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Abstract: In a complex indoor environment, wireless signals are affected by multiple factors such
as reflection, scattering or diffuse reflection of electromagnetic waves from indoor walls and other
objects, and the signal strength will fluctuate significantly. For the signal strength and the distance
between the unknown nodes and the known nodes are a typical nonlinear estimation problem, and
the unknown nodes cannot receive all Access Points (APs) signal strength data, this paper proposes a
Particle Filter (PF) indoor position algorithm based on the Kernel Extreme Learning Machine (KELM)
reconstruction observation model. Firstly, on the basis of establishing a fingerprint database of
wireless signal strength and unknown node position, we use KELM to convert the fingerprint location
problem into a machine learning problem and establish the mapping relationship between the location
of the unknown node and the wireless signal strength, thereby refocusing construct an observation
model of the indoor positioning system. Secondly, according to the measured values obtained by
KELM, PF algorithm is adopted to obtain the predicted value of the unknown nodes. Thirdly, the
predicted value is fused with the measured value obtained by KELM to locate the position of the
unknown nodes. Moreover, a novel control strategy is proposed by introducing a reception factor to
deal with the situation that unknown nodes in the system cannot receive all of the AP data, i.e., data
loss occurs. This indoor positioning experimental results show that the accuracy of the method is
significantly improved contrasted with commonly used PF, GP-PF and other positioning algorithms.

Keywords: indoor positioning; kernel extreme learning machine; particle filter; reconstructed
observation model

1. Introduction

Indoor positioning has been extensively used and developed with the increasing
demand for indoor position information in recent years. Many places, such as the location
of workers in the mine, patients in hospitals, and pedestrians in shopping malls, require
accurate location information of targets. Although the Global Positioning System (GPS)
for positioning in outdoor environments is relatively mature [1–3], GPS signals are easily
blocked by buildings in indoor surrounding and the signals are very weak. Therefore,
indoor positioning has pay closer and closer attention. Nowadays, the demand for indoor
positioning is increasing, and wireless positioning systems in different environments have
been widely studied. Indoor positioning systems based on wireless signals have become a
research hotspot in last several years [4–7]. Indoor positioning is broadly classified into
two categories according to the positioning principle: infrastructure-less and infrastructure-
based, both of which have achieved good research results.

The infrastructure-less approach does not require the support of existing infrastructure
or networks, such as APs. For example, reference [8] proposed a smartphone-based indoor
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localization method with an accelerometer and gyroscope, which can be used to find the
distance traveled and heading estimation of pedestrians by accelerometer and gyroscope
sensors respectively. Reference [9] proposed a problem of localization and navigation
for blind people in indoor environments using processing and sensing techniques of
smartphones rather than relying on external technologies. Reference [10] proposed a crowd
sourced landmark indoor localization method based on accelerometer, magnetometer and
gyroscope sensors of smartphones and adaptively optimized landmark algorithms are
used correct the drift errors caused by sensor readings with the corresponding landmark
database established by the experimental environment.

Infrastructure-based approaches require the use of existing infrastructure, such as Wi-
Fi, and have achieved many successful research results. Reference [11] predicts the location
coordinates of indoor robots based on RSS Kalman localization algorithm. Reference [12]
investigated a weighted least squares based indoor localization system. Reference [13]
proposed a particle filtering multi-target tracking algorithm based on RSS measurements
for wireless sensor networks. The algorithm firstly uses approximate Least Squares (LS) for
initial localization, and then completes the whole multi-target tracking by PF. Reference [14]
studied the application of PF in indoor localization, and such PF method can meet the
requirements of low-cost localization. To improve location accuracy of the PF indoor
positioning technique, it is necessary to obtain an accurate transmission model of each
Wi-Fi access point, which is more difficult.

The above references [11–14] focus on positioning methods by ranging based on RSS
propagation models. The received RSS measurements are usually converted into distance
measurements by the shaded logarithmic propagation model, and then the LS, Kalman,
and PF methods are used for position estimation. From the shaded logarithmic propagation
model, it can be seen that the signal strength and the distance between the unknown nodes
and the known nodes have a logarithmic nonlinear relationship, which is a typical nonlinear
estimation problem [15]. In addition, due to the complex indoor conditions, wireless
signals are affected by diffuse reflection, scattering or reflection, bypassing, refraction, or
transmission of electromagnetic waves from objects such as building walls in a complex
indoor environment, which produces a certain impact on the propagation model. These
methods are affected by the environment. Then it is difficult to accurately determine the
target model of unknown nodes, and thus many errors still exist.

