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Abstract: Deep learning techniques have been successfully applied in handwriting recognition.
Oracle bone inscriptions (OBI) are the earliest hieroglyphs in China and valuable resources for
studying the etymology of Chinese characters. OBI are of important historical and cultural value in
China; thus, textual research surrounding the characters of OBI is a huge challenge for archaeologists.
In this work, we built a dataset named OBI-100, which contains 100 classes of oracle bone inscriptions
collected from two OBI dictionaries. The dataset includes more than 128,000 character samples related
to the natural environment, humans, animals, plants, etc. In addition, we propose improved models
based on three typical deep convolutional network structures to recognize the OBI-100 dataset. By
modifying the parameters, adjusting the network structures, and adopting optimization strategies,
we demonstrate experimentally that these models perform fairly well in OBI recognition. For the
100-category OBI classification task, the optimal model achieves an accuracy of 99.5%, which shows
competitive performance compared with other state-of-the-art approaches. We hope that this work
can provide a valuable tool for character recognition of OBI.

Keywords: cultural heritage; oracle bone inscriptions; deep learning; CNN; character recognition;
image classification

1. Introduction

Oracle bone inscriptions (OBI) were recorded from as early as the Shang Dynasty in
China [1]. The script involves some of the oldest characters in the world and the earliest
known form of characters in China and East Asia. The characters of OBI have a profound
impact on the formation and development of Chinese characters, which are usually en-
graved on animal bones or tortoise shells for the purpose of pyromantic divination [2–4],
as shown in Figure 1.

Figure 1. The abdominal parts of two tortoise shells with divinatory inscriptions excavated at the site
of Yinxu, Anyang, Henan, China.
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Figure 2a shows the characters of OBI corresponding to some commonly used words
today. We can see that characters of OBI were written by drawing shapes and lines based on
the shape features of objects, which was one of the most primitive methods of pictographs
used by ancient people. To date, archaeologists have discovered more than 4500 characters
of OBI, but the meanings of half of these characters have not yet been identified [5]. In
the past, experts used manual comparison and analysis to identify the meaning of the
characters of OBI based on existing experience, which was effective, but required time
and effort. In addition, since characters of OBI were carved by different groups of ancient
people from several historical periods [2], the characters had large variations in shape, scale,
and orientation. For instance, the eight characters shown in Figure 2b have very similar
glyphs, but represent eight words with very different meanings. On the contrary, Figure 2c
shows eight characters of OBI written in various ways, however, they all express the same
meaning of monkey. These pose huge challenges in recognizing characters of OBI.

(a)

(b)

(c)

Figure 2. Examples of OBI characters. (a) Examples of characters of OBI corresponding to eight
commonly used words. (b) Eight characters of OBI that have different meanings, but look very
similar. (c) Eight writing styles of monkey in OBI.

Recently, some automated methods for identifying OBI were proposed, among which,
feature extraction is the most commonly used. Dress Andreas et al. [6] presented an analysis
of oracle bone characters for animals from a cognitive point of view. Yang [7] proposed a
graph theory to identify OBI, whose core idea was to regard an inscription character as an
undirected graph and extract the topological characteristics for recognition. In Li et al.’s
work [8], a human–computer interactive dynamic description method was proposed, which
described OBI by the stroke–segments–vector and the stroke elements. A Fourier descriptor
based on a curvature histogram (FDCH) was proposed by Lu et al. [9] to represent oracle
characters. Gu [10] converted the OBI into topological figures and encoded the topographic
figures. Meng [11,12] used the Hough transform to extract line features of characters of
OBI, resulting in an inscription recognition accuracy of nearly 90%. Although feature
extraction-based approaches can achieve the purpose of identifying characters of OBI, they
are only suitable for simple data types or small datasets.

