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Abstract: Volunteer-contributed geographic data (VGI) is an important source of geospatial big data
that support research and applications. A major concern on VGI data quality is that the underlying
observation processes are inherently biased. Detecting observation hot-spots thus helps better
understand the bias. Enabled by the parallel kernel density estimation (KDE) computational tool that
can run on multiple GPUs (graphics processing units), this study conducted point pattern analyses on
tens of millions of iNaturalist observations to detect and visualize volunteers’ observation hot-spots
across spatial scales. It was achieved by setting varying KDE bandwidths in accordance with the
spatial scales at which hot-spots are to be detected. The succession of estimated density surfaces
were then rendered at a sequence of map scales for visual detection of hot-spots. This study offers
an effective geovisualization scheme for hierarchically detecting hot-spots in massive VGI datasets,
which is useful for understanding the pattern-shaping drivers that operate at multiple spatial scales.
This research exemplifies a computational tool that is supported by high-performance computing
and capable of efficiently detecting and visualizing multi-scale hot-spots in geospatial big data and
contributes to expanding the toolbox for geospatial big data analytics.

Keywords: volunteered geographic information (VGI); geospatial big data; point pattern analysis;
kernel density estimation; hot-spot detection and visualization; spatial bias; multiple spatial scales;
iNaturalist; graphics processing unit (GPU); parallel computing

1. Introduction

Volunteer-contributed geographic data, often termed ‘volunteered geographic in-
formation’ (VGI) [1], have flourished over the past two decades or so due to the vast
advancements in geospatial and communication technologies (e.g., location-aware smart
phones, social media) that enable ordinary citizens to collect and share georeferenced obser-
vations of the world [2]. Broadly speaking, VGI encompasses geographic data generated
and shared (actively or passively) by volunteers participating in geographic citizen science,
participatory mapping, public participation geographic information systems, neogeogra-
phy, social media, crowdsourcing, etc. [2]. Prominent VGI examples, among others, include
OpenStreetMap, a platform for volunteers to collaboratively map all kinds of geographic
features across the globe with great details [3], and biodiversity citizen science projects
such as eBird and iNaturalist to which nature observers submit tens of thousands of species
sightings on a daily basis [4,5]. Notably, citizen science [6] has existed for centuries, and
geographic citizen science [7,8] has been a major source of volunteer-contributed geo-
graphic data (e.g., biodiversity observations), even long before the term VGI was coined
in 2007 [1]. VGI has risen to become an important source of geospatial data supporting
scientific research and applications (e.g., biodiversity monitoring, disaster response) largely
due to its low cost, extensive coverage, high spatiotemporal resolution, and data update
timeliness [9–13]. In a larger context, VGI represents a paradigm shift in how geographic
data is created and shared and in its content and characteristics [14]. It may have great
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influence on geography and its relationship to society [1,15]. VGI (particularly citizen sci-
ence), due to its active engagement of the general public in scientific research activities (e.g.,
data collection), is regarded as a bridge between geography (and other disciplines) and
society that helps harness the power of the public to advance scientific discoveries through
carefully designed projects [16] and, at the same time, increase scientific awareness of the
public [17,18]. In fact, VGI is an important source of geospatial big data which is propelling
geographic research towards emerging paradigms such as ‘data-driven geography’ [19]
and ‘data-intensive science’ [20].

VGI data quality issues, nonetheless, are under constant scrutiny [21]. Spatial data
collected and shared by volunteer communities may or may not be as of high quality as
data compiled by professional agencies. Data quality therefore is always an important
consideration when using VGI for any applications. A variety of methods and frameworks
have been proposed for assessing VGI data quality from the perspectives of source credi-
bility [22,23] and the fundamental dimensions of spatial data quality (positional accuracy,
attribute accuracy, temporal accuracy, semantic accuracy, logical consistency, completeness,
and lineage) [24–31], and for assuring VGI data quality [24,32–35]. Despite the quality
assessment or assurance measures, VGI datasets are often subject to various forms of
biases (e.g., spatial bias, temporal bias, demographic bias) [21,36–38]. A useful first step to-
wards better understanding such biases is simply visualizing where VGI observations were
originated, as the spatial distribution of VGI observations has implications on ‘representa-
tiveness’ of the resulted VGI datasets [36]. Individual volunteers driven by self-interest or
self-motivation often choose sites for observation on their own, in contrast to traditional
geographic data collection efforts conducted by trained professionals following established
protocols and geographic sampling schemes (e.g., stratified random sampling) [39]. It
is widely recognized observation efforts of volunteers tend to concentrate in certain ge-
ographic areas (e.g., areas of better accessibility) and VGI datasets, as a result, are often
spatially biased [40–42].

