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Abstract: The major reason that the fully automated generalization of residential areas has not
been achieved to date is that it is difficult to acquire the knowledge that is required for automated
generalization and for the calculation of spatial similarity degrees between map objects at different
scales. Furthermore, little attention has been given to generalization methods with a scale reduction
that is larger than two-fold. To fill this gap, this article develops a hybrid approach that combines two
existing methods to generalize residential areas that range from 1:10,000 to 1:50,000. The two existing
methods are Boffet’s method for free space acquisition and kernel density analysis for city hotspot
detection. Using both methods, the proposed approach follows a knowledge-based framework by
implementing map analysis and spatial similarity measurements in a multiscale map space. First, the
knowledge required for residential area generalization is obtained by analyzing multiscale residential
areas and their corresponding contributions. Second, residential area generalization is divided
into two subprocesses: free space acquisition and urban area outer boundary determination. Then,
important parameters for the two subprocesses are obtained through map analysis and similarity
measurements, reflecting the knowledge that is hidden in the cartographer’s mind. Using this
acquired knowledge, complete generalization steps are formed. The proposed approach is tested
using multiscale datasets from Lanzhou City. The experimental results demonstrate that our method
is better than the traditional methods in terms of location precision and actuality. The approach is
robust, comparatively insensitive to the noise of the small buildings beyond urban areas, and easy to
implement in GIS software.

Keywords: automatic map generalization; knowledge-based framework; geometric similarity quan-
tification; multiscale map space; urban area delineation

1. Introduction

Automated map generalization has always been both a challenge and a dream for
many mapping agencies [1–3]. For example, China’s 1:5000 to 1:1,000,000 vector map
databases, which consist of the same areas and regions at different levels of detail [4,5], are
maintained and updated manually or semi-automatically by cartographers [6]. Current
map generalization is undeniably a labor-intensive process that has many disadvantages,
such as the repetitive digitization and compilation of data from the same region as well as
inconsistent content and relationships between the map databases at different scales [4,6].
Thus, it is of great importance to realize automated map generalization. Indeed, many
studies have been conducted to address this issue.

The realization of automated generalization mainly includes four aspects: (1) knowl-
edge acquisition [7–9], i.e., obtaining characteristics, attributes, and relations (i.e., knowl-
edge) from or between map objects; (2) the development of map feature generalization
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algorithms (see [10–15] for simplification; see [16–18] for aggregation; see [19–21] for dis-
placement); (3) the design of conceptual frameworks for map generalization [22–25]; and
(4) the generation of a cognitive map that establishes the principle foundation for gener-
alization [26–30]. Although many advancements have been made, the full automation
of map generalization is still a challenge, as the knowledge acquisition that is required
for automatic generalization is still difficult. Brassel and Weibel [22] deemed that gen-
eralization is a spatial modeling process that is only simulated by strategies based on
understanding and not by a mere sequence of operational processing steps. Mackaness
et al. [31] inferred that a cartographer’s manual solution reflects a deep knowledge of the
map generalization process and the ways in which map features might be illustrated at dif-
ferent scales. Mustiere’s [9] proposal of a “cartographic knowledge acquisition bottleneck”
also reflects the importance of knowledge. Moreover, most existing approaches focus on
the generalization between two adjacent scales, i.e., a two-fold or smaller reduction in map
scale, such as generalization from 1:10,000 to 1:20,000. Little attention has been given to
generalization with a scale reduction greater than two-fold, e.g., 1:10,000 to 1:50,000.

This is also true for residential area generalization. Residential area generalization
is one of the most significant problems in map generalization. On large-scale maps, res-
idential area polygons occupy a large proportion of map loads, whereas on small-scale
maps, only big and important settlement areas are retained. They act as indispensable
positioning references for map readers. Therefore, this study follows a knowledge-based
generalization framework [22] and emphasizes the generalization of residential areas in
vector map databases from 1:10,000 to 1:50,000, with the aim of proposing a hybrid ap-
proach to automatically generalize residential areas. In this paper, two main factors (i.e.,
the knowledge-based framework and similarity measurement) are considered. The former
is a widely accepted framework that has been proven to be scientific and reasonable [3,23].
It includes five steps: structure recognition, process recognition, process modeling, process
execution, and display. More precisely, in this paper, maps in a multiscale map space
(1:10,000, 1:50,000, 1:250,000, and 1:1,000,000 maps) are first analyzed (in accordance with
the structure recognition). Secondly, the 1:50,000 residential area generalization process is
divided into two parts: free space acquisition and urban area outer boundary determination
(in accordance with process recognition). Thirdly, approaches to characterize both parts
are determined, i.e., (1) Boffet’s method for free space acquisition (hereafter referred to as
Boffet’s method) [32] and (2) a hybrid approach combining Boffet’s method and kernel
density analysis (KDE) for the outer boundaries of urban areas (in accordance with process
modeling);. Lastly, a step-by-step method is applied to the original 1:10,000 residential area
data (in accordance with process execution). The display step is not discussed, as it was
not the focal point in this study.

