
����������
�������

Citation: Du, M.; Li, X.; Kwan, M.-P.;

Yang, J.; Liu, Q. Understanding the

Spatiotemporal Variation of

High-Efficiency Ride-Hailing Orders:

A Case Study of Haikou, China.

ISPRS Int. J. Geo-Inf. 2022, 11, 42.

https://doi.org/10.3390/

ijgi11010042

Academic Editor: Wolfgang Kainz

Received: 2 November 2021

Accepted: 6 January 2022

Published: 9 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Understanding the Spatiotemporal Variation of High-Efficiency
Ride-Hailing Orders: A Case Study of Haikou, China
Mingyang Du 1, Xuefeng Li 2,*, Mei-Po Kwan 3,4, Jingzong Yang 5 and Qiyang Liu 6

1 School of Transportation, Southeast University, Nanjing 211189, China; dmy@seu.edu.cn
2 College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
3 Department of Geography and Resource Management, Institute of Space and Earth Information Science, The

Chinese University of Hong Kong, Shatin, Hong Kong, China; mpkwan@cuhk.edu.hk
4 Department of Human Geography and Spatial Planning, Utrecht University,

3584 CB Utrecht, The Netherlands
5 School of Big Data, Baoshan University, Baoshan 678000, China; 230169551@seu.edu.cn
6 School of Urban Planning and Design, Peking University Shenzhen Graduate School,

Shenzhen 518055, China; tsql@pku.edu.cn
* Correspondence: lixuefeng@njfu.edu.cn

Abstract: Understanding the spatiotemporal variation of high-efficiency ride-hailing orders (HROs)
is helpful for transportation network companies (TNCs) to balance the income of drivers through
reasonable order dispatch, and to alleviate the imbalance between supply and demand by improving
the pricing mechanism, so as to promote the sustainable and healthy development of the ride-hailing
industry and urban transportation. From the perspective of TNCs for order management, this
study investigates the spatiotemporal variation of HROs and common ride-hailing orders (CROs)
for ride-hailing services using the trip data of Didi Chuxing in Haikou, China. Ordinary least
squares (OLS) and geographically weighted regression (GWR) models are established to examine the
factors that affect the densities of HROs and CROs during different time periods, such as morning,
evening, afternoon and night, with considering various built environment variables. The OLS models
show that factors including road density, average travel time rate, companies and enterprises and
transportation facilities have significant impacts on HROs and CROs for most periods. The results of
the GWR models are consistent with the global regression results and show the local effects of the
built environment on HROs and CROs in different regions.

Keywords: high-efficiency ride-hailing order; common ride-hailing orders; spatiotemporal variation;
ordinary least squares; geographically weighted regression; influential factor

1. Introduction

With the rapid development of information technology and mobile payment, trans-
portation network companies (TNCs) such as Didi Chuxing, Uber and Lyft have been able
to operate ride-hailing services around the world using internet-based platforms [1–5].
Traditional taxis mainly serve passengers on the road based on the drivers’ experience,
while ride-hailing services can integrate travel information promptly based on smartphone
applications and achieve accurate matching between supply (i.e., drivers) and demand
(i.e., passengers) [6]. Consequently, this service can effectively reduce the void cruising
distance and improve vehicle capacity utilization, which in turn results in less energy
consumption and fewer greenhouse gas emissions [7–11]. Due to the convenient service
and preferential pricing strategies (such as price subsidies and e-coupons), TNCs have
attracted many drivers and users [12]. As of 2020, Uber was operating in 71 countries and
in more than 890 cities [13]. As of 2018, Lyft was operating in 200 cities in the United States,
and the number of drivers exceeded 310,000 [14]. Didi Chuxing provides travel services
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to more than 550 million users in more than 400 cities in China, and the daily ride-hailing
orders exceed 30 million [15].

High-efficiency ride-hailing orders (HROs) refer to the passengers whose orders
can maximize the revenue per unit of travel time for ride-hailing drivers [16]. In actual
operation, the distribution of HROs is unbalanced. Some drivers prefer to receive orders in
the area where HROs are concentrated, which leads to an imbalance of supply and demand
in the ride-hailing market, and resource allocation is not optimal. In addition, during the
morning and evening peak hours, affected by road traffic congestion, there are obvious
differences in drivers’ revenue per unit of travel time in different regions, resulting in an
income gap among drivers. For example, it takes a longer time for ride-hailing drivers
in the city center to complete an order during the peak periods than usual, although the
TNCs increase the fare during these periods. Understanding the spatiotemporal variation
of HROs is helpful for TNCs to alleviate the imbalance between supply and demand by
improving the pricing mechanism, and to balance the income of drivers through reasonable
order dispatch so as to promote the sustainable and healthy development of the ride-hailing
industry and urban transportation.

At present, a considerable body of literature has investigated the factors that influence
ride-hailing demand. Specifically, factors including users’ socio-demographics character-
istics such as higher education level and younger as well as built environment attributes
such as higher road network density, higher land use mix, lower level of balance between
population and employment and higher levels of transit accessibility are associated with
higher usage of ride-hailing services [17–19]. However, to the best of our knowledge, there
is little research exploring the spatiotemporal variation and influential factors of HROs for
ride-hailing services. According to existing studies, passengers with the top 30% of revenue
per unit of travel time are defined as HROs, and the remaining 70% of passengers are
common ride-hailing orders (CROs) [16,20]. To fill this gap, this study attempts to answer
the following questions: (1) What are the spatiotemporal travel characteristics of HROs for
ride-hailing service, and what is the difference in the spatiotemporal distributions between
HROs and CROs? (2) What factors affect the densities of HROs and CROs, and do the
effects of these factors have spatial heterogeneity?

The contributions of this study are mainly in the following two aspects. (1) From the
perspective of TNCs for order management, the spatiotemporal travel characteristics of
HROs and CROs are compared and analyzed based on the trip data of the city of Haikou in
China. (2) In order to reflect the intensity of ride-hailing orders, the densities of HROs and
CROs are used as dependent variables, ordinary least squares (OLS) are used to explore
the factors affecting their densities during different time periods such as morning, evening,
afternoon and night, and geographically weighted regression (GWR) models are also
applied to explore the spatial heterogeneity of influential factors, such as secondary roads
density, average travel time rate, tourist attractions, and transportation facilities.

2. Literature Review
2.1. Operational Characteristics of Ride-Hailing Services

Exploring the operational characteristics of ride-hailing service is of great signifi-
cance for understanding the industrial characteristics and the development of ride-hailing
services.