Examining the spatial pattern of volunteers’ observation efforts can shed light upon
the driving spatial processes that often operate at multiple spatial scales [37]. A better
comprehension of the patterns in observation efforts across spatial scales helps understand
the inherent spatial biases embedded in VGI datasets, and could also inform devising
appropriate bias mitigation strategies [43–46]. Geographic locations where volunteers
conducted observations can be taken as a spatial point pattern consisting of point events
(i.e., observation was conducted at individual locations). Therefore, spatial point pattern
analysis [47], a classic spatial analysis method widely used across many domains (e.g.,
geography, ecology, spatial epidemiology, crime analysis, and traffic accident analysis), can
be applied to detect any interesting spatial patterns in volunteer’s observation efforts.

Kernel density estimation (KDE) is a common approach to explanatory spatial point
pattern analysis [47,48]. It is capable of estimating a continuous probability density surface
of the point event over geographic space based on a set of discrete sample event loca-
tions [49]. The density surface can be used to detect and visualize event hot-spots (i.e.,
clusters) to facilitate qualitative investigation of the point pattern. Moreover, hot-spots
in the point pattern can be detected and visualized at varied spatial scales with the KDE
approach by setting appropriate kernel bandwidths, a parameter controlling the smooth-
ness (i.e., level of generalization) of the estimated density surface [49–51]. Furthermore,
the density surface serves as a basis for conducting further quantitative analysis, for in-
stance, delineating cluster zones [51,52] and testing statistical significance through Monte
Carlo simulations [47], and correcting for geographic sampling bias [44]. Such characteris-
tics render the KDE approach desirable for visualizing and analyzing spatial patterns in
volunteer’s observation efforts.

Applying the KDE approach on massive VGI datasets, however, faces computational
challenges [50,51]. First, as the number of data points (i.e., locations) increases (e.g., mil-
lions or even billions of locations), there are significant computational costs associated
with simple spatial queries (e.g., finding nearby locations to compute their kernel density
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contributions towards a foci location). Second, determining the optimal kernel bandwidth
(s) for KDE is computationally intensive as the iterative optimization process involves
iterations of complex computations [49]. Lastly, computing kernel density based on numer-
ous data points on a high-resolution grid of raster cells over extensive geographic area is
computationally expensive. As a result, traditional software tools implementing the KDE
method are not able to handle massive datasets.

Until recently, high-performance computational tools have been developed to enable
point pattern analysis on geospatial big data [53–55], especially with the KDE method [50,51].
The tools utilize spatial indexing techniques such as k-dimensional tree and quad-tree to
speed up spatial queries, implement algorithmic optimizations to reduce computational
complexity, and adopt parallel computing on multi-core CPUs (central processing units) or
many-core GPUs (graphics processing units) to further accelerate KDE computations. As a
result, these newly developed high-performance computational tools have made it feasible
to complete point pattern analysis on massive point event datasets within a reasonable
amount of time. The largest experiment datasets used to test computing performance of
the tools contain about one million point locations [50,51].

Empowered by the big data-enabled point pattern analysis tools, this study aims to
detect and visualize multi-scale observation hot-spots in massive volunteer-contributed
geographic data (e.g., tens of millions of points) to the global extent using the KDE method
accelerated with GPU parallel computing [50]. This endeavor advances understanding
of the spatial pattern of VGI contributor’s data contribution activities, sheds light upon
the inherent spatial biases in global-coverage VGI datasets at various spatial scales, and
ultimately informs designing proper methods to mitigate the impacts of such biases when
VGI is used in spatial analysis and modeling (e.g., species distribution modeling).

To the best of the author’s knowledge, this is the first attempt to detect and visualize
VGI contributors’ observation hot-spots across spatial scales on a global scale using the
KDE approach. Existing efforts of visualizing spatial patterns in large-scale VGI datasets
avoided the KDE approach despite its advantages for both visualization and quantitative
analysis and, instead, adopted other less computationally demanding methods for faster
on-the-fly visualization. For instance, eBird (ebird.org/hotspots, accessed on 6 January
2022) and iNaturalist (www.inaturalist.org/observations, accessed on 6 January 2022)
both adopt a quadrat-based approach to simply count the number of observations (i.e.,
intensity) within a grid of rectangular quadrats for visualizing observation hot-spots
in data submissions. Although the quadrat-based approach can visualize hot-spots at
multiple spatial scales by adjusting quadrat size depending on the current viewing zoom
level, it introduces artificial abrupt intensity change across quadrat boundaries and, more
importantly, quadrats delineation is subject to the modifiable areal unit problem [56,57]. The
KDE approach would overcome such drawbacks [58] as continuous probability surfaces
estimated with scale-dependent kernel bandwidths are used to detect and visualize multi-
scale observation hot-spots. This study examines the applicability and usefulness of the
KDE method for analyzing massive point datasets for hot-spot detection and visualization,
using VGI datasets with over 30 million points obtained from iNaturalist as an example.
The remainder of this article is organized as follows. Section 2 introduces data and methods,
Section 3 presents results and related discussion, and Section 4 concludes the article.