Artificial intelligence (AI) technology has strong potential in OBI recognition, and
some researchers applied pattern recognition and deep learning to the recognition tasks.
Support vector machine (SVM) [13,14] classification technology was used to recognize
characters of OBI and reach an accuracy of 88%. Gao et al. [15] used the Hopfield network
for recognizing fuzzy characters of OBI and the highest accuracy rate was 82%. Guo et al. [3]
proposed a novel hierarchical representation that combined a Gabor-related low-level
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representation and a sparse-encoder-related mid-level representation; they combined this
method with convolutional neural networks (CNNs) and achieved 89.1% accuracy in
recognition. Although OBI recognition technologies based on deep learning have good
scalability on large datasets, an overall recognition accuracy still needs to be improved. In
this paper, we explore new approaches to improve the accuracy of OBI recognition using
CNNs. Our major contributions are summarized as follows:

• We created a dataset named OBI-100 with 100 classes characters of OBI, covering
various types of characters, such as animals, plants, humanity, society, etc., with
a total of 4748 samples. Each sample in the dataset was selected carefully from
two definitive dictionaries [16,17]. In view of the diversity of ancient OBI writing
styles, we also used rotation, resizing, dilation, erosion, and other transformations
to augment the dataset to over 128,000 images. The original dataset can be found at
https://github.com/ShammyFu/OBI-100.git (accessed on 10 December 2021).

• Based on the convolutional neural frameworks of LeNet, AlexNet, and VGGNet, we
produced new models by adjusting network parameters and modify network layers.
These new models were trained and tested with various optimization strategies. From
hundreds of different model attempts, ten CNN models with the best performance
were selected to identify the 100-class OBI dataset.

• The proposed models achieved great recognition results on the OBI dataset, with the
highest accuracy rate of 99.5%, which is better than the three classic network models
and better than other methods in the literature.

2. Materials and Methods
2.1. Dataset Preparation
2.1.1. Sample Acquisition

Since characters of OBI are carved on tortoise shells and animal bones, people generally
save them as paper or electronic sample collections by rubbing or taking pictures. The raw
data in our dataset come from two classic scanned OBI dictionaries [16,17], both of which
are definitive in the field of OBI.

The original dataset contains 100 classes of oracle character samples, of which the
smallest category contains 20 samples, and the largest class has 134 examples, with a total
of 4748 character images. In order to ensure the diversity of the dataset, the character
categories we select cover humanities, animals, plants, natural environment and activities,
etc. Besides, considering that some characters of OBI have many non-standard variants,
we select as many of these characters as possible to ensure that the dataset is closer to
the reality. This dataset is named OBI-100. After doing this part of the original data
collection, we enhance the completeness and diversity of the dataset through preprocessing,
augmentation, and normalization.

2.1.2. Dataset Preprocessing

To restore the writing characteristics of OBI more accurately, we preprocess the original
samples as shown in Figure 3.

Figure 3. The preprocessing process of OBI character “monkey”.

• Denoising: since the OBI samples are from scanned e-books, Gaussian noise was
introduced in the images. We first chose the non-local method (NLM) [18] to denoise.
For a pixel in an image, this method finds similar regions of that pixel in terms of
image blocks, and then averages the pixel values in these regions, and replaces the

https://github.com/ShammyFu/OBI-100.git
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original value of this pixel with the average value [19], which can effectively eliminate
Gaussian noise.

• Binarization: since the OBI images used for recognition require only black and white
pixel values, we converted the denoised samples into grayscale ones and then bina-
rized them.

• Size normalization: to keep the size of all images consistent without destroying the
useful information areas of them, we rescaled the size of the image to 64 × 64. For the
original non-square images, we filled the blank edge area with white pixels first and
then scaled them to the required size.

We show examples of the preprocessed dataset in Figure 4.

Figure 4. Examples of OBI-100 dataset.

2.1.3. Data Augmentation

The insufficient number of samples in the dataset leads to low recognition accuracy,
so we expand the dataset to improve the effectiveness of the recognition task. Considering
the randomness of the same character when it is written multiple times, the angle or thick-
ness of the character writing may change. Therefore, we perform several transformations
to produce new images, as shown in Figure 5 for each sample.

Figure 5. An instance of data augmentation.

• Rotation: generate new images by rotating the original images clockwise or counter-
clockwise. The rotation angle is randomly selected from 0 to 15 degrees.

• Compress/stretch: adjust the shape of the characters on images by stretching or
compressing, using a stretching ratio of 1 to 1.5, and a compression ratio of 0.67 to 1.
The deformed images are rescaled to 64 × 64.

• Dilation/erosion: dilate or erode the lines of characters of OBI [20] to produce new
samples. Due to the small image size, direct corrosion will cause the loss of many
features. We first enlarged the image, then implemented the corrosion operation, and
finally resized the image size to 64 × 64 to obtain the best corrosion effect.
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• Composite transformation: in addition to the six individual transformations described
above, we also apply twenty combinations of transformations to the samples. That is,
the image is transformed several times by choosing two or more of the above methods
to generate the corresponding new samples.