Specifically, in process modeling, geometric similarity is introduced and quantified to
determine the KDE threshold. This is because the essence of map generalization is a kind
of spatial similarity transformation in multiscale map spaces [6].

Therefore, the proposed approach has two main features: (1) knowledge is acquired
by map analysis and similarity measurements in the multiscale map space, which is then
used to automate the map generalization process; (2) two existing methods are combined to
realize 1:10,000 to 50,000 residential area generalization. Compared to the reference 1:50,000
data, the results are more precise and are consistent with the latest 1:10,000 data. It should
be noted that knowledge here refers specifically to the knowledge required in a certain map
generalization task [33,34].

The remainder of the article is organized as follows: Section 2 proposes the hybrid
approach, including an introduction to the data, an analysis of existing multiscale vector
databases, the knowledge acquisition method from multiscale residential areas, the determi-
nation of the threshold values, and the calculation of the geometric similarity of residential
areas; Section 3 presents the experimental results and analyzes them; Section 4 investigates
and discusses the experiments, the results, and the proposed approaches; Section 5 draws a
number of conclusions.
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2. Methodology

This section proposes a hybrid method for generalizing residential areas on maps from
1:10K to 1:50K, which is a combination of a knowledge-based framework and geometric
similarity measurements. As mentioned before, this approach is a combination of two
existing methods: Boffet’s method and KDE. However, the main focus of this paper is the
knowledge-based framework determined through map analysis and similarity calculations
in a multi-scale map space. Therefore, the organization of this part follows the four steps of
the knowledge-based framework. However, experimental data were introduced before the
steps of the framework.

2.1. Experimental Data

The experimental data are the spatial vector datasets covering the whole area of
Lanzhou City, Gansu Province, China, at four different scales: 1:10K; 1:50K; 1:250K; and
1:1M. The 1:10K datasets were provided by the Provincial Geomatics Center of Gansu
Province, China; the 1:50K datasets were provided by the National Geomatics Center of
China; and the 1:250K and 1:1M datasets are free to download from http://kmap.ckcest.cn
(accessed on 10 October 2021). The quality of all of the datasets have been thoroughly
checked and are accepted by authorized institutions, e.g., the provincial or national quality
inspection stations. Therefore, the four scale datasets can be used as standard manual
generalization results for the proposed approach and can be used for analysis as well as for
reference.

The basic information of the data is listed in Table 1.

Table 1. Experiment data.

Scale Updating Time Usage

1:10K 2017–2019 a. Data to validate the similarity measure;
b. Data to be aggregated to obtain the target data.

1:50K 2012–2014 a. Data to validate the similarity measure;
b. Standard data.

1:250K 2012 a. Data to validate the similarity measure.
1:1M 2015 a. Data to validate the similarity measure.

2.2. Residential Areas Generalization Method Follows Knowledge-Based Framework
2.2.1. Structure Recognition and Process Recognition Based on Map Analysis

Figures 1 and 2 show the residential areas, roads, and rivers of the region at scales
ranging from 1:10K to 1:1M.

1. In the 1:10K dataset, residential areas are represented as buildings (Figure 1a);
2. In the 1:50K dataset, residential areas are represented using building groups and

blocks [9] (Figure 1b) At the 1:50K scale, roads are not shown, so the residential areas
can be divided into blocks;

3. In the 1:250K dataset, residential areas depict entire urban settlements (Figure 2a);
4. In the 1:1M dataset, only big cities (i.e., residential areas) appear (Figure 2b).

It can be seen from Figure 1b that the residential areas on the 1:50K maps are a
compound of aggregated building groups and urban areas, or built-up areas [35,36]. Thus,
the generalization process of the residential areas on the 1:50K maps should be considered:
(1) the boundaries of the built-up areas should be identified and (2) free space should
be acquired within the outer boundaries. The two parts will be analyzed, and a strategy
will be made; furthermore, knowledge of how to properly implement the strategy will be
obtained.

http://kmap.ckcest.cn
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Figure 1. Vector datasets of Lanzhou City at the 1:10K and 1:50K scales: (a) 1:10K data and (b) 1:50K 
data. 
Figure 1. Vector datasets of Lanzhou City at the 1:10K and 1:50K scales: (a) 1:10K data and (b) 1:50K
data.
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Figure 2. Vector datasets of Lanzhou City at the 1:250K and 1:1M scales: (a) 1:250K data and (b) 1:1M
data.