2. Materials and Methods
2.1. Datasets
2.1.1. VGI Data

VGI datasets containing locations where volunteers conducted observations were
obtained from iNaturalist, the world’s largest citizen science project (in terms of the number
of participants) with global coverage aiming to engage nature observers in uploading,
identifying, and sharing species observations of all taxa [5,59]. In this study, iNaturalist
was used as an example to illustrate to usefulness of the GPU-accelerated KDE approach
for visualizing multi-scale observation hot-spots in massive VGI datasets, although the

ebird.org/hotspots
www.inaturalist.org/observations


ISPRS Int. J. Geo-Inf. 2022, 11, 55 4 of 15

approach itself is applicable to any spatial point datasets. Users upload geo-referenced
and time-stamped photos of species observations, along with auxiliary information (e.g.,
suggested species identification) through the iNaturalist website or mobile app. Users
can also choose whether to obscure the observation’s geographic coordinates (latitude
and longitude) to protect geoprivacy (if obscuring, the observation location is replaced
with a random location selected from a 0.2◦ latitude × 0.2◦ longitude cell containing
the true location), and whether to make a submission public and hence visible to the
community of contributors. The community collaboratively identify or confirm species for
public observations through a voting mechanism. As of November 2021, nearly 2 million
contributors have contributed over 85 million observations on more than 345,000 species
around the world [60]. All public observations are available on the iNaturalist website
for download (www.inaturalist.org/observations/export, accessed on 6 January 2022).
Observations meeting certain data quality criteria are labeled as ‘Research Grade’ [61] and
a dataset containing only such observations are published and updated periodically on the
Global Biodiversity Information Facility website [62].

Observations conducted in 2019 and 2020 with latitude between 60◦ S and 75◦ N
(very few observations were beyond this latitude range) and non-obscured geographic
coordinates were downloaded from iNaturalist and loaded into a spatial database. Data
in these two years were chosen due to the fact that applying the GPU-accelerated KDE
approach to visualize observation hot-spots in individual years makes it feasible to iden-
tify any pattern change across the two years. Obscured observations were excluded as
they were associated with too high positional uncertainty for meaningful point pattern
analysis. Geographically distinct observation locations (i.e., point locations with unique
latitude longitude coordinates) were then extracted. The above processing steps resulted
in 11,986,484 and 19,022,923 observation locations in 2019 and 2020, respectively. Simply
plotting the point locations on a global scale creates visually cluttered point maps that are
similar across the two years (Figure 1), although there were 7 million more point locations
in 2020 and spatial pattern of the locations might have changed over the years, e.g., due
to the ongoing COVID-19 pandemic [10]. With such point maps, it is difficult to visually
detect iNaturalist contributors’ observation hot-spots in a single year across spatial scales,
nor visually identify any spatial pattern change over time.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 1. iNaturalist observation locations in 2019 (left) and 2020 (right). 

2.1.2. Land Boundaries 
Density surfaces in this study were estimated only for the world’s land areas for hot-

spot detection and visualization, as the vast majority of iNaturalist observation locations 
are on land and excluding oceans greatly reduces KDE computational workload. The 1:10 
million land polygons (including major islands) downloaded from the Natural Earth web-
site (www.naturalearthdata.com (accessed on 13 September 2021)) were used to depict 
boundaries of the world’s land mass. The land polygons were converted to rasters at var-
ied spatial resolutions (5 km, 1 km, 500 m, etc.) for estimating density surfaces. 

2.2. Methods 
The KDE approach to exploratory point pattern analysis, accelerated with parallel 

computing on GPUs, was adopted to estimate density surfaces for detecting and visualiz-
ing observation hot-spots across spatial scales in the massive iNaturalist datasets. 