After the augmentation operation, each original image produces 26 corresponding trans-
formed images. The total number of samples increased by 27 times to 128,196 (4748 × 27).
The smallest class contains about 540 images and the largest category has over 3600 images.
It presents the number distribution of each category in the OBI dataset in Figure 6.
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Figure 6. The number of samples in each category of the augmented OBI-100 dataset.

2.2. Models Preparation
2.2.1. Background of CNN

Convolutional neural network (CNN) [21] is a multi-layer feed-forward neural net-
work that can extract features and properties from the input data. Currently, CNN plays an
important role in deep learning, because it can learn nonlinear mappings from a very large
number of data (images or sounds), even in high-dimensional complex inputs. In addi-
tion, the capability of representation learning enables a CNN to classify input information
according to its hierarchical structure by translation invariant classification. Specifically,
a trained CNN can transform the original image at each layer of the network to produce a
class score corresponding to that input image at the end of the network [22].

Generally, as shown in Figure 7, the basic CNN structure consists of an input layer,
several convolutional layers, and pooling layers, as well as several fully connected layers
and an output layer.

Figure 7. The basic structure of CNN.

The convolutional layer is designed to extract features from the input data, which
contain many convolutional kernels. Each element of the kernel corresponds to a weight co-
efficient and a bias vector. The parameters of the convolutional layer include the size of the
kernel, the step size, and the padding method [23]. These three factors jointly determine the
size of the output feature map of the convolutional layer [24]. By introducing an activation
function, CNN can effectively solve various nonlinear problems. The activation function
maintains and maps the features of the activated neuron to the next layer. Typically, CNNs
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use the linear rectifier function (rectified linear unit, ReLU) [25] as the activation function
to help express complex features, which can be formulated as ReLU(x) = max(0, x). After
feature extraction [26] by the convolutional layer, the output feature map is transferred
into the pooling layer for feature selection and information filtering. The pooling layer
actually implements the sampling function, and its main idea is to extract features with a
certain tendency. For example, max pooling corresponds to more prominent features, while
average pooling corresponds to smoother features. The fully connected layer combines the
extracted features in a linear manner to get the output. The output layer uses a logistic func-
tion or a normalized exponential function to output the classification label or probability.
Usually, the softmax function [27] is used to calculate the class scores as follows:

Li = − log
e fyi

∑j ej .

In the choice of network structure, we trained several mainstream models on the
OBI-100 dataset, including LeNet, AlexNet, VGGNet, ResNet-50, and Inception. However,
after preliminary experiments, it was found that the results of ResNet-50 and Inception are
not satisfactory (their accuracy rates are both less than 70%). Therefore, we selected three
network frameworks with stronger performance and higher training efficiency: LeNet,
AlexNet, and VGGNet. Based on these three models, we adjusted the network structure,
modified the parameters, and used various optimization methods to find models with
better performance. After trying hundreds of combinations, we selected ten models that
performed well. Table 1 summarizes the configuration of these ten improved models.

2.2.2. The Improved LeNet Models

LeNet [28] is one of the most representative models for handwritten digit recognition.
It consists of two parts: (i) a convolutional encoder consisting of two convolutional layers
and two pooling layers; (ii) a dense block consisting of three fully connected layers. For OBI
classification tasks, we propose two improved models based on LeNet, called L1 and L2.
For the two models, we adjusted the original seven-layer structure to a six-layer structure,
and adjusted the depth of the convolutional layer and the size of the filter. Specifically,
the output dimensions of the convolutional layers and the fully connected layers of the L1
model are basically the same as the original LeNet model, but the 120-depth fully connected
layer is directly connected to the last 100-depth fully connected layer. On the L2 model,
we used a higher-dimensional convolution kernel. For example, the first convolutional
layer uses a 32-dimensional 3 × 3 convolution kernel, and the second convolutional layer
uses a 64-dimensional 5 × 5 convolution kernel. In addition, the max pooling method
is used in both models. We set the padding parameters of the L1 convolutional layers to
the VALID value, which means that the size of the output feature map will change after
convolution. However, the corresponding parameters of the L2 model are set to SAME,
which means that the image size remains unchanged after convolution. Through these
adjustment strategies, the L1 model inputs 16 feature maps with a size of 13 × 13 to the
fully connected layer, and L2 inputs 64 feature maps with a size of 16 × 16.