Based on the order data of Didi Chuxing in Hangzhou, China, Ke et al. [21] concluded
that the passenger demand on weekdays showed a double-peak property (morning peak
and evening peak), while the demand on weekends demonstrated a single-peak prop-
erty (only an evening peak). Based on administrative data and survey data, Hall and
Krueger [22] conducted an analysis of the labor market for Uber’s drivers. They discovered
that the flexibility that the Uber platform offered attracted the drivers. Using the data of
the hourly earnings of Uber drivers, Chen et al. [23] documented the ways that the drivers
utilized this real-time flexibility and estimated the driver surplus. The results concluded
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that Uber drivers benefited a lot from this flexibility, and they earned more than twice as
much as they did in less flexible arrangements.

Some scholars focused on the impact of ride-hailing trips on the environment. Based on
the 1-month GPS trajectory and order data of taxis and Didi Chuxing Express in Chengdu,
China, Sui et al. [7] compared and analyzed the fuel consumption and emissions patterns
of taxi and ride-hailing trips. They concluded that the fuel consumption, CO, NOx and HC
emissions per passenger-on kilometer of taxi trips were about 1.36, 1.45, 1.36 and 1.44 times
that of ride-hailing trips, respectively. The results also showed that most of Didi’s drivers
could perform well in terms of emissions reduction and fuel saving, while only some
taxi drivers had the ability to do that. Based on the Didi GPS data, a cross simulation
method was proposed by Chen et al. [8] to assess the influence of the user scale on the
emission performance of the ride-sourcing system. They identified that under a certain
scale of travel demands, the proportion of the void distance gradually decreased with the
increasing driver scale. The results also showed that the greater the travel demand of an
area, the greater the effect of driver supplement on reducing the proportion of the void
distance. Based on the trajectory data of Didi, Sun et al. [24] estimated the NOx emission
pattern of road segments and examined the relevant environmental factors that influenced
the on-road traffic emissions. They discovered that a short road length with more signal
controls, being close to downtown, high bus station density, more ramps nearby and high
share of residential or commercial land use could increase the emission rate, while primary
roads, longer road segments, road segments far away from ramps and metro stations and
the proportion of transportation land use could result in less emissions.

Some scholars also paid attention to the impact of ride-hailing services on other modes
of transportation. Using 380 intercept surveys in San Francisco in 2014, Rayle et al. [25]
indicated that ride-hailing services and taxis had overlapping but different service markets.
More than half of ride-hailing trips replaced travel modes other than the taxi, including
private cars and public transport. Nie [26] explored the impact of ride-hailing services on
the traditional taxi industry based on taxi GPS data in Shenzhen, China. The results showed
that the taxi industry had experienced a huge loss in its ridership due to the competition
from ride-hailing services. The taxis could effectively compete with ride-hailing services
during peak hours, such as from 6:00 a.m. to 10:00 a.m. and from 5:00 p.m. to 8:00 p.m., and
in regions with high population densities. Additionally, ride-hailing services aggravated
the traffic congestion in the city, but the impact was mild.

2.2. Factors That Influence Ride-Hailing Demand

Exploring the factors that influence ride-hailing demand can not only identify potential
ride-hailing passengers but also improve service quality and user satisfaction. Some
scholars utilized questionnaire survey data to conduct such research. For example, Dias
et al. [27] applied the ordered probit model to investigate the impacts of socioeconomic
and demographic factors on the use of ride-hailing. The results demonstrated that users
tended to be well-educated, young and working individuals who lived in higher-density
regions. Based on the data of the 2017 National Household Travel Survey, Zhang et al. [28]
established zero-inflated negative binomial regression models to explore the relationship
between household vehicle ownership and ride-hailing usage. The results revealed that the
decrease of one vehicle in households was related to the increase of 7.9% in the frequency
of ride-hailing use and the increase of 23.0% in the possibility of ride-hailing use. These
effects were greater for individuals who lived in the regions with a higher population
density than those who lived in the areas with a lower population density. To investigate
the factors influencing the choice among ride-hailing services and traditional travel modes,
a multinomial logistic model was established by Du et al. [29] based on valid data from
595 participants. The results showed that the participants were more likely to utilize ride-
hailing services for flexible activities, such as business affairs, shopping, entertainment,
exercise, especially in suburbs, and the emergency travel (the time is relatively tight for
this type of travel). Residents who were not registered permanent residents (it is a special
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population policy in China called hukou) tended to use this service. Lee et al. [30] adopted
discrete choice models to investigate people’s willingness to utilize ride-hailing services
using the survey data in the US. They found that those who lived in areas with high
population densities and had a rural workplace were more likely to use such a service.
Based on semi-structured interviews in Denmark, Nielsen et al. [31] discovered that travel
cost savings compared with private transport, great flexibility and the opportunity to
socialize with other passengers promoted the use of ride-hailing services. Difficulty in
finding rides, insecurity and social awkwardness with strangers were the shortcomings of
ride-hailing services.

The operation data of ride-hailing services provide an opportunity for analyzing the
factors that influence ride-hailing demand from a broader perspective. For example, Yu and
Peng [18] established geographically weighted Poisson regression models to investigate the
impact of the built environment on ride-hailing demand using the trip data in Austin, Texas.
The results indicated that block groups with a higher share of young and well-educated
people, higher land use mix, higher road network and sidewalk densities, a lower level
of balance between population and employment and higher level of transit accessibility
promoted ride-hailing service use. The results also showed the spatial variations of the
effects of socioeconomic factors and the built environment on ride-hailing trips. Using
trip data from Didi Chuxing in Shanghai, Sun and Ding [32] investigated the effect of the
built environment on ride-hailing service demand. The results revealed that commercial
and residential land use, rainy weather, higher daytime temperature and transport acces-
sibility had positive effects on ride-hailing service demand. The market share of Express
service on rainy days was higher than that of traditional taxi services, which was largely
due to the flexibility of operation time and the dynamic pricing mechanisms of Express
service [33]. Using the ride-hailing trip data in Chengdu, Zhang et al. [19] focused on the
relationship between ride-hailing trips and several types of POIs by establishing ordered
logistic regression models. The results revealed that the number of transport facilities had
the most impact on the ride-hailing trips, followed by the number of scenic spots. The
number of sports facilities and service facilities had impacts on the ride-hailing trips of
pick-up locations, while the number of commercial establishments did not influence the
ride-hailing trips significantly.