2.2.1. GPU-Accelerated KDE Approach 
The KDE approach assumes that an event occurred at a given location Xi could occur 

at another location x at a lower probability, which is inversely related to the distance from 
Xi to x. The distance-decaying probability is represented by a kernel function 𝐾 ∙ . The 
typical Gaussian kernel was adopted in this study [63]: 

𝐾 |𝒙 − 𝑿 |ℎ = 12𝜋 𝑒 |𝒙 𝑿 |
 (1)

where |𝒙 − 𝑿 | is the distance between the two locations, and hi is the bandwidth param-
eter controlling how quickly the probability decays as the distance to Xi increases. Con-
ceptually, the kernel can be thought of as a three-dimensional probability density surface 
(i.e., a bell) with a fixed volume of 1 centered at each sample event location. Bandwidth hi 
determines the shape of the kernel at sample location 𝑿  and a larger bandwidth indicates 
wider but shorter kernel. The KDE method then computes the probability density of the 
event occurring at any location x as the mean of density contributions from all sample 
locations [49]: 𝑓 𝒙 = 1𝑛 1ℎ 𝐾 |𝒙 − 𝑿 |ℎ  (2)

where 𝑓 𝒙  is the estimated density at location 𝒙, and 𝑛 is the total number of sample 
locations. Applying Equation (2) to everyone of the cell locations in the study area results 
in a probability density surface. 
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2.1.2. Land Boundaries

Density surfaces in this study were estimated only for the world’s land areas for hot-
spot detection and visualization, as the vast majority of iNaturalist observation locations
are on land and excluding oceans greatly reduces KDE computational workload. The
1:10 million land polygons (including major islands) downloaded from the Natural Earth
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website (www.naturalearthdata.com (accessed on 13 September 2021)) were used to depict
boundaries of the world’s land mass. The land polygons were converted to rasters at varied
spatial resolutions (5 km, 1 km, 500 m, etc.) for estimating density surfaces.

2.2. Methods

The KDE approach to exploratory point pattern analysis, accelerated with parallel
computing on GPUs, was adopted to estimate density surfaces for detecting and visualizing
observation hot-spots across spatial scales in the massive iNaturalist datasets.

2.2.1. GPU-Accelerated KDE Approach

The KDE approach assumes that an event occurred at a given location Xi could occur
at another location x at a lower probability, which is inversely related to the distance from
Xi to x. The distance-decaying probability is represented by a kernel function K(·). The
typical Gaussian kernel was adopted in this study [63]:

K
(
|x−Xi|

hi

)
=

1
2π

e
− |x−Xi |

2

2hi
2 (1)

where |x−Xi| is the distance between the two locations, and hi is the bandwidth parameter
controlling how quickly the probability decays as the distance to Xi increases. Conceptually,
the kernel can be thought of as a three-dimensional probability density surface (i.e., a
bell) with a fixed volume of 1 centered at each sample event location. Bandwidth hi
determines the shape of the kernel at sample location Xi and a larger bandwidth indicates
wider but shorter kernel. The KDE method then computes the probability density of the
event occurring at any location x as the mean of density contributions from all sample
locations [49]:

f (x) =
1
n ∑n

i=1
1
h2

i
K
(
|x−Xi|

hi

)
(2)

where f (x) is the estimated density at location x, and n is the total number of sample
locations. Applying Equation (2) to every one of the cell locations in the study area results
in a probability density surface.

Smoothness of the estimated density surface is largely influenced by the band-
widths [49,63]. Bandwidths can be the same at all sample locations (fixed KDE). Gen-
erally speaking, larger bandwidths tend to smooth out local density variations and the
estimated density surface thus could only reveal large-scale density variations. With small
bandwidths, KDE is able to reveal local density variations but may fail to capture the
general trend. The bandwidth for fixed KDE can be conveniently computed following
the simple ‘rule-of-thumb’ heuristic that takes into account the spatial distribution (i.e.,
standard distance) of the sample locations [63], or through optimization with the objective
of maximizing the likelihood (probability) of observing the event across the sample loca-
tions [49]. Bandwidths could also vary across sample locations (adaptive KDE). Adaptive
KDE flexibly employs larger bandwidths at sparsely distributed sample locations and
smaller bandwidths at dense sample locations, and thus is capable of discern subtle density
variations in areas of dense sample locations [49]. Spatially adaptive bandwidths can be
determined based on simple heuristics (e.g., K-nearest neighbor distance) [64] or through
optimization [49]. In general, determining bandwidth (s) using optimization is much more
computationally expensive than using simple heuristics (e.g., ‘rule-of-thumb’, K-nearest
neighbor distance).