2.2.3. The Improved AlexNet Models

AlexNet [25] is the winning model in the 2012 ImageNet competition, which consists
of five convolutional layers, three max-pooling layers, two batch normalization layers, two
fully connected layers, and one softmax layer. For AlexNet, we propose three optimized
networks to classify characters of OBI, named A1, A2, and A3. These three models have
different numbers of convolutional layers and pooling layers, and the first four convolu-
tional layers have exactly the same structure. Specifically, the A2 model has three more
convolutional layers with 256-dimensional 3 × 3 convolution kernels and a pooling layer
than the A1 model. Compared with the A2 model, the A3 model not only improves the
depth of the network, but also uses higher-dimensional convolution kernels. In addition,
we use the max pooling strategy for all networks. The max pooling layers in the A1 model
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use 3 × 3 kernels, while those in the A2 and A3 models use 2 × 2 kernels. In A1 and A3, the
pooling layer is added between the last convolutional layer and the fully connected part,
whereas the last convolutional layer of the A2 model is directly connected to the first fully
connected layer.

Table 1. Convolutional neural network configurations. Input: gray-scale images with a size of 64 × 64
from OBI-100. Conv x-y: a convolutional layer with a kernel size of x × x and an output dimension of
the feature map of y. FC-y: a fully connected layer with an output dimension of the feature map of y;
maxpool: m × m: a max pooling layer with a kernel size of m × m. All network models use ReLU as
the activation function and use softmax to calculate cross entropy loss.

ConvNet Configurations

Framework LeNet AlexNet VGGNet

Name of
our proposed

Models
L1 L2 A1 A2 A3 V11 V13 V16 V16-2 V19

Input 64 × 64 gray-scale images from OBI-100.

Network
Structure

conv5-6 conv3-32 conv11-64 conv11-64 conv11-64 conv3-64
conv3-64

conv3-32
conv3-32

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64
conv3-64

maxpool: 2 × 2 maxpool: 3 × 3 maxpool: 2 × 2 maxpool: 2 × 2

conv5-16 conv5-64 conv5-192 conv5-192 conv5-192 conv3-128
conv3-128

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

conv3-128
conv3-128
conv3-128

maxpool: 2 × 2 maxpool: 3 × 3 maxpool: 2 × 2 maxpool: 2 × 2

conv3-384
conv3-256

conv3-384
conv3-256
conv3-256

conv3-384
conv3-256
conv3-256

conv3-256
conv3-256

conv3-128
conv3-128

conv3-128
conv3-128
conv3-128

conv3-128
conv3-128
conv1-128

conv3-256
conv3-256
conv3-256

maxpool: 3 × 3 maxpool: 2 × 2 maxpool: 2 × 2

conv3-256
conv3-256

conv3-512
conv3-1024
conv3-1024

conv3-512
conv3-512

conv3-256
conv3-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv1-256

conv3-512
conv3-512
conv3-512

maxpool: 2 × 2 maxpool: 2 × 2

conv3-512
conv3-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool: 2 × 2

FC-120 FC-512 FC-4096
FC-4096

FC-1024
FC-1024

FC-4096
FC-4096

FC-4096
FC-4096

FC-4096
FC-4096

FC-4096
FC-4096

FC-1024
FC-1024

FC-4096
FC-4096

FC-100

softmax

2.2.4. The Improved VGGNet Models

Like AlexNet and LeNet, VGGNet [29] can be partitioned into two parts: the first
consisting mostly of convolutional and pooling layers and the second consisting of fully
connected layers. The convolutional part of the network connects several VGG blocks in
succession and one VGG block consists of a sequence of convolutional layers, followed by a
max pooling layer for spatial downsampling. The last of the network is composed of three
fully connected layers and a softmax layer. By repeatedly stacking small 3 × 3 kernels and
max pooling layers, VGGNet demonstrates remarkable capabilities in feature extraction.

