
4 West Nanjing Road Lujiazui 4791
5 Xujiahui Xinzhuang 4790
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Appendix B. Correlation between the Indicators

c1 c2 n1 n2 n3 n4 n5 n6 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

c1 1.000 0.851 ** 0.412 ** 0.283 ** 0.017 0.610 ** 0.561 ** −0.353
** 0.486 ** 0.500 ** 0.686 ** 0.478 ** 0.609 ** 0.610 ** 0.591 ** 0.676 ** 0.298 ** 0.422 ** 0.393 **

c2 0.851 ** 1.000 0.458 ** 0.287 ** 0.053 0.655 ** 0.582 ** 0.394 ** 0.458 ** 0.519 ** 0.671 ** 0.480 ** 0.655 ** 0.616 ** 0.600 ** 0.681 ** 0.275 ** 0.466 ** 0.446 **

n1 0.412 ** 0.458 ** 1.000 0.496 ** 0.099 0.644 ** 0.583 ** 0.560 ** 0.583 ** 0.610 ** 0.628 ** 0.555 ** 0.643 ** 0.702 ** 0.560 ** 0.666 ** 0.293 ** 0.541 ** 0.587 **
n2 0.283 ** 0.287 ** 0.496 ** 1.000 0.412 0.418 ** 0.417 ** 0.158 ** 0.348 ** 0.388 ** 0.416 ** 0.356 ** 0.418 ** 0.451 ** 0.360 ** 0.439 ** 0.183 ** 0.264 ** 0.250 **
n3 0.017 0.053 0.099 0.412 1.000 0.369 0.118 * 0.006 0.120 * 0.103 0.064 0.020 0.070 0.066 0.108 0.072 0.151 * 0.093 0.048
n4 0.610 ** 0.655 ** 0.644 ** 0.418 ** 0.418 ** 1.000 0.729 ** 0.412 ** 0.691 ** 0.746 ** 0.856 ** 0.620 ** 1.00 ** 0.844 ** 0.806 ** 0.907 ** 0.388 ** 0.646 ** 0.621 **
n5 0.561 ** 0.582 ** 0.583 ** 0.417 ** 0.118 * 0.729 ** 1.000 0.372 ** 0.664 ** 0.710 ** 0.753 ** 0.574 ** 0.729 ** 0.755 ** 0.665 ** 0.765 ** 0.330 ** 0.585 ** 0.488 **

n6 0.353 ** 0.394 ** 0.560 ** 0.158 ** 0.006 0.412 ** 0.372 ** 1.000 0.364 ** −0.386
** 0.394 ** 0.329 ** 0.412 ** 0.391 ** 0.384 ** 0.406 ** 0.163 ** 0.333 ** 0.359 **

p1 0.486 ** 0.458 ** 0.583 ** 0.348 ** 0.120 * 0.691 ** 0.664 ** 0.364 ** 1.000 0.764 ** 0.733 ** 0.514 ** 0.690 ** 0.761 ** 0.648 ** 0.738 ** 0.191 ** 0.458 ** 0.407 **
p2 0.500 ** 0.519 ** 0.610 ** 0.388 ** 0.103 0.746 ** 0.710 ** 0.386 ** 0.764 ** 1.000 0.842 ** 0.670 ** 0.746 ** 0.869 ** 0.715 ** 0.844 ** 0.299 ** 0.567 ** 0.476 **
p3 0.686 ** 0.671 ** 0.628 ** 0.416 ** 0.064 0.856 ** 0.753 ** 0.394 ** 0.733 ** 0.842 ** 1.000 0.695 ** 0.856 ** 0.893 ** 0.801 ** 0.943 ** 0.369 ** 0.615 ** 0.548 **

p4 0.478 ** 0.480 ** 0.555 ** 0.356 ** 0.020 0.620 ** 0.574 ** 0.329 ** 0.514 ** 0.670 ** −0.695
** 1.000 0.620 ** 0.709 ** 0.590 ** 0.708 ** 0.375 ** 0.508 ** 0.513 **

p5 0.609 ** 0.655 ** 0.643 ** 0.418 ** 0.070 1.00 ** 0.729 ** 0.412 ** 0.690 ** 0.746 ** 0.856 ** 0.620 ** 1.000 0.844 ** 0.806 ** 0.907 ** 0.388 ** 0.645 ** 0.620 **
p6 0.610 ** 0.616 ** 0.702 ** 0.451 ** 0.066 0.844 ** 0.755 ** 0.391 ** 0.761 ** 0.869 ** 0.893 ** 0.709 ** 0.844 ** 1.000 0.775 ** 0.943 ** 0.362 ** 0.592 ** 0.572 **
p7 0.591 ** 0.600 ** 0.560 ** 0.360 ** 0.108 0.806 ** 0.665 ** 0.384 ** 0.648 ** 0.715 ** 0.801 ** 0.590 ** 0.806 ** 0.775 ** 1.000 0.900 ** 0.516 ** 0.589 ** 0.501 **
p8 0.676 ** 0.681 ** 0.666 ** 0.439 ** 0.072 0.907 ** 0.765 ** 0.406 ** 0.738 ** 0.844 ** 0.943 ** 0.708 ** 0.907 ** 0.943 ** 0.900 ** 1.000 0.441 ** 0.643 ** 0.584 **

p9 0.298 ** 0.275 ** 0.293 ** 0.183 ** 0.151 * 0.388 ** 0.330 ** 0.163 ** 0.191 ** 0.299 ** 0.369 ** −0.375
** 0.388 ** 0.362 ** 0.516 ** 0.441 ** 1.000 0.430 ** 0.379 **

p10 0.422 ** 0.466 ** 0.541 ** 0.264 ** 0.093 0.646 ** 0.585 ** 0.333 ** 0.458 ** 0.567 ** 0.615 ** 0.508 ** 0.645 ** 0.592 ** 0.589 ** 0.643 ** 0.430 ** 1.000 0.727 **
p11 0.393 ** 0.446 ** 0.587 ** 0.250 ** 0.048 0.621 ** 0.488 ** 0.359 ** 0.407 ** 0.476 ** 0.548 ** 0.513 ** 0.620 ** 0.572 ** 0.501 ** 0.584 ** 0.379 ** 0.727 ** 1.000

Note: ** p < 0.05; * p < 0.1.
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