When the KDE method is used on very large datasets, determining bandwidths for
KDE, especially through optimization, and subsequently estimating the probability density
surface (on a fine-resolution raster grid over a large geographic area) can both be computa-
tionally demanding [50,51]. To overcome the computational challenges, the GPU-parallel
KDE tool developed in [50] enabling point pattern analysis on geospatial big data was
adopted to detect and visualize observation hot-spots in the massive iNaturalist datasets.

www.naturalearthdata.com


ISPRS Int. J. Geo-Inf. 2022, 11, 55 6 of 15

The original implementation of the KDE tool with parallel computing on multiple GPUs
implemented based on the CUDA parallel programming library [65] runs only on a single
GPU [50]. This study improved the tool so that it can utilize parallel computing power on
any number of GPUs available on the computing platform. The new version (source codes
available on GitHub at https://rb.gy/mv0z5m, accessed on 26 November 2021) splits KDE
computation workload into smaller parts and dispatch them to multiple GPUs to be carried
out collaboratively. Besides, the new version implemented the less computationally de-
manding K-nearest neighbor distance heuristic for determining adaptive bandwidths [64],
in addition to the existing option of determining adaptive bandwidths based on optimiza-
tion [50]. The improvements further expand the upper limit of the problem size of point
pattern analysis tasks which the GPU-parallel KDE tool can tackle.

The GPU-parallel KDE tool was run in two computing environments with GPU
capabilities to estimate probability density surfaces from iNaturalist observation locations
for detecting and visualizing observation hot-spots across spatial scales. One runs Windows
Server 2016 (Intel Xeon 24-core CPUs @ 2.7 GHz, 192 GB memory) with a NVIDIA Tesla
V100 GPU (32 GB memory). The other has Windows 10 (Intel Xeon 8-core CPUs @ 3.7 GHz,
64 GB memory) and two identical NVIDI Quadro P4000 GPUs (8 GB memory). The time it
took to complete individual density surface estimation tasks ranges from minutes to hours
depending on the problem size (e.g., number of observation locations, spatial resolution of
the estimated density surface, bandwidth option). Comparisons of the GPU-accelerated
KDE tool against KDE tools in existing GIS software were reported in Section 3.4.

2.2.2. Detecting and Visualizing Observation Hot-Spots across Spatial Scales

The bandwidth for KDE controls the smoothness of the estimated probability density
surface and hence the spatial scale at which hot-spots can be detected (i.e., level of spatial
generalization). Based on this observation, a series of bandwidths in accordance with the
spatial scales of hot-spots can be set for the fixed bandwidth KDE method to estimate a
succession of density surfaces for detecting and visualizing observation hot-spots across
spatial scales (Table 1). Specifically, the ‘rule-of-thumb’ bandwidth (hr.o.t. = 134,330 and
124,993 m for 2019 and 2020, respectively), which often results in an over-smoothed density
surface, was used as an initial bandwidth to estimate a density surface for hot-spot detection
and visualization at the coarsest spatial scale (e.g., global). The bandwidth was then reduced
to 1/2 of the previous bandwidth to estimate another density surface for detecting and
visualizing hot-spots at a finer spatial scale. This process was repeated until the bandwidth
was reduced to 1/128 of the initial bandwidth (hr.o.t./128 = 1049 and 976 m for 2019
and 2020, respectively). Furthermore, an even smaller bandwidth determined through
optimization (hopt. = 493 and 530 m for 2019 and 2020, respectively) [49] was used to
estimate an additional density surface for hot-spot detection and visualization at the finest
spatial scale (e.g., neighborhood).

The procession of density surfaces estimated with the KDE method were visualized in
ArcGIS Pro [66] with the ‘dynamic range adjustment’ statistics computed from the current
display extent and the ‘standard deviation’ stretch type to visually highlight hot-spots on
the observation density maps. Each hot-spot map was displayed within only a prescribed
range of map scales corresponding to the spatial scale at which observation hot-spots are
visually detected. When zooming in and out on the map, hot-spots within the display extent
at the current spatial scale were properly rendered for visual inspection. This visualizing
strategy was found most informative compared to alternatives (e.g., stretching based on
whole-raster statistics) for visually detecting hot-spots in iNaturalist observation locations,
as it is capable of rendering hot-spot maps in a manner that is responsive to both display
scale and extent.

https://rb.gy/mv0z5m
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Table 1. Bandwidths used in fixed-bandwidth KDE for detecting hot-spots across spatial scales.
hr.o.t. and hopt. are the bandwidths determined based on the ‘rule-of-thumb’ heuristic and through
optimization, respectively. Smaller bandwidths are associated with finer spatial resolutions, larger
display map scales, and increasingly fine spatial scales at which hot-spots are detected and visualized.