As is evident from the above review of past studies on ride-hailing services, scholars
mainly explored the operational characteristics, industrial characteristics and the impact of
the service on other transport modes based on survey data and operation data. Regarding
the factors that influence ride-hailing demand, past research mainly considered personal
attributes, perceptions, built-environment factors and meteorological conditions, and the
explorations were performed largely from the perspective of passengers. Very little work
has been performed on the spatiotemporal variation and influential factors of HROs from
the perspective of TNCs for order management. However, a better understanding of the
relationship between the spatiotemporal variation of HROs and built environment factors
would help TNCs alleviate the imbalance between supply and demand and balance the
income of drivers, which is of great significance to promote the sustainable and healthy
development of the ride-hailing industry. Based on this, this study investigates the spa-
tiotemporal variation of HROs and CROs and applies OLS and GWR models to examine
the factors that affect the densities of HROs and CROs.

3. Data
3.1. Data Source and Processing

Haikou, located in the south of China, is an important economic center and the
transportation hub of Hainan province (Figure 1a). As of 2017, it had an area of 151.6 square
kilometers and a permanent resident population of 2.27 million [34]. In 2012, ride-hailing
companies such as Didi Chuxing, Shenzhou and Yidao started to operate in Haikou. By the
end of 2016, the number of ride-hailing vehicles reached 10,000, and the number of legal
ride-hailing drivers was 6000 [35].
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The data used in this work are the order records of Didi Chuxing in Haikou in
September 2017. The records mainly include the order ID, the longitude and the latitude
coordinates of pick-up locations, the longitude and the latitude coordinates of drop-off
locations, departure and arrival times, travel distances and fares. Past research has indi-
cated that ride-hailing service demand was affected by the built environment [18,19,21].
Based on this, we collected the relevant road information from the OpenStreetMap website
(https://www.openstreetmap.org, accessed on 18 August 2020), including the lengths of
primary roads, secondary roads and tertiary roads [36]. Based on the Amap Application
Program Interface (API), 13 types of POI data were also acquired using Python [37]. These
13 categories were dining facilities, tourist attractions, companies and enterprises (such as
construction companies, medical companies, commercial trade and famous enterprises),
shopping facilities, transportation facilities, financial and insurance services, science or
cultural and educational facilities, commercial residences (residential areas and buildings),
daily life services (such as post offices, logistics services, telecom offices and job centers),
sports facilities, medical and health service facilities, government offices and accommo-
dation services (hotels and hostels). Detailed information about these POI categories is
available on the following website: https://lbs.amap.com/api/webservice/download,
accessed on 18 August 2020 [19].

Before the analysis, it was necessary to clean the original order records, since some of
them were not appropriate for using in this study. The following records were removed:
(1) duplicate order records, (2) order records with incomplete information, such as entries
with missing departure and arrival times, (3) pick-up locations or drop-off locations located
outside of the study area, (4) records with an average travel speed exceeding 80 km/h and
(5) records with travel distances less than 300 m or travel time less than 1 min or longer than
2 h. Using these criteria, the original 2.3559 million order records from 2 September to 29
September (4 weeks) were cleaned, and 2.2747 million order records were finally obtained,
accounting for 96.56% of the original records in the dataset.

In order to aggregate the order records in space, we adopted a grid cell structure
(1 km × 1 km) to divide the whole study region into different spatial units [19,21]. A total
of 1032 grid cells were created as a result, as shown in Figure 1b. Each ride-hailing order
was assigned to a grid cell based on its geographic coordinates. The lengths of different
levels of roads and the number of different types of POIs in each grid cell were also obtained
based on the Intersect toolbox in ArcGIS.

3.2. Variable Description

In this study, the density of HROs refers to the number of hourly HROs divided by the
area of the grid cell, which is 1 km2. As for each grid cell in Figure 1b, we could obtain the
density of HROs for any one hour in a day. The definition of the density of CROs is similar.

https://www.openstreetmap.org
https://lbs.amap.com/api/webservice/download
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To explore the spatial distribution differences of HROs and CROs during different periods,
four periods—night (from 12:00 a.m. to 6:00 a.m.), morning (from 6:00 a.m. to 12:00 p.m.),
afternoon (from 12:00 p.m. to 5:00 p.m.) and evening (from 5:00 p.m. to 12:00 a.m.)—were
selected according to their demand distributions (see Section 5.1) to analyze the spatial
variation of two types of orders.

In order to examine the factors that affected the densities of HROs and CROs, some
built environment variables were considered in this study, including the primary road
density, secondary road density and tertiary road density as well as the number of the
13 types of POIs. To examine the influence of road traffic conditions on the order density,
the variable of the travel time rate was adopted. For each order (or trip), the travel time
rate equaled the travel time of the trip divided by the travel distance of the trip, which
could more directly reflect the seriousness of traffic congestion (i.e., the greater the value,
the longer the travel time per unit distance, and thus the more congested the road was) [33].
The average travel time rate of all orders during 1 hour for one grid cell was the average
travel time rate of the grid cell, which was used to reflect the road network environment of
this grid cell during this period. In addition, the diversity of land use was measured in this
study by the variable of POI diversity. The Shannon entropy index was used to calculate
the level of land use mix by different types of POIs [38–40]:

H = −∑
i

Pi logn Pi (1)

where H is the value of entropy ranging between 0 and 1, Pi is the percentage of the ith
category of POI and n is the number of categories.

The daily order number of many grid cells in Figure 1b is zero. After excluding these
grid cells, the data of 404 grid cells were utilized in the following analysis. The descriptive
statistics of the above variables are shown in Table 1.

Table 1. Descriptive statistics of variables.

Variables Variable Description Mean Std. Deviation

Dependent variables

Density of HROs_Morning The average number of hourly HROs in the morning divided by
the area of the grid cell 2.01 3.27

Density of CROs_Morning The average number of hourly CROs in the morning divided by
the area of the grid cell 5.31 10.06

Density of HROs_Evening The average number of hourly HROs in the evening divided by
the area of the grid cell 2.59 4.75

Density of CROs_Evening The average number of hourly CROs in the evening divided by
the area of the grid cell 7.17 14.76

Density of HROs_Afternoon The average number of hourly HROs in the afternoon divided
by the area of the grid cell 3.07 5.40

Density of CROs_Afternoon The average number of hourly CROs in the afternoon divided
by the area of the grid cell 7.46 15.47

Density of HROs_Night The average number of hourly HROs at night divided by the
area of the grid cell 1.13 2.73

Density of CROs_Night The average number of hourly CROs at night divided by the
area of the grid cell 0.52 1.40

Built environment variables
Primary roads density Length of primary roads per unit area on grid cell (km/1 km2) 0.68 1.00

Secondary roads density Length of secondary roads per unit area on grid cell
(km/1 km2) 0.60 0.95

Tertiary roads density Length of tertiary roads per unit area on grid cell (km/1 km2) 0.63 0.98
Average travel time rate The average travel time rate of grid cell (min/km) 2.04 0.74

POI diversity POI diversity of grid cell 0.62 0.27
POIs

Dining facilities Number of related POI on grid cell 28.40 55.94
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Table 1. Cont.