Compared to propagation model methods, which are highly influenced by the envi-
ronment, location fingerprint-based indoor localization methods [16,17] can reduce the
impact of signal shadow fading and multipath effects. Fingerprinting techniques have
been used for both infrastructure-less and infrastructure-based, such as fingerprinting
localization methods by the physical quantity of Received Signal Strength Indication (RSSI).
Location fingerprint-based indoor localization methods have also made great research
progress. References [18,19] developed a set of Android applications which are based on
the RSSI of Wi-Fi to obtain the location by the Weighted K Nearest Neighbor (WKNN)
algorithm. Reference [20] proposed a spatial-based WKNN indoor localization algorithm
feature partitioning and previous location restrictions and divides the localization large
area into multiple partitions based on their spatial features to solve the problem that one
fingerprint library cannot achieve full coverage. Reference [21] proposed a Maximum
Likelihood Particle Filter (MLPF) that can reduce the number of particles in indoor dy-
namic localization to produce highly accurate localization. Reference [22] discussed an
indoor positioning algorithm based on fuzzy logic. It used the RSSI of the Bluetooth beacon
and the geometric distance from the current beacon to the fingerprint point to calculate
the Euclidean distance and then determined the position in the fuzzy logic framework.
Reference [23] proposed a novel iBeacon beacon placement strategy, which can achieve
21.7% higher accuracy than the existing common iBeacon placement. In reference [24],
a new Wi-Fi positioning method is proposed which is fusing RSSI derived fingerprints
and multiple classifiers. Reference [25] put forward an Extreme Learning Machine (ELM)
localization algorithm technique in view of RSSI. The Gaussian Process model enabled the



ISPRS Int. J. Geo-Inf. 2022, 11, 71 3 of 14

PF (GP-PF) algorithm for device-free localization algorithm is proposed in reference [26].
References [18–28] are about fingerprint localization methods. These methods are based on
the case where an unknown node can receive all AP signal strengths.

For the problem of blocked wireless signals in complex indoor environments, which
leads to the inability to receive all APs data, this paper proposes a control strategy by
introducing a reception factor E, which can solve the problem of unknown nodes not
being able to receive all APs data due to blocked wireless signals in real environments.
Meanwhile, we adopt the KELM method to transform the fingerprint localization problem
into a machine learning problem. On the basis of reconstructing the non-linear mapping re-
lationship between the indoor positioning of the unknown nodes and the wireless network,
we combine PF to make the localization system more robust to measurement noise.

We simulate the PF indoor localization method based on the KELM reconstructed
observation model and actual Wi-Fi indoor localization experiments. Under the same
conditions, we compare it with existing localization algorithms such as PF and GP-PF. The
experimental results show that the KELM-PF algorithm proposed in this paper improves
the positioning accuracy of unknown nodes and is more suitable for the positioning of
unknown nodes in complex environments.

The four basic structures of this paper are described briefly as follows: The second
section introduces KELM theory. The proposed reconstructed observation model indoor
positioning method is described in detail in the third section. The indoor positioning
experimental results and analysis are described in the fourth section. Finally, conclusions
and prospects are illustrated in the fifth section.

2. Kernel Extreme Learning Machine

ELM is a machine learning algorithm based on Single Layer Feed Forward Neuron
Network (SLFN) proposed by Professor Huang Guangbin [29,30].There are three layers of
architecture generally, including the input, hidden and output layers, to solve the problems
of cumbersome parameter setting of the backpropagation algorithm and low learning
efficiency. Huang Guangbin et al. [31,32] proposed KELM by solving the process between
ELM and vector machine. The KELM algorithm is obtained by the kernelization of the
ELM method, which is a SLFN with a kernel function. Compared with ELM, KELM is more
robust and performs better in linearly inseparable samples.