Bandwidth Resolution Display Map Scale Spatial Scale

hr.o.t. 5 km ≤1:40 million Global
hr.o.t./2 5 km ≤1:20 million Continental
hr.o.t./4 5 km ≤1:10 million Regional
hr.o.t./8 1 km ≤1:5 million Country
hr.o.t./16 1 km ≤1:2.5 million States
hr.o.t./32 500 m ≤1:1.2 million Metropolitan
hr.o.t./64 500 m ≤1:600,000 City

hr.o.t./128 100 m ≤1:300,000 Sub-city
hopt. 100 m ≤1:180,000 Neighborhood

In addition, a web map for visually detecting observation hot-spots across spatial
scales was published through the ArcGIS Online platform [67]. Map tiles rendering multi-
scale observation hot-spots across a sequence of map zoom levels (i.e., display map scales)
were created using the Create Map Tile Package geoprocessing tool in ArcGIS Pro. The tile
packages were then uploaded to ArcGIS Online and published as a web map that can be
viewed freely at https://rb.gy/1cjyey, accessed on 26 November 2021. Zooming in and
out triggers the web map to load tiles at the proper zoom level for visualizing observation
hot-spots across spatial scales.

3. Results and Discussion
3.1. Visual Detection of Observation Hot-Spots across Spatial Scales

Globally, North America and Europe are the two largest iNaturalist observation hot-
spots in the world (Figure 2A). Western Europe and eastern, western, and southern United
States are obvious regional observation hot-spots. European countries such as the United
Kingdom, Germany, Belgium, Netherland, Switzerland, and Italy, and US states including
California, Washington, Texas, Florida, Maryland, New Jersey, New York, Connecticut,
and Massachusetts stand out as country- or state-level hot-spots. At a finer spatial scale,
iNaturalist observation hot-spots well coincide with large metropolitan areas (e.g., San
Francisco, Los Angeles, Dallas, Denver, Chicago, Minneapolis, New York, Mexico City,
Quito, London, Milan, Madrid, Moscow, Cape Town, Sydney, Melbourne, Hong Kong,
Tokyo, and Seoul). Observation hot-spots are also detected at finer scales. For example,
within the Denver metropolitan area (Figure 2), city- to neighborhood-level observation
hot-spots (e.g., in parks, along trails) are readily visible on the density maps with increasing
spatial details.

Visualization of the kernel density raster maps in ArcGIS Pro and on the ArcGIS
Online web map (https://rb.gy/1cjyey, accessed on 26 November 2021) can be utilized to
visually detect observation hot-spots across spatial scales in iNaturalist data for any part of
the world (e.g., from global to neighborhood scales). Such a geovisual tool for hierarchically
detecting and visualizing observation hot-spots across spatial scales in massive VGI datasets
offers many benefits, as discussed in more detail in Section 3.3.

https://rb.gy/1cjyey
https://rb.gy/1cjyey
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3.2. Hot-Spot Detection and Visualization at Even Finer Spatial Scales

The KDE approach can be conveniently adopted to detect observation hot-spots at even
finer spatial scales (e.g., block- or street-scale), shall there be a need, for example, for under-
standing VGI contributor’s observation site selection behavior in a micro-environment. For
this purpose, bandwidths determined through optimization were used in the KDE method
to reveal subtle density variations at micro-scales [49,50] in selected areas of interest. The
bandwidths, either fixed or adaptive, were optimized on only a local subset of observation
locations that are within the area or within certain distance from the area boundary (e.g.,
10 km), as bandwidths optimized on the global datasets still produced over-smoothed
density surfaces that could not reveal density variations at micro-scales (e.g., Figure 3I).

Figure 3 shows the resultant density maps at 10-m spatial resolution for one area of
interest (Cherry Creek State Park in Denver) estimated with fixed bandwidth (Figure 3J)
and adaptive bandwidths (Figure 3K) determined through optimization. The very high
spatial resolution of the density surface coupled with locally optimized bandwidths allows
detecting and visualizing observation hot-spots at very fine spatial scales. For example,
whilst the density map estimated with globally optimized fixed bandwidth (Figure 3I)
only reveals one large hot-spot on the south end of the reservoir in the park, the map
estimated with locally optimized fixed bandwidth (Figure 3J) further distinguishes two
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smaller hot-spots (one hot-spot on the southeast side and another larger hot-spot on the
southwest side), and the map estimated with locally optimized adaptive bandwidths
(Figure 3K) was able to detect and visualize several hot-spots with more precise spatial
extent. Detecting and visualizing hot-spots at such fine spatial scales provides useful
information for understanding volunteer’s observation preferences in a micro-environment
(e.g., more observations were concentrated in the woods along the east shore) (Figure 3K).
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3.3. Usefulness for Exploratory Point Pattern Analysis and Beyond