Variables Variable Description Mean Std. Deviation

Tourist attractions Number of related POI on grid cell 0.49 1.07
Daily life services Number of related POI on grid cell 21.53 41.99

Companies and enterprises Number of related POI on grid cell 9.20 12.30
Shopping facilities Number of related POI on grid cell 12.74 30.42

Financial and insurance services Number of related POI on grid cell 5.03 11.19
Transportation facilities Number of related POI on grid cell 10.50 16.10

Science or culture and education
facilities Number of related POI on grid cell 8.86 16.36

Commercial residences Number of related POI on grid cell 7.29 12.07
Sports facilities Number of related POI on grid cell 8.55 12.84

Medical and health service
facilities Number of related POI on grid cell 2.10 4.23

Government offices Number of related POI on grid cell 10.63 20.37
Accommodation services Number of related POI on grid cell 7.31 14.55

4. Method
4.1. Multicollinearity and Spatial Autocorrelation

Multicollinearity refers to the situation where a high correlation between explanatory
variables exists. It would render model estimations biased and inaccurate [41,42]. The
method of the variance inflation factor (VIF) is used to detect multicollinearity between the
explanatory variables [43,44]. The formula is as follows:

VIF =
1

1 − r2 (2)

where r2 is the goodness of model fit. Explanatory variables with VIF values higher than 10
are assumed to be multicollinearity variables and should be removed from the model [41].

Spatial autocorrelation refers to the dependence of a given variable’s values on the
values of the same variable in an adjacent location. Moran’s I test is commonly utilized
for spatial autocorrelation tests, which can determine whether a variable has spatial auto-
correlation and the correlation degree [44,45]. The range of Moran’s I statistic is between
−1 and +1. A positive value indicates spatial aggregation, a negative value indicates
spatial dispersion, and a near-zero value indicates a spatially random distribution. The
null hypothesis of Moran’s I test is that the explanatory variables are spatially independent,
which means that Moran’s I statistic is close to zero, and the test statistic provides the
confidence level for rejecting the null hypothesis [46].

4.2. Regression Models

(1) Ordinary least squares (OLS)

OLS is a commonly used linear regression model, which is a method to estimate the
regression coefficient by minimizing the sum of the squares of the residuals [47]. The model
is formulated as follows:

Yi = β0 + ∑
k

βkXik + εi (3)

where Yi is the order density of the ith grid cell, β0 is the intercept of the linear regression
equation, βk is the regression coefficient of the kth explanatory variable, Xik is the kth
explanatory variable of the ith grid cell and εi is the random error.

(2) Geographically weighted regression (GWR)

The OLS approach has been criticized for neglecting the spatial variations of the data.
GWR is designed to deal with spatial data regression, allowing for coefficients to vary
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across spaces. It can be viewed as an extension of OLS models by associating explanatory
variables with geographical locations [47], and the calculation formula is as follows:

Yi = βi0(ui, vi) + ∑
k

βik(ui, vi)Xik + εi (4)

where i denotes the ith grid cell, (ui, vi) are the geographic coordinates of the centroids of
grid cell i, Yi is the order density of grid cell i, Xik is the kth independent variable, εi is the
error term of grid cell i, βi0(ui, vi) represents the intercept and βik(ui, vi) is the regression
coefficient between the order density and the explanatory variable.

The parameters are calibrated in the way that an observation will have a greater impact
on location i (the ith grid cell in this study) if the distance in between is closer, and the
degree of this impact can be evaluated by the kernel function, the commonly used Gaussian
kernel function is expressed as follows:

wij =

{
exp

[
−0.5

(
dij/b

)2
]
, dij < b

0, otherwise
(5)

where wij represents the allocated weight between the centroids of two grid cells, dij
represents the distance between grid cell j and grid cell i and parameter b is the bandwidth,
which is used to exclude observations that exceed the distance threshold.

The GWR model will gradually reduce to OLS model as the bandwidth increases,
while it will suffer an overfitting problem if the bandwidth goes to 0 [48]. Considering that
the grid cells (after excluding the grid cells with a daily order number of 0) were denser
in the downtown regions and sparser in the suburban areas, an adaptive bandwidth was
selected in this study, that is, the areas with high-density grid cells would have a lower
value of bandwidth, while the areas with low-density grid cells had a higher value. The
optimal bandwidth was determined by finding the corresponding value that resulted in
the minimum corrected Akaike information criterion (AICc), which was used to evaluate
the model results and avoid the overfitting phenomenon.

5. Results
5.1. Spatiotemporal Characteristic Analysis

In order to explore the travel characteristics of HROs and CROs at different times of
the day, the order data from 2 September to 29 September were utilized to calculate the
hourly demands of HROs and CROs. As shown in Figures 2 and 3, they represent the
hourly average travel demand of HROs or CROs on weekdays and weekends, respectively.

As shown in the figures, on weekdays, the demand of CROs witnessed a sharp rise
from 6:00 a.m. to 9:00 a.m., followed by a steady trend in the next few hours until 12:00 p.m.
In the afternoon, the demand of CROs experienced a temporary decline before reaching its
peak at 6:00 p.m. This is consistent with the relatively large demand of the residents for
ride-hailing services during the peak period [19]. By comparison, the demand of HROs rose
steadily in the morning before reaching the first demand peak of the day at 2:00 p.m. The
main reason for this is that there were fewer congested roads in the city, and the operational
efficiency of ride-hailing vehicles was higher at this time. After the demand of HROs
dropped to the lowest at 6:00 p.m., it then reached the second demand peak of the day
at 12:00 a.m. At this time, some public transportation services were no longer running,
and traffic conditions were generally good. It can be seen that under the influences of the
road conditions, residents’ travel habits and public transportation, the demand of HROs
changed significantly in the course of a day. In addition, the demand of these two types of
orders had some similarities between weekdays and weekends, but the level of demand of
CROs was lower in the mornings of weekends. The main reason for this is that people tend
to rest at home before undertaking entertainment and other activities on weekends, and
the departure time is relatively later than that on weekdays [29].