2.2.2. Process Modeling

1. Boffet’s method and KDE:
Boffet et al. [32] proposed a complete method for free space identification. It is mainly

based on the buffer analysis of buildings and roads. The main idea of this method indicates
that the free spaces within urban areas are those spaces are not occupied by buildings and
roads. It is not hard to understand and is easy to apply. Through empirical testing, the
method was proven to be reasonable [37,38]. The only problem is the buffer distance, which
will be discussed later.

To determine the outer boundaries of urban areas, there are many approaches that
can be used [33,35,39,40]. Among them, KDE has been found to excel in detecting city hot
spots. However, similar to other hot spot maps, the KDE results are shown by contours,
which have two main drawbacks: first, contours provide less precise residential area
generalization results; and second, the smooth shape of the contours does not match the
cognitive habits that map readers have when they are identifying settlements [35].

On the other hand, the experiments have determined that Boffet’s method is precise
enough to be used for 1:50K residential area generalization. This is because it is a method
that is based on buildings and roads dilating and eroding buffer analysis, which is consistent
with the city sprawl rule: generally, urban expansion takes place in the form of building
and road construction, with a higher density in the hot spots and a lower density near the
edges of the city. In addition, the location error for the 1:50K residential areas should be
smaller than 0.1 mm on maps, which represents 5 m on the ground (according to Chinese
technical rules for quality inspection and acceptance of 1:50K topographical maps). In
Boffet’s method, the outline of the built-up areas and free spaces was obtained by the
dilating and eroding buffers for the 1:10K buildings, and its location error is smaller than
0.1 mm on 1:50K maps. This is because the 1:10K data has a higher location precision than
the 1:50K data. However, a problem with Boffet’s method is that it aggregates buildings
and roads together through buffering, merging, and other operators to form dispersed
building groups, but which building groups are included in the urban areas to form the
1:50K residential areas? Which building groups are excluded from the urban areas and
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eliminated? As mentioned in the last paragraph, KDE can provide a fuzzy build-up
boundary that allows Boffet’s method to make judgements. In fact, a city boundary is
intrinsically a fuzzy boundary that is cognitively delineated by human beings [33,41]; thus,
the results from KDE fit these kinds of boundaries.

Hence, a hybrid method combining KDE and Boffet’s method was developed in this
study. KDE was used to determine the general extent of built-up areas, while Boffet’s
method was applied to aggregate buildings and roads together to form a precise boundary,
such as the ones seen in 1:50K residential areas. Then, the two results are intersected to
determine the belonging relationships between buildings and urban areas. The process is
modeled in Figure 3. The area within the blue outlines in (b) and (c) represents the KDE
results. This is followed by an illustration of the thresholds of the two methods and detailed
generalization steps (Section 2.2.3).
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Figure 3. The 1:10K to 1:50K generalization model (it should be noted that the steps in the figure
are consistent with those in Figure 7 in Section 2.2.3; a detailed explanation is given in Section 2.2.3):
(a) Step 1: The original 1:10K data is clipped by the administrative boundary; (b) Steps 2 and 3: a
buffer is created for buildings, and it intersects with the KDE results; (c) Step 4, Part 1: A buffer
is created for the roads; (d) Step 4, Part 2: Polygons are merged; (e) Steps 5 and 6: Free spaces are
collected, simplified and smaller ones are eliminated; (f) Step 7, Part 1: Holes within urban areas are
filled in; (g) Step 7, Part 2 and Step 8: Holes are erased and internal buffer is made.

2. Threshold determination by map analysis and similarity measurement:
To describe the generalization process clearly, some parameters need to be clarified,

i.e., buffer distance, selection threshold, and KDE threshold. Map analysis and similarity
measurements are employed to find the most reasonable values for these parameters.

• Buffer Distance
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In Boffet’s method, the buffer distance around buildings is 20 m, and the internal
buffer distance of the blocks is 20 m. This is because 20 m is the standard distance of
“ownership”. However, in Lanzhou City, the widest road is 52 m, which is obtained
through measurements taken on the 1:10K road dataset. Therefore, in our experiment,
a 20 m buffer around buildings and an buffer of 26 m (half of 52 m) around roads were
determined to identify the free space in Lanzhou City.

• Selection Threshold

After the free spaces are obtained, elimination should be applied to select those large
and informative areas so that they may be retained on a 1:50K residential area map. This
decision is made through measuring the areas of the holes that are present on the 1:50K
map. The determined threshold is 5000 square meters. Thus, free spaces smaller than
5000 square meters may be eliminated.