As shown in Figure 1, for (xi, yi) with n samples, in which xi = [xi1, xi2, · · · xin]
T ,

yi = [yi1, yi2, · · · yin]
T ∈ Rn, SLFN with L hidden layer nodes can be described as

L

∑
j=1

ηjψ
(
αj · xi + β j

)
= oi, i = 1, 2, · · · , n, (1)

where αj = [αj1, αj2, · · · , αjn]
T and β j are input weight and threshold of hidden layer

neuron. ηj = [ηj1, ηj2, · · · ηjn]
T is the connection weight between the j-th neuron in the

hidden and the output layer, and ψ(x) is the activation function of hidden layer neurons.
Formula (1) has the matrix form as:

Ψη = Y, (2)

where

Ψ(α1, · · · , αL, β1, · · · , βL, x1, · · · , xN)

=


ψ(α1 · x1 + β1) ψ(α2 · x1 + β2) · · · ψ(αL · x1 + βL)
ψ(α1 · x2 + β1) ψ(α2 · x2 + β2) · · · ψ(αL · x2 + βL)

...
...

...
ψ(α1 · xn + β1) ψ(α2 · xn + β2) · · · ψ(αL · xn + βL)


n×L

(3)

and η = [η1, η2, · · · , ηL]
T
L×n, Y = [y1, y2, · · · , yn]

T .
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Figure 1. The basic structure of ELM.

Since the input weights are randomly generated, the hidden layer neuron threshold
can also be randomly generated, and there is no need to adjust Ψ. The connection weight η
between the hidden and the output layer is obtained by solving the following formula:

min
η
‖ Ψη −Y ‖, (4)

Then:
η = Ψ†Y, (5)

where Ψ† is the Moore Penrose generalized inverse matrix of Ψ [32,33].
KELM trains the network by the norm of the output weight and minimizes the training

error. Then, from the standard optimization theory, the minimization obtained can be
written as:

Min : Lp =
1
2
‖ η ‖2 +C

1
2

N

∑
i=1

ϑ2
i s.t.ψ(xi)η = yi − ϑi, i = 1, 2, · · · , n, (6)

where C is the regularization parameter and ϑi is the training noise.
From the Karush Kuhn Tucker (KKT) theory [34], the above problem can be trans-

formed into the optimization problem of formula (7):

LPkelm =
‖ η ‖2

2
+

C
2

N

∑
i=1

ϑ2
i −

N

∑
i=1

ξi(ψ(xi)η − yi + ϑi), (7)

where ξi is the Lagrange operator.
By solving the optimization problem of above formula, we obtain:

η =
N

∑
i=1

ξiψ(xi)
T = ΨTξ, (8)

Cϑi = ξi, i = 1, 2, · · · , n, (9)

ψ(xi)η − yi + ϑi = 0, i = 1, 2, · · · , n, (10)

where ξ = [ξ1, ξ2, · · · , ξn]
T.
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Substituting (8) and (9) into (10), it holds that(
ΨΨT +

1
C

)
ξ = Y. (11)

K
(

xi, xj
)
= ψ(xi) · ψ

(
xj
)T (i, j = 1, 2, · · · , n) is the kernel function, the output of the

KELM hidden layer can be written as:

f (x) = Ψη = ΨΨT
(

ΨΨT +
1
C

)−1
Y. (12)

According to the Mercer condition [35], the above formula can be written as:

f (x) =


K(x, x1)
K(x, x2)

...
K(x, xN)


(

1
C
+ K

(
xi, xj

))−1
Y, (13)

where, the following Gaussian RBF kernel function [29,30] is used:

k
(

xi, xj
)
= exp

(
−1

2

∥∥xi − xj
∥∥2/γ2

)
(14)

with the parameter of the Gaussian RBF kernel function γ.

3. Indoor Positioning Algorithm Based on Reconstructed Observation Model and PF
3.1. Principle of Indoor Positioning Algorithm Based on Fingerprint Location

In indoor positioning scenarios, the signal propagation path of each AP is very com-
plicated, which usually leads to low positioning accuracy. The indoor location method
based on fingerprint positioning is relying on the smart mobile terminal to collect the RSS
value of the reference nodes from the deployed APs. The RSS of each calibration node is
significantly different. It can be uniquely identified by recording a set of RSS values of the
calibration nodes. Then, the fingerprint information data of each reference node in the
target area are collected in advance: thus, the reference node RSSI fingerprint database
is established. Combined with the KELM algorithm, the nonlinear mapping relationship
between the RSS signal and the corresponding position coordinates is established in order
to achieve the purpose of positioning.