ISPRS Int. J. Geo-Inf. 2022, 11, 42 9 of 21ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 2. Hourly average travel demand of HROs and CROs (weekdays). 

 
Figure 3. Hourly average travel demand of HROs and CROs (weekends). 

As shown in the figures, on weekdays, the demand of CROs witnessed a sharp rise 
from 6:00 a.m. to 9:00 a.m., followed by a steady trend in the next few hours until 12:00 
p.m. In the afternoon, the demand of CROs experienced a temporary decline before reach-
ing its peak at 6:00 p.m. This is consistent with the relatively large demand of the residents 
for ride-hailing services during the peak period [19]. By comparison, the demand of HROs 
rose steadily in the morning before reaching the first demand peak of the day at 2:00 p.m. 
The main reason for this is that there were fewer congested roads in the city, and the op-
erational efficiency of ride-hailing vehicles was higher at this time. After the demand of 
HROs dropped to the lowest at 6:00 p.m., it then reached the second demand peak of the 
day at 12:00 a.m. At this time, some public transportation services were no longer running, 
and traffic conditions were generally good. It can be seen that under the influences of the 
road conditions, residents’ travel habits and public transportation, the demand of HROs 
changed significantly in the course of a day. In addition, the demand of these two types 
of orders had some similarities between weekdays and weekends, but the level of demand 
of CROs was lower in the mornings of weekends. The main reason for this is that people 

Figure 2. Hourly average travel demand of HROs and CROs (weekdays).

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 2. Hourly average travel demand of HROs and CROs (weekdays). 

 
Figure 3. Hourly average travel demand of HROs and CROs (weekends). 

As shown in the figures, on weekdays, the demand of CROs witnessed a sharp rise 
from 6:00 a.m. to 9:00 a.m., followed by a steady trend in the next few hours until 12:00 
p.m. In the afternoon, the demand of CROs experienced a temporary decline before reach-
ing its peak at 6:00 p.m. This is consistent with the relatively large demand of the residents 
for ride-hailing services during the peak period [19]. By comparison, the demand of HROs 
rose steadily in the morning before reaching the first demand peak of the day at 2:00 p.m. 
The main reason for this is that there were fewer congested roads in the city, and the op-
erational efficiency of ride-hailing vehicles was higher at this time. After the demand of 
HROs dropped to the lowest at 6:00 p.m., it then reached the second demand peak of the 
day at 12:00 a.m. At this time, some public transportation services were no longer running, 
and traffic conditions were generally good. It can be seen that under the influences of the 
road conditions, residents’ travel habits and public transportation, the demand of HROs 
changed significantly in the course of a day. In addition, the demand of these two types 
of orders had some similarities between weekdays and weekends, but the level of demand 
of CROs was lower in the mornings of weekends. The main reason for this is that people 

Figure 3. Hourly average travel demand of HROs and CROs (weekends).

To explore the differences in the spatial distribution for these two types of orders, this
study selected four periods (from 6:00 a.m. to 7:00 p.m., from 12:00 p.m. to 1:00 p.m., from
5:00 p.m. to 6:00 p.m., and from 11:00 p.m. to 12:00 a.m.) to analyze the spatial variation of
HROs and CROs on weekdays and weekends (Figures 4 and 5).
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As seen from the figures, the demand of CROs was mainly distributed in the core area
of the city. The spatial distributions of HROs in different periods indicate their dynamic
characteristics, such as intensification, weakening and secondary intensification. By com-
parison, the distributions of CROs in different periods also presented their characteristics,
such as intensification, secondary intensification and weakening. More specifically, from
6:00 a.m. to 7:00 a.m., the density of CROs was low, and the demand density of HROs
was relatively low and evenly distributed in the core area of the city. From 12:00 p.m.
to 1:00 p.m., the demand density of HROs increased significantly in the core area and
showed a certain agglomeration phenomenon. From 5:00 p.m. to 6:00 p.m., the demand
density of CROs reached its peak due to the increased demand of returning home, while
the demand density of HROs decreased in the core area. The main reason for this is that
during this period, the competition among ride-hailing drivers in the core area was fierce,
and operational efficiency was low due to traffic congestion. From 11:00 p.m. to 12:00 a.m.,
the density of HROs in the core area showed a trend of secondary intensification. It is
worth noting that some HROs were distributed in the suburb, especially around the Haikou
Railway Station in the northwestern region and the Meilan Airport in the southeastern
region. In addition, the spatial variation of HROs and CROs had similarities on weekdays
and weekends, but the demand on weekends was higher than that on weekdays, especially
from 12:00 p.m. to 1:00 p.m. and from 5:00 p.m. to 6:00 p.m.
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5.2. Model Results

Considering that the demand characteristics of HROs and CROs were similar on
weekdays and weekends but different at different times of the day and in different areas,
in this section, we will mainly focus on the factors that influenced the density of these
two orders and the spatial heterogeneity of the influential factors during four periods on
weekdays—night (from 12:00 a.m. to 6:00 a.m.), morning (from 6:00 a.m. to 12:00 p.m.),
afternoon (from 12:00 a.m. to 5:00 p.m.) and evening (from 5:00 p.m. to 12:00 a.m.)—by
utilizing global OLS and local GWR models.

To avoid multicollinearity between the independent variables, the VIF values of the
explanatory variables were calculated by OLS models, and variables with VIF values greater
than 10 were removed from the models. The results of the VIF values of the significant
explanatory variables are given in Tables A1–A8 in Appendix A. In addition, Moran’s
I statistics were carried out to determine if the significant explanatory variables were
spatially associated. Table 2 shows the Moran’s I test results for each candidate explanatory
variable. The p-values were all less than 0.05, implying that the explanatory variables
were spatially autocorrelated [48]. Moreover, Moran’s I values were positive, which means
that the spatial distributions of all candidate variables were more likely to be spatially
aggregated. Therefore, it is appropriate to utilize GWR models to examine the spatial
variation of the order density.
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Table 2. Moran’s I test results.