According to the framework of VGGNet, we construct five improved CNNs for OBI
character recognition, including V11, V13, V16, V16-2, and V19. The overall structure of
these models is adapted from models of different layers in the VGGNet framework, which
are mainly achieved by adding or deleting layers in the VGG blocks, adjusting the depth of
the convolution kernel, and adjusting the depth of the fully connected layers. For example,
comparing with the normal 11-layer structure in VGGNet, one convolutional layer is added
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to each of the first and second VGG blocks in V11, while the fourth VGG block containing
two convolutional layers in the normal 11-layer structure is deleted in V11.

2.3. Methods

The recognition experimental method in this section is designed based on the CNN
models proposed in Section 2.2 and the OBI-100 dataset proposed in Section 2.1. In our
experiments, the recognition accuracy on the OBI dataset is one of the most important
indicators for evaluating the performance of these models. Therefore, our target is to train
accurate network models. The training effect is related to factors such as the structure of the
trained model, the dataset participating in the training, the hyperparameter settings and the
optimization method used. Thus, we introduce our dataset division approaches, parameter
setting strategies and optimization methods used for experiments in the following sections.
The models presented in this paper are implemented using TensorFlow, and the image
pre-processing process is implemented using OpenCV.

2.3.1. Dataset Division

The entire OBI-100 is divided into a training set, a validation set and a test set at a
ratio of approximately 8:1:1. The training set is used to fit the model for prediction or
classification. The data from the validation set assists in the search for optimal hyperpa-
rameter combinations, while the test set is used to evaluate the generalization performance
of the selected model. In order to make each category of characters of OBI more uniformly
included in each of the above data subsets, we use the following division process: Firstly,
we shuffle the samples of the entire preprocessed OBI-100 dataset 50 times before dividing
them into different subsets. Secondly, 90% of the images from the sample set are randomly
selected and placed in the “train” folder, while the "rest" images are placed in the “test”
folder. We check the division results to ensure that each of the 100 classes is included in
the above subsets. Thirdly, the data augmentation methods presented in Section 2.1.3 are
performed to expand the number of samples in each folder. Fourthly, 10% of the samples
in the “train” folder are randomly selected as the validation set, and the rest are used as
the final training set. Finally, all data sample files are saved as “H5” files for being loaded
during training.

2.3.2. Parameter Setting

The parameter setting mainly includes two aspects, one is the weight initialization
strategy of the network, and the other is the hyperparameter configuration scheme for
model training. Choosing a suitable initial configuration has a crucial impact on the entire
training process. For example, reasonable hyperparameters can prevent the network from
entering a certain layer of forward (or backward) saturation prematurely. The weight
initialization methods usually include zero initialization, random initialization, and He
initialization [30]. After many experiments, we empirically adopt He Initialization and
set the initial bias to 0.1. In terms of training hyperparameters, the training epoch of all
our networks is set to 100, and the discrete staircase method is used for model training,
where the learning rate is initially set to 0.1 and halved every 20 epochs. Moreover, we
set the batch size of the training dataset to the value in (32, 64, 96, 128, 160, 196, 224,
256). We used different parameter combinations to conduct experiments and observed the
training process and effects of these models, and then we selected the optimal parameter
configuration schemes.

2.3.3. Optimization Methods

In addition to setting a set of appropriate training parameters, in order to further
improve the training effect of the network, we also applied some optimization methods.

• Batch normalization [31]: batch normalization normalizes the input of each small
batch to one layer, which has the effect of stabilizing the learning process and can
significantly reduce the training time required for training deep networks. In our
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experiment, when using this optimization method, the batch normalization layer is
added before each activation function to make the distribution of the data return to
the normalized distribution, so that the input value of the activation function falls in
the region where the activation function is more sensitive to the input.

• Dropout [32]: by randomly removing the nodes of the network during the training
process, a single model can simulate a large number of different architectures, which
is called the dropout method. It provides a very low computational cost and very
effective regularization approach to alleviate overfitting of deep neural networks
and improve the generalization performance. When this method is used in our
experiments, we add a dropout layer to each fully connected layer, which reduces
the interdependence between the neuron nodes in the network by deactivating some
neurons with a certain probability value (making the output of the neurons zero).
In our experiment, we train models by jointly adjusting the probability value of the
dropout layer and the batch size value. First, we try to set the probability value of
dropout layers to the value in (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). Second, through
multiple experiments, we select the best combination of dropout and batch size values.