• KDE Threshold

Here, city hot spot detection (i.e., the KDE) of 1:10K buildings is critical. This is because
the results achieved using Boffet’s method remain unchanged under the definite buffer
distance. Conversely, the KDE result, namely the hot spot detection result, varies according
to its threshold values. Additionally, only the regions that were determined using Boffet’s
method that intersect with the hot spots will be categorized into the generalization result.
On the other hand, others will be classified as field areas and will be deleted. For example,
in Figure 4, which shows KDE result 1, built-up areas include region A and region B;
however, when considering KDE result 2, built-up areas consist of region A, and region B
is only seen as noise and will be eliminated.
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Therefore, delineating an objective and scientific urban area is crucial to achieve a
reasonable generalization result. In order to achieve this aim, the KDE and the principles of
its threshold determination can be analyzed by following three steps:

(1) KDE is used to detect the distribution hot spots of 1:10K buildings. The Kernel
Density tool in ArcGIS (V10.2) is used to calculate the feature density in the neighborhood
around those features. The formula for calculating the kernel density is [42]:

Density(x, y) =
1

(radius)2

n

∑
i=1

 3
π
·popi

(
1−

(
disti

radius

)2
)2
 For disti < radius (1)

where Density(x, y) is the predicted density at a new location (x, y); radius is the search
radius from the point (x, y); i = 1, . . . , n are the points within the (x, y) radius distance;
and popi is the population field value; and disti denotes the distance between the cell and
the ith point in the circular neighborhood.
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The search radius and output cell size are two parameters that affect analysis results,
and previous studies have suggested different thresholds for the two parameters, with both
achieving different results. Through empirical testing, it has been found that the search
radius has more influence than the cell size, as the cell size only determines the level of
detail on the output grid. To determine the search radius, previous research used different
values ranging from 125 m to 500 m [43–46]. To fully automate the process, this study uses
Tversky’s similarity ratio model to determine the optimal threshold [47].

(2) Why is similarity modeling necessary? The reason is because the target is to
generalize 1:10K buildings to achieve a 1:50K residential areas; thus, the existing 1:50K
residential area dataset can act as a reference for KDE to make a comparison in order to
obtain the most similar results. Implicit knowledge can be gained through this process. The
similarity is context-dependent [48], i.e., the similarity between two things is always relative
to the certain context in which they are compared, such as from a certain perspective or
based on a specific interest [48,49]. This is also true for spatial similarity. In this study, the
geometric similarity relationship is considered. To be specific, the similarities determined
based on the KDE results and the 1:50K residential overlapping areas are considered. These
area similarities are compared for two reasons: first, shape similarity is controlled by
Boffet’s method, which is precise enough for a 1:50K result; and secondly, for polygonal
features, area maintenance is another important aspect in generalization [50]. Thus, area is
the main factor that is considering for geometric similarity measurements in this study. Its
function is to automate KDE threshold determination. To quantify and formally express it,
Tversky’s ratio model is used, and a detailed explanation is given below.

Firstly, a good similarity measure should match intuition [51,52]. However, for resi-
dential areas in multi-scale map spaces, aggregation is a common generalization operator
that causes that the correspondence relationships between residential areas at different
scales become complicated. Figure 5 shows a portion of the example data. In the 1:10K
dataset, 18 buildings represent field objects; while in the 1:50K dataset, two polygons are
obtained after applying aggregation and division operators based on these 18 buildings;
furthermore, in the 1:250K dataset, all of the buildings are represented by only one polygon.
As a result, the common measurements for geometric similarity, e.g., the turning function is
not suitable for features in multi-scale map spaces [53]. Instead, using Tversky’s ratio model
to measure similarity is a sound assumption because all of the maps used in the study are
geographically rectified [54], so overlaying areas between different scale residential areas
can reflect their commonality to some extent; additionally, it is not too sensitive to the shape
details and is robust enough as a geometric similarity measurement. This assumption is
tested by experiments in Section 3.1.1.

1 

 

 

Figure 5. An example of a correspondence relationship between residential areas at different scales.
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Secondly, cartography and geographical information science is a discipline that is
closely related to cognition science, and decades of human behavior research have demon-
strated that psychological similarity is not equivalent to mathematical similarity as it is
typically defined [47,55]. Tversky’s ratio model is a psychological similarity model that can
be used in map generalization. However, it must be validated before it is applied in KDE;
therefore, an experiment is designed below.

The matching function of Tversky’s ratio model is:

GeoSim(ObjD, Re f D) =
f (ObjD ∩ Re f D)

f (ObjD ∩ Re f D) + α f (ObjD− Re f D) + β f (Re f D−ObjD)
, α, β ≥ 0 (2)

where GeoSim(ObjD, RefD) is the similarity degree between the object data and reference
data; the function f measures the area of certain regions; ObjD∩Re f D denotes the common
regions belonging to both the object data and reference data; ObjD− Re f D represent the
regions that belong to the object data but not to the reference data; and Re f D−ObjD are
the regions that belong to the reference data but not to the object data.