The indoor location algorithm based on location fingerprint mainly includes two stages:
an offline stage and an online stage. At each reference node, the wireless signal strength of
each AP is collected. Then the RSSI fingerprint data on the reference nodes are expressed as
(Zi, Ri)(i = 1, 2, · · · , N), where Zi = (xi, yi) is the spatial two-dimensional coordinates of the
unknown node at the i-th moment, and Ri = (RSSIi1, RSSIi2, · · · , RSSIim)(i = 1, 2, · · · , N)
is the RSSI values composed of m APs and is the signal strength vector tested at the i-th
moment. Then the fingerprint database is established. Through filtering and training, the one-
to-one correspondence between the RSSI high-dimensional vector and geographic location
coordinate two-dimensional vector is obtained. In the online stage, a set of RSSI received is
used to determine the final positioning coordinates through the trained model. The positioning
principle based on RSSI data is shown in Figure 2 [36,37].
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Figure 2. Location principle of fingerprint positioning. (The offline fingerprint database is established
by collecting the wireless signal strength of the reference points in the offline stage. The positioning
algorithm is the research method in this paper, and the position coordinates are the coordinates of
unknown nodes).

Assuming that n is the number of data samples collected and m is the number of
APs with unknown node receiving signal strength, the input matrix of the KELM can be
described as:

R =


R1
R2
...

Rn

 =


RSSI11 RSSI12 · · · RSSI1m
RSSI21 RSSI22 · · · RSSI2m

...
...

. . .
...

RSSIn1 RSSIn2 · · · RSSInm


n×m

. (15)

The input weights with L-th hidden nodes are:

α =


α1
α2
...

αL

 =


α11 α12 · · · α1n
α21 α22 · · · α2n

...
...

. . .
...

αL1 αL2 · · · αLn


L×n

. (16)

The output of the networks can be expressed as:

Zi(xi, yi) = Y =


x1 y1
x2 y2
...

...
xn yn

. (17)

Therefore, the KELM model constructed is as follows:

Zi(xi, yi) = G(Ri), (18)

where G(·) is the mapping relationship between the unknown nodes position coordinates
obtained by KELM training and the signal strength of each AP point received by the
unknown nodes.

3.2. Particle Filter Localization and Receiving Factor Control Strategy

The determination of the location of unknown nodes indoors can be regarded as a
random process of probability. Therefore, a PF algorithm [38] is used for positioning. In the
indoor environment, m APs with known locations need to be distributed. It is necessary
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to establish a dynamic space model before using particle filtering to solve unknown node
location. The position state of the unknown nodes is approximately modeled as:

Xi =

[
1 0
0 1

]
Xi−1 + ui−1 = FXi−1 + ui−1, (19)

where Xi = [xi, yi]
T is the two-dimensional coordinate of the unknown nodes and

F =

[
1 0
0 1

]
is the discrete state transition matrix, and ui−1 is the process noise obeying

Gaussian distribution.
The observation model is constructed by KELM form formula (18):

Γi = HZi(xi, yi) + υi =

[
1 0
0 1

]
Zi(xi, yi) + υi, (20)

where H =

[
1
0

0
1

]
represents the output matrix, and υi is the observation noise.

The procedure of the PF-based indoor positioning is shown in Algorithm 1, with Np
as the particle number and Nvp as the valid particles number.

The above-mentioned on indoor positioning methods based on KELM-PF assumes
that the unknown nodes of the positioning system can normally and completely receive the
signal strength of all APs. However, in complex indoor situations, the signal transmission
will be blocked by walls, tables, chairs, partitions and other obstacles, and the unknown
nodes cannot receive the signal strength of all nodes at the same time, so it is inevitable to
lose part of the data of the APs. Therefore, how to design the location system has greatly
practical value in the case of random data loss in wireless positioning system. At present,
there are few research results on this problem. Reference [39] designed a robust filter for
the FM model of a two-dimensional system when there exists data loss. However, for
filtering under the circumstance that data loss based on the KELM-PF indoor positioning
algorithm, the problem has not been studied yet. This paper proposes a control strategy
by introducing a reception factor E for the situation that unknown nodes in the wireless
positioning system cannot receive the data of all APs, i.e., data loss occurs.