Moran’s I Z-Score p-Value

Dependent variables
Density of HROs_Morning 0.608 43.271 0.000
Density of CROs_Morning 0.792 56.239 0.000
Density of HROs_Evening 0.507 36.644 0.000
Density of CROs_Evening 0.742 53.085 0.000

Density of HROs_Afternoon 0.590 42.280 0.000
Density of CROs_Afternoon 0.741 53.065 0.000

Density of HROs_Night 0.457 33.987 0.000
Density of CROs_Night 0.648 47.418 0.000

Built environment variables
Primary roads density 0.137 9.841 0.000

Secondary roads density 0.202 14.402 0.000
Tertiary roads density 0.226 16.131 0.000

Average travel time rate 0.282 20.027 0.000
POI diversity 0.292 20.686 0.000

POIs
Tourist attractions 0.216 15.654 0.000

Companies and enterprises 0.505 35.929 0.000
Shopping facilities 0.515 37.703 0.000

Financial and insurance services 0.604 43.483 0.000
Transportation facilities 0.654 46.536 0.000
Commercial residences 0.659 46.778 0.000

Sports facilities 0.596 42.405 0.000
Medical and health service facilities 0.630 44.799 0.000

Government offices 0.581 42.695 0.000

As for the OLS models, we presented the global coefficients, significance results and
VIF values. For the GWR models, we showed the statistics of the local coefficients for
each explanatory variable, including the minimum, maximum, average and median of the
coefficients, as seen in Tables A1–A8 in Appendix A.

With regard to the performance indicators of the models, we showed the values of
AIC, AICc, R2 and adjusted R2. As seen in Table 3, for the four periods, the GWR models
all outperformed the OLS models in terms of model fit. Taking the HROs_ Morning model
as an example, the AIC and AICc values of the GWR model (1282.759 and 1288.717) were
lower than those of the OLS model (1321.149 and 1322.082), and the R2 and adjusted R2

values of the GWR model (0.877 and 0.863) were greater than those of the OLS model (0.851
and 0.847). The improvement in data fitting indicates the superiority of the final models.

Table 3. Comparison results of OLS and GWR models.

Morning Evening Afternoon Night

HROs CROs HROs CROs HROs CROs HROs CROs

OLS models
AIC 1321.149 2142.177 1866.377 2506.336 1778.861 2541.740 1505.601 793.363
AICc 1322.082 2142.633 1867.051 2506.701 1779.421 2542.197 1505.884 793.922

R2 0.851 0.894 0.710 0.852 0.813 0.849 0.623 0.721
R2 adjusted 0.847 0.892 0.704 0.850 0.809 0.846 0.618 0.715

GWR models
AIC 1282.759 2059.488 1823.706 2444.141 1739.781 2462.586 1474.197 721.180
AICc 1288.717 2063.222 1828.033 2447.371 1743.801 2466.170 1476.875 726.021

R2 0.877 0.921 0.760 0.883 0.844 0.885 0.676 0.788
R2 adjusted 0.863 0.913 0.736 0.873 0.829 0.875 0.651 0.765
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6. Discussions

To observe the differences of the effects of various variables on the densities of HROs
and CROs during the four periods more conveniently, Table 4 summarizes the results of
the OLS models (i.e., HROs_Morning, CROs_Morning, HROs_Evening, CROs_Evening,
HROs_Afternoon, CROs_Afternoon, HROs_Night and CROs_Night).

Table 4. Model results of OLS.

Morning Evening Afternoon Night

HROs CROs HROs CROs HROs CROs HROs CROs

Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef.

Built environment variables
Primary roads density 0.12 * 0.078 * 0.119 *

Secondary roads density 0.243 *** 0.385 *** 0.423 *** 0.224 *** 0.088 **
Tertiary roads density 0.141 ** 0.078 **

Average travel time rate −0.066 * 0.615 ** −0.111 * 0.997 ** 1.209 ***
POI diversity −0.852 ** −0.492 ***

POIs
Tourist attractions −0.021 * 0.089 * 0.027 * −0.06 *

Companies and enterprises −0.004 * −0.021 * −0.015 * −0.048 * −0.023 * −0.082 **
Shopping facilities −0.007 * 0.094 *** 0.089 *** 0.016 *** 0.013 ***

Financial and insurance services 0.061 *** 0.207 *** 0.107 *** 0.421 *** 0.141 *** 0.386 ***
Transportation facilities 0.111 *** 0.232 *** 0.173 *** 0.392 *** 0.186 *** 0.387 *** 0.113 *** 0.053 ***
Commercial residences 0.212 *** −0.051 ** −0.032 * 0.118 ***

Sports facilities 0.055 *** 0.077 *** 0.082 *** −0.01 *
Medical and health service

facilities 0.079 *** 0.462 *** −0.001 *

Government offices −0.02 *** −0.029 *** −0.03 *** −0.01 *

Note: *** significance of 1%; ** significance of 5%; * significance of 10%. Coef. stands for coefficient.

It can be seen that the primary road density had a positive impact on the density of
CROs for most periods except at night. By comparison, the secondary road density could
significantly promote the density of HROs for the four periods. The main reason for this is
that there will be a higher demand for ride-hailing trips near the primary roads [18], while
the relatively good road environment of the secondary roads will increase the demand
density of HROs.

As expected, an increase in the average travel time rate could promote the density of
CROs for most periods, since the periods when traffic congestion occurred were usually
also the periods when the demand for ride-hailing was the highest. By contrast, this
variable inhibited the density of HROs, especially in the morning and evening periods. The
reasons for this are as follows. With an increase in the travel time rate, such as in the peak
hours of urban traffic, ride-hailing drivers tend to take a longer time to complete an order
than usual, which results in low operating efficiency. At present, although the ride-hailing
platform implements multi-time counting fees and will increase the fare accordingly during
the peak periods [49], the model results imply that an increase in ride-hailing fares due to
the time loss of ride-hailing drivers during the peak periods is not enough to compensate
for the normal operational profits of drivers during these periods.

In the OLS models, the POI diversity variable was not significant at the 10% signif-
icance level for most periods (except at night). This variable is usually related to more
non-motorized travel, such as walking, and therefore this makes sense in theory [50].

For the variable of POIs, the number of tourist attractions was associated with a higher
density of HROs, especially in the afternoon and evening. The scenic spots are widely
distributed in the entire city of Haikou, which is a tourist city, and tend to increase the travel
demand of ride-hailing to some extent. Second, the number of companies and enterprises
significantly inhibits the increase of two types of order density for most periods (except at
night). The main reason for this is that companies and enterprises are more concentrated
in the downtown area, and the overloaded traffic in this area will reduce the operational
efficiency of ride-hailing vehicles. The number of shopping facilities will significantly
increase the density of CROs for most periods (except in the morning). The number of
transportation facilities is associated with higher densities of HROs and CROs for four
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periods. It may be that the number of transfer activities in the vicinity of traffic facilities,
such as airports, railway stations, bus stations and so on, is large [19]. In addition, the
number of sports facilities will significantly increase the density of HROs (except at night).
However, the number of government offices will significantly inhibit the density of HROs
for four periods.