Here, α = β = 1
2 because at present, data at different scales are maintained and updated

separately, and their update time are independent of each other (Table 1). ObjD− Re f D
and Re f D−ObjD are equally important, and as a result, the weights are set to be equal,
i.e., α equals β.

GeoSim(ObjD, RefD) is calculated between two different-scale experimental residen-
tial areas, including GeoSim(50K, 10K), . . . , GeoSim(1M, 250K), etc. There are six GeoSim
values. The values are then analyzed; if Tversky’s ratio model is proven to be effective,
namely, its results match the intuition of human beings, then it can be used to determine the
KDE threshold. Theoretically, the reference data should always be large-scale data, and the
object data should be small-scale data because small-scale data should be gained through
generalization from large-scale data, and large-scall data should be used as the reference.
However, in practice, different data are maintained and updated separately; therefore, in
this study, for the convenience of presentation, in GeoSim

(
Si, Sj

)
, Si can be greater than

Sj. Here, Si and Sj are data scales. However, in most cases, Sj is a larger scale, and Si is a
smaller scale.

(3) The KDE threshold is determined through the following steps: Firstly, GeoSim(
KDEdi f f erent threshold, 50K

)
is computed, and the search radius that maximizes GeoSim

(KDE, 50K) is chosen as the most appropriate threshold, i.e., the most similar KDE result
to the existing 1:50K residential areas is acquired with the determined search radius.

The resulting raster is then reclassified and converted to vector data, which are denoted
by KDEPolygons. The polygons in this dataset act as a “container” for Lanzhou City. The
“container” changes according to different density values (Figure 6). Areas with lower
density values can be used to extract the city’s overall sprawl extent, and areas with higher
density values represent the central urban areas with higher concentrations. For example, in
Figure 6, areas with density values of 1 or greater include the entire region (Figure 6b), while
areas with a density value of 2 or greater include two smaller individual regions (Figure 6c).
Through experiments, this study used the ”Equal Interval” classification method (9 classes)
in ArcGIS and chose the areas with density values bigger than or equal to classes 2–9 as
urban city regions because the KDE result under this classification method was the most
similar to the 1:50K reference residential areas.
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2.2.3. Detailed Generalization Process

Figure 7 shows the procedures of the proposed method. The results obtained from city
hot spot detection are denoted as KDEPolygons has and have been described in detail in
Section 2.2.2, where the threshold for city hot spot detection is closely related to geometric
similarity measurements. The detailed generalization process is as follows:
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Step 1: The 1:10K buildings are clipped by the administrative district polygons to
minimize the study area.
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Step 2: According to the knowledge acquired in Section 2.2.2, a 20 m buffer around
the buildings is computed to aggregate neighbor buildings, and the result is denoted by
BuiBufPolygons.

Step 3: The BuiBufPolygons that intersect with the KDEPolygons are selected, as denoted
by UrbanAreasInitial, representing the initial built-up areas. Due to the wide streets and free
spaces in cities, there are many small holes or narrow gaps. The narrow gaps will be filled
in the next step, while free spaces will be extracted as input data in Step 5.

Step 4: According to the knowledge acquired in Section 2.2.2, a buffer of 26 m around
1:10K road lines is made, and the result is clipped by the KDEPolygons, as denoted by
StrBufPolygons. The UrbanAreasInitial are “glued” together by the StrBufPolygons to form a
more complete built-up area, as denoted by UrbanAreasInitial2.

Step 5 and Step 6 are processes for acquiring free spaces.
Step 5: Extract all holes in UrbanAreasInitial2, denoted by FreeAreaPolygons. According

to the knowledge acquired in Section 2.2.2, the polygons in FreeAreaPolygons whose field
areas are smaller than 5000 square meters are deleted.

Step 6: Simplify FreeAreaPolygons using the Bend Simplify Algorithm [56] to obtain
simpler polygons depicting open spaces within UrbanAreasInitial2.

Based on UrbanAreasInitial2 and the inner free spaces, Step 7 and Step 8 are applied to
obtain the 1:50K residential areas.

Step 7: Fill all the holes within the outer boundaries of UrbanAreasInitial2 o, and then,
erase UrbanAreasInitial2 using the FreeAreaPolygons to achieve the final result, denoted by
UrbanAreasFinal.

Step 8: An internal buffer of 20 m is adopted to contract the dilated boundaries to
obtain higher position accuracy.

Note that in KDE, 1:10K buildings must be turned into points because the KDE tool in
ArcGIS only can use building points as input features.

3. Experiments and Results
3.1. Results and Analysis
3.1.1. Geometric Similarity Results and Analysis

Table 2 shows similarity values between the residential areas at four scales. They can
also be expressed as a matrix (1). Figure 8 evaluates the results and the effectiveness of the
geometric similarity measures. Many insights can be gained when considering the three
forms of similarity representation.