Backed by the GPU-accelerated KDE tool, the proposed scheme for hierarchical detec-
tion and visualization of hot-spots within massive point datasets across spatial scales offers
a powerful geovisual tool for exploratory point pattern analysis, which enables formulating
hypotheses to uncover the spatial processes that operate at multiple spatial scales to have
shaped the point pattern [47,58]. Intuitions regarding the multi-scale pattern-shaping spatial
processes are easier to develop from visually exploring the hot-spot maps across spatial
scales and comparing the hot-spot maps against maps depicting the spatial variation of
environmental and cultural factors that could play a role in shaping the patterns (e.g., popu-
lation density, land cover, accessibility to mobile technologies). For instance, continental-,
regional-, and country-scale observation hot-spots in VGI datasets may be mainly attributed
to cultural and socio-economic factors. As explored in [37], nature observing has a longer
history and is a more popular activity in western English-speaking countries, which are also
on the high end of United Nations Human Development Index (e.g., longer life expectancy,
more years of education, higher gross national income per capita). States, metropolitan, and
city-scale observation hot-spots, reflecting an urban-rural divide, could be linked mostly to
human population distribution, infrastructure availability (e.g., road, Internet), and by ex-
tension, the digital divide [37,68]. For sub-city- to neighborhood-level observation hot-spots,
however, the dominant driving factors may be more related to human behavior patterns.
For example, people tend to report species sightings in open green spaces such as parks,
botanic gardens, and trails [37] while enjoying the benefits of human-nature interactions [69].
Such intuitions could well inform formulating hypotheses to explain the hot-spot patterns
across spatial scales. Beyond, they are also informative for devising methodologies to model
sampling biases in VGI observations [37], which could be a basis for correcting for such
biases when VGI observations are used in spatial analysis and modeling [12,70,71].

The hot-spot maps could also be used to discover point pattern change over time.
Visually comparing hot-spot maps at the same spatial scale but from different times helps
qualitatively identify changes in spatial pattern across time and facilitates understanding
the underlying causes. As an example, Figure 4 shows hot-spot maps on the University
of Denver (DU) campus in 2019 and 2020. There was a large hot-spot on campus in
2019 but it was no longer the case in 2020. This change was due to that the DU Nature
Challenge, an annual event where participants survey biodiversity on DU campus and
report species observations to iNaturalist, was cancelled due to the ongoing COVID-19
pandemic. More broadly, the visualizations are helpful for identifying observation hot-spot
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pattern change across spatial scales to reveal impacts of the pandemic on VGI contributors’
data contribution patterns. It could offer new evidence to consolidate findings regarding
COVID-19 effects on citizen science projects and therefore contribute to forming guidelines
on how to account for data anomalies caused by the pandemic [72–75].
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This study used only iNaturalist data in two individual years (2019 and 2020) to
demonstrate the usability and usefulness of the GPU-accelerated KDE tool and the geo-
visualization scheme (Section 2.2.2) for visualizing hot-spots in point data across spatial
scales and identifying yearly pattern change. A full investigation regarding what have
shaped the hot-spots and what have caused pattern change in iNaturalist observations
is out of the scope of this article and deserves a separate treatment (an example of such
studies can be found in [37]). Nonetheless, one could easily apply the GPU-accelerated KDE
tool and the geovisualization scheme with customized spatial and temporal resolutions
(e.g., weekly, monthly) on other (big) point datasets to visualize multi-scale hot-spots and
identify any patter change as a starting point for answering research questions pertinent to
the specific datasets.