For the GWR models of HROs and CROs during the four periods, the median values
of the local coefficients were similar to the global coefficients in the OLS models in terms of
the direction and magnitude for those variables that were statistically significant, as seen in
Tables A1–A8 in Appendix A. In the following, we will analyze the spatial heterogeneity of
the effects of several important variables.

Figure 6 presents the spatial distribution of the coefficient estimates for the secondary
roads density during the four periods in the GWR models. It can be seen that the estimates
were constantly positive across the region, indicating that a higher secondary roads density
was associated with a higher density of HROs. This positive effect was more evident near
the core area and the Meilan Airport in the southeastern region. In addition, at night, the
positive effect of this variable on the density of HROs was the highest in the area near
Meilan Airport. This was related to the high travel demand near this area during this
period.
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Figure 7 shows the spatial distribution of the coefficient estimates for the average
travel time rate in the morning and evening periods in the GWR models. It can be seen
that the coefficient estimates were constantly positive in the morning and evening across
the study region for CROs, and this was mainly because the more congested the area, the
higher the demand for ride-hailing services. In addition, for the CROs, the coefficient
estimation in the morning was higher in the peripheral area, while the estimation in the
evening was greater in the core area. This may be related to the flow direction of commuter
travel of residents. For the HROs, most of the coefficient estimates were negative in the
study region in the morning, except for few areas in the southwest. In the evening, the
coefficient estimates were positive in most areas.
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Figure 8 presents the spatial distribution of the coefficient estimates for transportation
facilities during four periods in the GWR models. It can be seen that the coefficient estimates
were constantly positive across the study area during the four periods for both HROs and
CROs, implying that a higher number of transportation facilities is correlated with a higher
order density. In addition, it can be found that for the HROs, the coefficient estimations had
the strongest impact in the area near Meilan Airport, while for the CROs, the coefficient
estimations had the greatest effect in the core area.

Figure 9 shows the spatial distribution of the coefficient estimates for tourist attractions
in the GWR models. This variable presented mixed estimations, which implies that the
impacts of tourist attractions on HROs had significant heterogeneity in different areas. In
the morning and afternoon, the influence of this variable was positive in the northwest
area and the region near Meilan Airport, and in the evening, the effect of this variable was
positive in most regions.
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7. Conclusions

This study examined the spatiotemporal variation of HROs and CROs for ride-hailing
services in Haikou, China using the order data of Didi Chuxing integrated with various
built environment variables. OLS and GWR models were established to investigate the
factors that affected the densities of HROs and CROs during different time periods, such
as morning, evening, afternoon and night. The OLS models show that factors including
road density, average travel time rate, companies and enterprises and transportation
facilities had significant impacts on HROs and CROs for most periods. The results of the
GWR models were consistent with the global regression results and provided detailed
information about the spatial variation of the built environment’s impact.

The important conclusions are as follows. The primary road density had a positive
association with the density of CROs for most periods, while the secondary road density
could significantly promote the density of HROs for four periods, and this positive effect
was more evident near the core area and Meilan Airport. The increase in the average travel
time rate could promote the density of CROs for most periods, and this positive effect was
greater in the peripheral area in the morning, while the effect was higher in the core area
in the evening, which could be explained by the flow direction of the commuter travel of
residents. By contrast, this variable was negatively associated with the density of HROs,
especially in the morning period. In addition, the number of transportation facilities was
correlated with higher densities of HROs and CROs for four periods, and the coefficient
estimations had the greatest effect in the area near Meilan Airport for HROs and had the
strongest impact in the core area for CROs.

The current paper is not without limitations. Further research is needed to fill the
following gaps. First, the order data of ride-hailing services were used to analyze the travel
characteristics of HROs. Future research can further explore this subject combined with
GPS trajectory data. Second, this study adopted a grid cell structure (1 km × 1 km) to
divide the study area into different spatial units to aggregate the order records in space.
In the future, we can utilize traffic analysis zones (which are usually constructed based
on the road network, socioeconomic factors, administrative division and natural barriers,
such as railways and rivers) for aggregation if we can obtain them. Third, this study
considered some spatial factors that affected the demand density. The influence of other
factors such as travel purposes and job–housing balance can also be explored. Finally,
multiscale geographically weighted regression (MGWR) can be further applied to examine
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the implications and interpretation of the spatial scales of the factors affecting HROs and
CROs [51].

Author Contributions: Conceptualization, Mingyang Du and Xuefeng Li; data curation, Mingyang
Du and Xuefeng Li; formal analysis, Xuefeng Li and Mingyang Du; writing—original draft prepa-
ration, Mingyang Du, Xuefeng Li and Mei-Po Kwan; writing—review and editing, Mei-Po Kwan,
Jingzong Yang and Qiyang Liu; visualization, Mingyang Du; project administration, Xuefeng Li. All
authors have read and agreed to the published version of the manuscript.

Funding: Xuefeng Li was supported by grants from the Scientific Research Startup Fund for Ad-
vanced Talents of Nanjing Forestry University (No. 163106065), and the Industry-university Collab-
oration and Collaborative Education Project (No. 202102136046). Mei-Po Kwan was supported by
grants from the Hong Kong Research Grants Council (General Research Fund Grant no. 14605920,
14611621; Collaborative Research Fund Grant no. C4023-20GF) and a grant from the Research Com-
mittee on Research Sustainability of Major Research Grants Council Funding Schemes of the Chinese
University of Hong Kong.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study can be obtained from the following web-
sites upon reasonable request: https://outreach.didichuxing.com/research/opendata/ (accessed on
1 November 2021).

Acknowledgments: The authors thank Didi Chuxing for providing the data. Data source: Didi
Chuxing GAIA Initiative. The authors also thank the reviewers for their helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Model results of HROs_Morning.

Variable
GWR OLS

Min Max Mean Median Coef. VIF

Secondary roads density 0.138 0.421 0.274 0.263 0.243 *** 1.095
Tertiary roads density −0.001 0.402 0.205 0.196 0.141 ** 1.310

Average travel time rate −0.205 0.035 −0.083 −0.078 −0.066 * 1.245
Tourist attractions −0.083 0.100 0.002 −0.006 −0.021 * 1.634

Companies and enterprises −0.015 0.005 −0.002 −0.002 −0.004 * 2.369
Shopping facilities −0.020 0.009 −0.009 −0.010 −0.007 * 3.447

Financial and insurance services −0.015 0.100 0.062 0.062 0.061 *** 4.248
Transportation facilities 0.062 0.207 0.112 0.106 0.111 *** 6.997

Sports facilities −0.056 0.072 0.055 0.065 0.055 *** 5.587
Medical and health service facilities 0.046 0.212 0.087 0.085 0.079 *** 3.937

Government offices −0.029 −0.001 −0.019 −0.021 −0.02 *** 3.431

Note: *** significance of 1%; ** significance of 5%; * significance of 10%. Coef. stands for coefficient.