Table 2. Similarity values between residential areas at four scales.

Object Data and
Reference Data Common Area (m2)

Symmetrical
Difference Area (m2) Similarity Value

1:50K, 1:10K 43,071,658 74,941,399 0.53
1:250K, 1:10K 40,623,846 85,319,088 0.49
1:1M, 1:10K 39,926,929 98,906,243 0.45

1:250K, 1:50K 92,497,605 28,961,830 0.86
1:1M, 1:50K 88,426,174 49,297,954 0.78

1:1M, 1:250K 96,648,146 38,336,073 0.83
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Firstly, in Matrix (1), where the row number equals the column number, all of the
similarity values equal 1, indicating that the same dataset has the greatest similarity value
with itself. This conclusion can also be drawn from Figure 8. For example, the orange line
represents the similarity between residential areas at all four scales and residential areas
at 1:10K, and it reaches its peak value when the abscissa is 1:10K. In addition, it decreases
monotonically from the 1:10K abscissa on both sides (1:10K has the lowest abscissa value;
therefore, it only has one side).

Secondly, Matrix (1) is an upper triangular matrix because in multi-scale map space,
similarities between different scales are asymmetrical. For example, people usually say
“the 1:50K data are 53 percent similar to the 1:10K data” but seldom say “the 1:10K data are
53 percent similar to the 1:50K data” because smaller scale data are an abstraction of larger
scale data, and a metaphor that is able to connect two concepts with a “similar relationship”
involves a selective rather than an unconstrained comparison process [57]. The same rule
applies to Figure 8.

For each row of Matrix (1), the similarity values decrease as the map scale decreases.
On the whole, the similarity values between any other scales and the 10K data are the
smallest (except for 10K data, which are 100% similar to themselves). This should be readily
interpretable, for the 1:10K data provide a detailed description of individual buildings, but
the 1:50K scale is a turning point where the data form a block view. However, in the 1:50K
to 1:1M data, the similarity value decreases at a relatively slow speed, but the overall trend
remains unchanged. An example of this would be c23 = 0.86 > c24 = 0.78, which means
that the 1:250K data are more similar to the 1:50K data than the 1:1M data are.

The ground truth time described by the data also plays an important role in similarity
measurements, which is called “time similarity”. The results also indicate that 1:50K
is a turning point scale for map generalization from which the main task for mapping
residential areas becomes a more generalized “block view” (compared with individual
buildings of 1:10K). For building generalization from 1:10K to 1:50K, the most commonly
used algorithm is aggregation. While for 1:50K to 1:250K and even to 1:1M generalization,
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elimination and simplification are more used to delete smaller areas and details more
often [17].

It can be seen from the above analysis that the method used to measure geometric
similarity is effective. Thus, it can be used to fully automate KDE and to determine its
threshold values.

3.1.2. The KDE Results with Different Threshold Values and Manual Inspection

Figure 9 shows the urban hot spots delineated by the kernel density analysis with
different threshold values.
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size (10 m): (a) is the result when the search radius is 150 m; (b) is the result when the search radius
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From Figure 9, it can be seen that the detected urban hot spots sprawl as the search
radius increases. A manual comparison between Figure 9 with Figure 1b (1:50K residential
area data) shows that:

(1) The detected hot spots are mostly isolated contours when the search radius is small,
e.g., 150 m (Figure 9a). The topological relationships of the contours are disjointed, which
makes them less suitable as containers for aggregated buildings;

(2) The detected hot spots are almost connected when the search radius is large, e.g.,
500 m (Figure 9e). The topological relationships of the contours are contained, resulting in
an urban area that is larger than it actually is;

(3) The white rectangles in Figure 9 show a partial enlargement of the KDE results.
Compared to the same region in the 1:50K data (green rectangle in Figure 1b), the residential
area is divided by the Yellow River into two parts. Intuitively, from the perspective of the
topological relationship, the best KDE result is the urban hot spots that were detected with
the 300 m search radius.

3.1.3. Similarity Measure and Threshold Determination

Table 3 lists the quantitative similarity results that were computed using Equation (2)
(Section 2.2.2). It can be seen that when the search radius is 300 m, the maximum similarity
it obtained (0.77). This result also matches the initiation of human beings. Consequently, the
hot spots result in Figure 9c is used as the building aggregation container (KDEPolygons).

Table 3. The similarity of different kernel density analysis results and the standard 1:50K residential
areas.