3.4. Comparison of the GPU-Accelerated KDE Tool and KDE Tools in Existing GIS Software

The GPU-accelerated KDE tool used in this study was compared with KDE tools
in existing GIS software, specifically, the proprietary ArcGIS Pro (version 2.9) [66] and
the open-source QGIS (version 3.22) [76]. KDE results are known to be more sensitive to
the bandwidth than to the kernel function [63]. The KDE tool in Pro implemented the
Quartic kernel function with a ‘rule-of-thumb’ algorithm to calculate a default bandwidth
based on the standard distance of the points. The KDE tool in QGIS does not compute a
default bandwidth (i.e., user must specify a bandwidth) for any of the five implemented
kernel functions (Quartic, Triangular, Uniform, Triweight, Epanechnikov). Moreover, both
tools implement only fixed-bandwidth KDE with no support for adaptive-bandwidth KDE.
Compared to KDE with a fixed bandwidth, KDE with adaptive bandwidths can better
reveal subtle density variations in areas of dense point events (e.g., Section 3.2) [49,50].
For example, when applying KDE to analyze disease cases, the bandwidth can be set to
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inversely relate to population density to account for inhomogeneous background [77,78].
In this regard, the GPU-accelerated KDE tool is superior to the KDE tools in Pro and
QGIS, as it supports both adaptive-bandwidth KDE and fixed-bandwidth KDE and it
implemented (parallelized) algorithms to automatically determine the optimal bandwidths
for the Gaussian kernel function (Section 2.2.1) [50].

Another important consideration is computing performance and scalability of the
KDE tools on point pattern analysis tasks involving large datasets (e.g., estimating a high-
resolution density surface over a large study area from a large number of points). The KDE
tool in QGIS runs on only a single CPU thread, the KDE tool in Pro can be configured to run
on either a single CPU thread or multiple CPU threads (i.e., utilizing parallel computing
on multi-core CPUs), and the GPU-parallel KDE can exploit parallel computing power
on GPUs. To empirically evaluate the computing performance of the KDE tools, they
were applied on the 2019 iNaturalist data. Although the estimated density surfaces reveal
similar hot-spot patterns on the global scale (Figure 5), the execution time of the tools differ
drastically (Table 2). The QGIS tool is very slow even on relatively small datasets (e.g.,
densities were estimated at 5 km spatial resolution). It thus would not be useful on large
datasets. On small datasets, the Pro tool runs faster than the GPU tool. On larger datasets
(e.g., densities were estimated at 1 km or 500 m resolutions), the GPU tool is much faster
than the Pro tool, although running the latter on eight threads could speed up computations
by three to four times. Moreover, the GPU tool scales much better than the Pro tool on large
datasets. For example, when estimation resolution increases from 1 km to 500 m, execution
time of the Pro tool has a three- to four-fold increase, whilst execution time of the GPU tool
increases only by a factor of 1.3. Overall, the GPU-accelerated KDE tool is more efficient
and flexible for conducting KDE tasks involving large datasets.
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Table 2. Execution time of the KDE tools to estimate density surfaces at varied spatial resolutions
using the 2019 iNaturalist data (n = 11,986,484 points) with a fixed bandwidth. Higher spatial
resolution represents KDE task involving larger datasets. The KDE tool in Pro were run with both one
thread and eight threads. Experiments were conducted on the server computer running Windows
Server 2016 with a NVIDIA Tesla GPU.

KDE Tool Resolution Execution Time

QGIS 5 km 5 h 40 min 2 s

GPU-parallel KDE
5 km 7 min 11 s
1 km 7 min 51 s
500 m 10 min 5 s

ArcGIS Pro

1 thread 8 threads
5 km 5 min 10 s 1 min 15 s
1 km 1 h 33 min 20 s 18 min 11 s
500 m 5 h 51 min 51 s 1 h 9 min 3 s

4. Conclusions

Enabled by the multi-GPU parallel KDE computational tool, this study presents a
geovisualization scheme to conduct point pattern analyses on massive VGI datasets (e.g.,
tens of millions of iNaturalist observations with a global coverage) for detecting and
visualizing volunteers’ observation hot-spots across spatial scales. It was achieved by
setting varying bandwidths for the KDE method in accordance with the spatial scales at
which hot-spots are to be detected (e.g., from continental to neighborhood and even finer
scales) to estimate a succession of density raster surfaces. The density rasters were then
rendered and displayed at a sequence of map scales for visually detecting hot-spots. The
geovisualization scheme built upon the GPU-accelerated KDE tool offers a hierarchical
mechanism for visualizing volunteers’ observation hot-spots in massive data across spatial
scales. It effectively facilitates visually detecting observation hot-spots and identifying
pattern changes over time. As an exploratory data analysis tool, it is helpful for exploring
the underlying drivers that have shaped the pattern in volunteer’s observation efforts and
the causes of any pattern change. One can easily apply the GPU-accelerated KDE tool
and the geovisualization scheme to other big point datasets (not necessarily VGI data)
to visualize multi-scale hot-spots and identify any patter change as a starting point for
answering research questions pertinent to the datasets. This research exemplifies a high-
performance computing-backed and big data-capable tool for conducting exploratory point
pattern analysis on massive point datasets. It is an invaluable addition to the expanding
toolbox for geospatial big data analytics.
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