• Shuffle: to eliminate the potential impact of the order in which the training data are
fed into the network and further increase the randomness of the training data samples,
we introduce the shuffle method into the model evaluation experiments. Specifically,
when this method is applied, we shuffle all training samples in each new training
epoch, and then input each shuffled data batch into the network.

3. Results

To find models with stable performance and high OBI character recognition accu-
racy among the ten proposed CNN models, we conducted the following three kinds of
experiments and observed each set of experimental results.

• We visualized the changes in the training loss value, the accuracy rates on the training
set and the validation set of different models during the training process as the number
of training epochs increases. In addition, by comparing the training accuracy and vali-
dation accuracy, we can infer the overall learning effect of the models corresponding
to each epoch. These are discussed in Section 3.1.

• For different models, we test the impact of multiple combinations of batch size value
and dropout probability value on recognition accuracy of the validation set. By
comparison, the optimal combination of these two parameters is selected as the setting
strategy for the final performance experiment of the corresponding model. The results
are mainly analyzed in Section 3.2.

• From the three aspects of data augmentation, model structure adjustment, and opti-
mization implementation, we evaluate the effects of various improvement methods
on model learning and OBI recognition. Results and discussions are presented in
Section 3.3.

3.1. Training Process Observation

For the three groups of improved models corresponding to the three basic CNN
frameworks, we chose one from each group to observe the corresponding training process,
as shown in Figures 8–10. For each left graph, the blue line represents the validation
accuracy (recognition accuracy on the validation set), and the red line refers to the training
accuracy (recognition accuracy on the training set). Each figure on the right shows the
relationship between training loss and training epochs.
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(a) (b)

Figure 8. Training accuracy, validation accuracy, and training loss during L2 model training. (a) Ac-
curacy comparison. (b) Cross loss.

(a) (b)

Figure 9. Training accuracy, validation accuracy and training loss during A3 model training. (a) Ac-
curacy comparison. (b) Cross loss.

(a) (b)

Figure 10. Training accuracy, validation accuracy, and training loss during V16 model training.
(a) Accuracy comparison. (b) Cross loss.
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The training process of the L2 model (one of the improved LeNet models) is shown
in Figure 8. We can see that, in the first 10 epochs of training, the training loss value
drops sharply and the training accuracy rises dramatically, indicating that the model is
learning effectively. From the 10th epoch to the 40th epoch, the training loss still shows a
downward trend until it stabilizes after 40 epochs, which is also consistent with the change
in training accuracy. However, although the validation accuracy rate is also on the rise,
when approaching 100 epochs, the training set accuracy rate is close to 1, while the accuracy
rate on the validation set is lower than 90% and continues to fluctuate, which demonstrates
that only training for 100 epochs cannot make the L2 model fully converge.

For the A3 model (one of the improved AlexNet models) in Figure 9, the accuracy
rates on the training set and the validation set basically maintain a consistent trend on
the whole. Specifically, in the first ten epochs of training, both curves rise rapidly. After
10 epochs, the training accuracy gradually tends to 100% and becomes smooth, while the
validation accuracy curve still has large fluctuations. This suggests that the learning of the
A3 model is not stable enough despite the high recognition accuracy within 100 epochs.

The training process of the V16 model (one of the improved VGGNet models) is
shown in Figure 10. From these two graphs, we can clearly observe that on the V16 model,
both the training and validation accuracy rates increase with very sharp fluctuations in
the first 40 epochs, and these fluctuations also occur on the training loss curve. However,
after the 40th epoch, the training and validation accuracy curves are smoothed around
100%, and the training accuracy is slightly higher than the validation accuracy. From this
we conclude that the V16 model only needs about 40 epochs to converge and has good
recognition performance.

3.2. Parameter Effect Evaluation

We keep the other hyperparameters of the network unchanged and adjust the values
of batch size and dropout probability associatively to observe the recognition accuracy on
the validation set of the model, where the value of batch size is taken from (32, 64, 96, 128,
160, 192, 224, 256) and that of dropout probability is taken from (0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1). Surface plots of the relationship between batch size, dropout probability
and validation accuracy rate on L2, A3 and V16 models are obtained as Figures 11–13,
respectively. We use a black dot to mark the point with the highest accuracy on each surface,
and mark the corresponding x and y coordinates next to that point.