Table A2. Model results of CROs_Morning.

Variable
GWR OLS

Min Max Mean Median Coef. VIF

Primary roads density −0.133 0.437 0.173 0.162 0.12 * 1.103
Average travel time rate 0.160 1.046 0.594 0.607 0.615 ** 1.256

Companies and enterprises −0.072 0.033 −0.024 −0.027 −0.021 * 2.380
Financial and insurance services 0.066 0.422 0.194 0.179 0.207 *** 3.773

Transportation facilities 0.063 0.414 0.245 0.247 0.232 *** 5.655
Commercial residences 0.082 0.351 0.221 0.226 0.212 *** 3.997

Medical and health service facilities 0.132 0.542 0.415 0.425 0.462 *** 3.365

Note: *** significance of 1%; ** significance of 5%; * significance of 10%. Coef. stands for coefficient.

https://outreach.didichuxing.com/research/opendata/
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Table A3. Model results of HROs_Evening.

Variable
GWR OLS

Min Max Mean Median Coef. VIF

Secondary roads density 0.128 0.667 0.389 0.370 0.385 *** 1.118
Average travel time rate −0.448 0.354 0.005 0.025 −0.111 * 1.292

Tourist attractions −0.091 0.576 0.100 0.045 0.089 * 1.539
Companies and enterprises −0.035 0.010 −0.014 −0.014 −0.015 * 2.473

Financial and insurance services −0.073 0.157 0.098 0.115 0.107 *** 3.978
Transportation facilities 0.061 0.430 0.176 0.156 0.173 *** 6.997
Commercial residences −0.091 0.018 −0.046 −0.050 −0.051 ** 4.144

Sports facilities −0.161 0.136 0.077 0.103 0.077 *** 4.923
Government offices −0.039 −0.007 −0.029 −0.029 −0.029 *** 3.119

Note: *** significance of 1%; ** significance of 5%; * significance of 10%. Coef. stands for coefficient.

Table A4. Model results of CROs_Evening.

Variable
GWR OLS

Min Max Mean Median Coef. VIF

Primary roads density −0.474 0.611 0.046 0.045 0.078 * 1.102
Average travel time rate 0.119 3.715 1.385 1.259 0.997 ** 1.266

Companies and enterprises −0.130 0.115 −0.057 −0.083 −0.048 * 2.207
Shopping facilities 0.009 0.116 0.082 0.086 0.094 *** 2.086

Financial and insurance services 0.214 0.657 0.405 0.389 0.421 *** 3.820
Transportation facilities 0.103 0.663 0.409 0.419 0.392 *** 4.398

Note: *** significance of 1%; ** significance of 5%; * significance of 10%. Coef. stands for coefficient.

Table A5. Model results of HROs_Afternoon.

Variable
GWR OLS

Min Max Mean Median Coef. VIF

Secondary roads density 0.127 0.755 0.427 0.398 0.423 *** 1.116
Tourist attractions −0.104 0.436 0.024 −0.025 0.027 * 1.539

Companies and enterprises −0.044 −0.009 −0.020 −0.017 −0.023 * 2.428
Financial and insurance services −0.044 0.190 0.130 0.141 0.141 *** 3.975

Transportation facilities 0.077 0.398 0.192 0.188 0.186 *** 6.964
Commercial residences −0.082 0.070 −0.023 −0.028 −0.032 * 4.069

Sports facilities −0.224 0.127 0.075 0.097 0.082 *** 4.905
Government offices −0.037 0.027 −0.026 −0.030 −0.03 *** 3.109

Note: *** significance of 1%; * significance of 10%. Coef. stands for coefficient.

Table A6. Model results of CROs_Afternoon.

Variable
GWR OLS

Min Max Mean Median Coef. VIF

Primary roads density −0.349 0.552 0.165 0.171 0.119 * 1.116
Average travel time rate 0.345 4.253 1.500 1.193 1.209 *** 1.301

Companies and enterprises −0.141 0.006 −0.085 −0.098 −0.082 ** 2.439
Shopping facilities 0.008 0.106 0.072 0.073 0.089 *** 2.101

Financial and insurance services 0.170 0.665 0.361 0.336 0.386 *** 3.827
Transportation facilities 0.106 0.725 0.412 0.421 0.387 *** 5.563
Commercial residences −0.046 0.387 0.134 0.145 0.118 *** 3.613

Note: *** significance of 1%; ** significance of 5%; * significance of 10%. Coef. stands for coefficient.

Table A7. Model results of HROs_Night.

Variable
GWR OLS

Min Max Mean Median Coef. VIF

Secondary roads density 0.043 0.915 0.238 0.188 0.224 *** 1.095
POI diversity −1.918 −0.381 −0.946 −0.867 −0.852 ** 1.387

Shopping facilities −0.001 0.033 0.016 0.014 0.016 *** 2.010
Transportation facilities 0.062 0.212 0.118 0.120 0.113 *** 3.069

Government offices −0.049 0.001 −0.011 −0.009 −0.01 * 2.693

Note: *** significance of 1%; ** significance of 5%; * significance of 10%. Coef. stands for coefficient.
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Table A8. Model results of CROs_Night.

Variable
GWR OLS

Min Max Mean Median Coef. VIF

Secondary roads density 0.019 0.282 0.110 0.091 0.088 ** 1.115
Tertiary roads density −0.040 0.232 0.103 0.124 0.078 ** 1.365

POI diversity −1.284 −0.237 −0.611 −0.534 −0.492 *** 1.535
Tourist attractions −0.164 0.029 −0.041 −0.025 −0.06 * 1.595
Shopping facilities 0.007 0.016 0.012 0.012 0.013 *** 3.349

Transportation facilities 0.022 0.070 0.052 0.054 0.053 *** 4.791
Sports facilities −0.018 0.007 −0.007 −0.009 −0.01 * 5.495

Medical and health service facilities −0.029 0.056 −0.003 −0.010 −0.001 * 3.462

Note: *** significance of 1%; ** significance of 5%; * significance of 10%. Coef. stands for coefficient.
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