Threshold (m) Common Area (m2)
Symmetrical

Difference Area (m2) Similarity

150 20,470,299 87,143,961 0.32
200 66,457,811 52,045,137 0.72
300 98,036,747 59,650,663 0.77
400 101,323,067 83,361,424 0.71
500 102,154,882 102,910,295 0.67
600 102,457,973 116,361,813 0.64

3.1.4. Results of Generalization

(1) Figure 10 shows the 20 m buffer results of the 1:10K buildings. Two layers, grey
areas (BuiBufPolygons) and colored areas (UrbanAreasInitial), are shown. BuiBufPolygons
is the original buffer result, while UrbanAreasInitial is a subset of BuiBufPolygons that
intersects with KDEPolygons. BuiBufPolygons that are covered by UrbanAreasInitial are
identical to the UrbanAreasInitial on the top, and the BuiBufPolygons that are not covered by
UrbanAreasInitial are excluded from the urban areas (e.g., red circles in Figure 10).

It can be seen that the results are separated parts, also, interior of each parts of
UrbanAreasInitial has many narrow areas and holes.

(2) Figure 11 shows the polygons merged by UrbanAreasInitial and StrBufPolygons (a),
they are dissolved to obtain (b). Figure 11c shows UrbanAreasInitial2.
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(3) Figure 12 shows FreeAreaPolygons, which represents the free spaces within urban
areas larger than 5000 square meters.
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(4) After Step 7 and Step 8, UrbanAreasFinal can be obtained, as shown in Figure 13.
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3.2. Evaluation
3.2.1. Visual Comparison with Reference 1:50K Data

Through a manual comparison of the generalization results (Figure 13) and the stan-
dard data (Figure 1b), the differences between the two datasets can be classified into two
types: new free spaces within urban areas and extension regions on the edges of the cities
or towns. The results show more free spaces and extension areas than the standard data do.
This indicates that from 2012 to 2019 (Table 1), many leisure and entertainment places and
green land parks have been built in the city, allowing the city to become more developed
and increasing livability. Additionally, the overall land areas have increased, most of which
are new residential communities.

Figure 14 shows examples of free space from Figure 12. They are compared with the
latest web satellite map https://map.qq.com/ (accessed on 10 October 2021). It can be seen
that the free spaces within urban areas generally fall into the following categories: (a) fields;
(b) open-air playgrounds; (c) railway stations; (d) squares; (e) parks; and (f) space yet to
be built on. Therefore, compared to the 1:50K reference residential areas, the obtained free
spaces are accurate and are in accordance with the ground conditions.
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3.2.2. Quantitative Evaluation

Equation (2) is used to calculate the similarity between the result and the standard
data. Moreover, the similarity between the results and the 1:250K residential areas and the
results and the 1:1M data are measured (Table 4).
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Table 4. The similarity between the resulting urban areas and the standard residential areas at varying
scales.

Object Data
(Resulting Data) and

Reference Data
Common Area (m2)

Symmetrical
Difference Area (m2) Similarity

Result, 1:10K 53,260,312 68,916,946 0.61
Result, 1:50K 88,326,204 44,336,786 0.80

Result, 1:250K 89,024,948 48,421,362 0.79
Result, 1:1M 89,229,289 60,206,001 0.75

Table 4 shows that similarity varies with the reference data. A general trend is that
the similarity between the obtained data (equivalent to 1:50K data) and the reference data
decreases as the scale difference between the reference data and the result data increases,
but the rate of the decrease is relatively slow, especially for the 1:250K data, whose similarity
value (0.79) is almost the same as that between UrbanAreasFinal and the 1:50K data. This is
because the actuality (i.e., the time the data is updated) of the 1:50K and 1:250K data are
relatively consistent (Table 1). Additionally, the similarity value between the obtained data
and the 1:1M data reaches 0.75, which is also not small, due to the fact that the actuality of
the 1:1M data is close to that of the original 1:10K data. Both of them are relatively new
among the four scales.

3.2.3. Satisfaction of Requirements in Practice

Table 5 provides a qualitative comparison of the traditional approaches with the
proposed method based on six criteria. These six criteria are commonly used standards in
practice and include position correctness, updating cycle, data consistency, etc. It can be
seen that the traditional method has a long data updating cycle due to the repetitive manual
updating mode. As a result, before the small-scale data are updated, the data consistency
between the large-scale (1:10K) buildings, roads, and small-scale (1:50K) residential areas is
not good. Moreover, the correctness of the proposed method is ensured by Boffet’s method
as well as by KDE. It can delineate urban areas objectively and automatically, while the
data quality of the traditional method mainly depends on the cartographer’s experience
and skill, and it is subjective.

Table 5. Satisfaction of requirements for ideal data generalization method.