Figure 11. Surface plot on the L2 model displaying the resulting validation recognition accuracy for
different choices of values of the batch size and the dropout probability.
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Figure 12. Surface plot on the A3 model displaying the resulting validation recognition accuracy for
different choices of values of the batch size and the dropout probability.

Figure 13. Surface plot on the V16 model displaying the resulting validation recognition accuracy for
different choices of values of the batch size and the dropout probability.

According to the color change of the surface plots, it can be inferred that the more
drastic the color system changes, the greater the impact of different choices of values of
the batch size and the dropout probability on the models is. From Figure 11 we see that
there are obvious blue and yellow areas, indicating that the accuracy of the L2 model is
most affected by these two parameters, followed by the A3 model in Figure 12. The color
system of the surface map in Figure 13 corresponding to the V16 model changes smoothly,
so it is minimally affected by the two parameters. In addition, the highest point indicates
the optimal combination of batch size and dropout probability values. For the L2 and A3
models, setting the batch size and dropout probability values to 64 and 0.5 is the optimal
choice, while for the V16 model, they should be set to 128 and 0.6, respectively.
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3.3. Model Performance Overview

From the above experimental results, we obtain the best combination of batch size
and dropout probability values used to train each model. In the next experiment, we use
the optimization methods mentioned in Section 2.3.3 and the optimal hyperparameter
combination configurations to train the classical and the proposed improved models. In
addition, to evaluate the effect of data augmentation for the OBI-100 dataset, these models
are also trained and tested on the non-augmented dataset. A general overview of the final
results is shown in Tables 2–4.

Table 2. Recognition accuracy of LeNet-based models on unaugmented (No) and augmented (Yes)
OBI datasets. BN, DP, SF represent batch normalization, dropout, and shuffle methods, respectively.
Test (max) denotes the maximum recognition accuracy rate and Test (ave) represents the average value
of the last five accuracy rates after the training is stable. Bold numbers indicate the optimal value of
each indicator in each group of network frameworks.

Model Data
Augment Method

Accuracy (%)

Test (Max) Test (Ave)

Based on LeNet

LeNet
No

- 71.23 -
L1 SF 78.77 78.77

L2 SF 74.20 -

LeNet

Yes

- 81.25 75.00
SF + BN + DP 85.41 82.37

L1
SF 95.35 92.48

SF + BN 97.15 96.56

SF + BN + DP 98.43 97.93

L2
SF 93.75 87.50

SF + BN 94.25 88.80

SF + BN + DP 96.88 86.93

From Tables 2–4, on the one hand, we can simply observe that the data augmentation
strategy can generally enhance the recognition accuracy of the models. For example, the
L1 model trained on the shuffled unaugmented training set gets a maximum accuracy of
only 78.77% for the simpler unaugmented test set classification task, while the L1 model
learned on the augmented OBI-100 yields an accuracy of 95.35% against the more difficult
augmented sample recognition task. On the other hand, we notice that compared with the
original models of the three classic frameworks, the improved networks show better recog-
nition performance on the augmented OBI dataset. Specifically, when integrating the three
optimization methods, the L1 and L2 models achieve 13.02% and 11.47% higher recognition
performance than the original LeNet respectively, while the A1, A2, and A3 models yield
5.09%, 5.39%, and 6.82% improvement in recognition accuracy respectively, compared to
the original AlexNet. In addition, the performance baseline of the original VGGNet-based
models is relatively high, but the improved model still results in performance gains. For
instance, the accuracy of the optimal V16 model is 99.50%, while the original VGG16 model
only achieves 97.75%.
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Table 3. Recognition accuracy of AlexNet-based models on unaugmented (No) and augmented (Yes)
OBI datasets. BN, DP, SF represent batch normalization, dropout, and shuffle methods, respectively.
Test (max) denotes the maximum recognition accuracy rate and Test (ave) represents the average value
of the last five accuracy rates after the training is stable. Bold numbers indicate the optimal value of
each indicator in each group of network frameworks.

Model Data
Augment Method

Accuracy (%)

Test (Max) Test (Ave)

Based on AlexNet

AlexNet

No

- 71.23 -
A1 DP 84.47 -

A2 DP + SF 89.80 -

A3 DP + SF 91.32 -

AlexNet

Yes

- 79.40 76.91
DP + SF + BN 91.66 89.97

A1
DP 92.19 92.17

DP + SF 94.12 93.11

DP + SF + BN 96.75 94.05

A2 DP + SF 96.88 91.04
DP + SF + BN 97.05 93.76

A3 DP + SF 98.44 93.25
DP + SF + BN 98.48 95.38

Moreover, adding suitable optimization methods contributes a lot to the recognition
accuracy of the models. For instance, for the V11 model trained on the augmented OBI-100,
the maximum test accuracy reaches 91.20% when using batch normalization only, and the
accuracy is enhanced to 91.80% after using shuffle optimization, and it is further improved
to 94.66% after applying the dropout method. Similar accuracy improvements can be
clearly observed in the experimental results of each proposed model.

For each group of enhanced models, we also make the following observations. Firstly,
the LeNet-based L1 model is significantly better than the L2 model. On the one hand, the
best maximum test accuracy of the L1 model is higher than that of the L2 model, and on
the other hand, the gap between the maximum test rate and the average test rate of the
L1 model is a smaller value of 0.5%, indicating that the training effect of the L1 model is
more stable.

Thirdly, from Table 4, one can see that the increase in the number of network layers has
a beneficial effect on the recognition performance of the VGGNet-based models. Specifically,
V11, V13, and V16 with the same fully connected layer structures, respectively, get the best
accuracy rates of 94.66%, 95.85%, and 99.50%, incrementally. In addition, for V16 and V16-2
with the same network structures of convolutional and pooling layers, the V16 model with
deeper fully connected layers outperforms the V16-2 model by 3.9%. We also observe that
the maximum accuracy on the V16 model is the same as the average accuracy, indicating
that the V16 model performs more effective feature learning on the OBI-100 dataset.

Finally, from Tables 2–4, it is obtained that the VGGNet-based V16 model, for one,
achieves the highest accuracy of 99.5% on the OBI-100 dataset, for another, the maxi-
mum and average accuracy values of this model are the same, so it is the best model for
identifying the OBI-100 dataset in our experiments.
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Table 4. Recognition accuracy of VGGNet-based models on unaugmented (No) and augmented
(Yes) OBI datasets. VGG n refers to the standard VGGNet model with a n-layer structure. BN, DP,
SF represent batch normalization, dropout, and shuffle methods, respectively. Test (max) denotes
the maximum recognition accuracy rate and test (ave) represents the average value of the last five
accuracy rates after the training is stable. Bold numbers indicate the optimal value of each indicator
in each group of network frameworks.

Model Data
Augment Method

Accuracy (%)

Test (Max) Test (Ave)

Based on VGGNet

VGG11

No

- 84.88 -
V11 BN 85.56 -

VGG13 - 85.03 -

V13 BN + SF 85.10 -

VGG16 - 93.75 -

V16 BN + SF 91.28 -

VGG19 - 90.35 -

V19 BN + SF 89.71 -

Based on VGGNet

VGG11

Yes

- 91.10 90.39
BN + SF + DP 92.96 92.18

V11
BN 91.20 91.10

BN + SF 91.80 91.20

BN + SF + DP 94.66 92.50

VGG13 - 92.88 90.67
BN + SF + DP 94.31 93.21

V13 BN + SF 93.20 91.75
BN + SF + DP 95.85 95.10

VGG16 - 96.24 93.75
BN + SF + DP 97.75 95.65

V16 BN + SF 99.49 99.00
BN + SF + DP 99.50 99.50

V16-2 BN + SF 95.30 94.13
BN + SF + DP 95.60 94.38

VGG19 - 96.67 96.28
BN + SF + DP 98.26 97.75

V19 BN + SF 98.40 98.20
BN + SF + DP 98.75 98.61

4. Conclusions

In this work, deep convolutional neural networks are used to identify oracle characters.
We created a standardized dataset called OBI-100, which contains 100 classes of characters
of OBI. OBI-100 can fill the gap of publicly available datasets in the applications of deep
learning in OBI research. Base on three typical convolutional network frameworks, ten
improved models are proposed to classify the characters of OBI. Through a large number
of experiments and a variety of optimization methods, the best model achieves an accuracy
of 99.5% in the 100-class OBI recognition task. Our work shows that characters of OBI
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can be recognized practically and effectively in deep convolutional neural networks, and
applications in this area have broad research prospects, which also provide new ideas for
studying the origin of words and human history.
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