Criterion Traditional Method Proposed Method

1:10K and 1:50K data updating mode Manual updating
1:10K data updating + 1:50K data

generalization from the newest 1:10K
data

Data updating cycle
Longer (1:10K data manual updating
cycle + 1:50K data manual updating

cycle)

Shorter (1:10K manual updating cycle +
automatic 1:50K data generalization time)

Consistency between 1:10K data and
1:50K data Not good before updating is finished Good

Correctness of outer boundaries and free
spaces

Depends on the cartographer’s
experience and skill

Correctness can be ensured due to the
dilating and eroding buffers of updated

buildings and roads
Threshold determination automation / Yes

Method is objective or Subjective Subjective Objective

4. Discussion

This study provides an example of residential area generalization using a knowledge-
based framework with a scale reduction of five times. In the map generalization process,
geometric similarity measures are used to determine the KDE threshold. A number of
insights can be gained from this study.
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(1) In practice, the delineation of urban areas is mainly finished manually by cartog-
raphers using big scale data, e.g., 1:10K buildings. The artificial determination of urban
boundaries is inevitably subjective. In addition, the biggest drawback of the manual
method is that the multi-scale databases are maintained and updated separately, which
not only leads to repeated work, but also makes it difficult to maintain consistency among
multi-scale datasets. The result of this study is a 1:50K residential area dataset in multiple
representation databases. The proposed method can delineate the urban areas objectively,
which is in accordance with the “natural city” proposed by Jiang [40].

(2) Through geometric similarity calculations of the residential areas from 1:10K to
1:1M, it was found that the similarity values decreased when the map scale reduced. In
addition, 1:50K is an essential scale from which residential areas are represented from
individual buildings to city blocks. From this insight, it can be inferred that different scale
maps should focus on different tasks: a 1:10K map is mainly for careful observation and
measurement, whereas a 1:50K map should mainly be used to express the overall rule of a
whole mapping area. This is because it is consistent with human beings’ intuition, which is
also an important standard for a similarity measure.

(3) Table 4 and Figure 8 show that the similarity values between the result data and
the reference data from 1:10K to 1:1M reaches its peak (0.80) when the scale is 1:50K. This
result demonstrates that compared to other data, the result is the most similar to the 1:50K
reference data. Additionally, the differences between the two lines reflect the differences
in the field conditions. This is because the result is abstracted from the newest 1:10K data
(2017–2019), but the actuality of the existing 1:50K data is 2012–2014, and during this period,
the field situation has changed greatly.

(4) It can be inferred from (3) that, for a city that has developed to a relatively mature
stage or for a city whose sprawl is limited by specific factors, such as Lanzhou, there is less
and less land for it to expand to due to the fact that its land in the suitable terrain slope
range on which people can live is becoming less and less, making this method appliable.
This is because the changes that took place between 2012 and 2019 were in an acceptable
range. On the contrary, for a city that sprawls quickly, e.g., a newly built city, geometric
similarity cannot be measured by the proposed method.

(5) The analysis of the experiment process and the results shows that: knowledge
plays a fundamental role in intelligent generalization. Some knowledge can be formalized;
however, it is not easy to adequately obtain and record other types of knowledge. Most
of the knowledge in the experiment was acquired by map analysis and spatial reasoning.
Additionally, from another point of view, similarity quantification is a type of knowledge
that is hidden in the minds of cartographers.

5. Conclusions and Future Work

This article presents a hybrid method that uses a knowledge-based framework and
similarity measurements to generalize residential area maps in the scale ranging from
1:10K to 1:50K. The generalization process is divided into two parts: (1) identifying the
boundaries of built-up areas; and (2) acquiring the free space within those boundaries. For
the latter, Boffet’s method was used; for the former, a hybrid method using Boffet’s method
and kernel density analysis was utilized. Map analysis and similarity measurements were
applied to acquire knowledge about parameters in the two methods. Generalization steps
were created based on the knowledge acquired.

The proposed approach was tested using multi-scale datasets of Lanzhou City. A
manual comparison between the results and the existing 1:50K residential areas show that
the results are reasonable and in accordance with the actual field situation; in addition, the
similarity values between the results and the reference 1:50K data are the largest among the
calculated similarity values. However, there are several limitations that must be considered
when using this model. The similarity calculation is based on the overlay of multi-scale
maps; its result depends on the coordinate consistency and the time span between data
sources. For example, as described in the Discussion (4), if the 1:50K data are very old and
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the 1:10K data are updated within a short cycle, then the 1:50K data cannot be employed
to act as a reference that the kernel density analysis can be compared to. Moreover, the
obtained result still can be improved through the use of a specific algorithm to avoid
unpleasant curves caused by buffer-internal buffer operation.

Overall, the approach is robust, comparatively insensitive to the noise of the small
buildings beyond the urban areas, and easy to implement in the GIS software. It should
be noted that data model harmonization and topological relationship correctness after
generalization are not considered, which are critical for achieving scientific automatic gen-
eralization. Our future work will concentrate on two aspects, including the generalization
of residential areas by taking into account how to maintain their topological relationships
with city roads.
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