Algorithm 1. PF-Based Indoor Positioning.

Prediction: Xi = FXi−1;
Predicted measurement: Γi = HZi(xi, yi);
Input: set a threshold Nth;
for particle k = 1 : Np do

Gaussian sampling:
{

Xk
i

}Np

k=1
= p

(
Xi | Xk

i−1

)
;

Calculate the weight for each particle wk
i = wk

i−1
p(Γi |Xk

i )p(Xk
i |Xk

i−1)
q(Xk

i |Xk
i−1,Γ1:i)

;

end for

Normalizing: ŵk
i = wk

i /
Np

∑
k=1

wk
i ;

Important sampling: Nvp = (
Np

∑
k=1

(ωk
i )

2
)

−1

;

If Nvp > Nth, important sampling;
end if

State estimation: X̂i(xi, yi) ≈
Np

∑
k=1

ŵk
i Xi.

In the indoor positioning system mentioned above, m APs are set. At i-th time, the
signal strength of the unknown node that can receive the m APs deployed, which is denoted
as Ri = (RSSIi1, RSSIi2, · · · , RSSIim), (i = 1, 2, · · · , N). The number of AP data received
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by the unknown node is denoted by nr. Then a reception factor E is introduced based on
nr: if nr < 3, then set E = 0, and the indoor positioning algorithm uses the data of all APs
received at the previous moment for PF calculating; if nr ≥ 3, then set E = 1. Then the
KELM-PF algorithm is used for positioning. The expression of the reception factor E is
as follows:

E =

{
1, nr ≥ 3
0, nr < 3

. (21)

3.3. Steps of Iterative Indoor Location Based on KELM-PF

This KELM-PF-based indoor positioning algorithm firstly trains the weights of the
hidden and the output layer through the KELM network, then calculates the number nr
of AP signal strengths received by unknown nodes, and adopts the control strategy of the
reception factor E: if E = 1, using the KELM-PF algorithm reconstruct the observation
model and then obtain the position coordinates of the unknown node; if E = 0, it returns to
the last execution of PF.

The indoor positioning algorithm based on KELM-PF iteratively obtains its estimated
value through the following Algorithm 2.

Algorithm 2. KELM-PF Based Indoor Positioning

Inputs: ωj = [ωj1, ωj2, · · · , ωjn]
T , β j = [β j1, β j2, · · · β jn]

T , Ri, nr, m, Np, Nth, Nvp;
Step 1: Training the weight parameters ωj and β j of the hidden layer and output layer of KELM;
Step 2: Use the receiving factors E to make decisions: calculate nr. If E = 1, it will perform next
step of the KELM-PF algorithm; if E = 0, jump to step 4 and execute the PF of the previous step;
Step 3: Execute the KELM-PF algorithm, reconstruct the observation model, obtain the
observation value, and output the estimated value: put Ri into the KELM network for training

and obtain the observations. If nr = m, put the signal strength vector
_
R i obtained by real time

detection into the KELM network for testing, and obtain the observed value. Then execute the
particle algorithm of Algorithm 1 and output X̂i(xi, yi); if nr < m, set the signal strength of the
unreceived node to 1, and then perform KELM testing. Then, execute the particle algorithm of
Algorithm 1 and output X̂i(xi, yi).
Step 4: Executes the PF of the previous step.

4. Experimental Results and Analysis
4.1. Verification of Validity

The experimental site is the laboratory on the fifth floor of the university: laboratory
rooms 521, 520 and the corridor between them. The area of room 521 is about 80 m2, the area
of room 520 is about 60 m2, and the area of the corridor is about 20 m2, as shown in Figure 3.
The wireless router is TP-LINK TL-R860, and eight wireless routers are placed in room 521
and room 520 (AP1-AP8 in Figure 3). The acquisition tool is the Wi-Fi fingerprint acquisition
app, and all experiments are executed in the Matlab 2020a. We set up 66 Reference Nodes
(RNs), including 30 RNs in room 521, 16 RNs in room 520 and 20 RNs in corridor. The
distance between each RN is about 1.0 m. The black dots in Figure 3 represent the RNs
used to collect RSS values in the offline stage. In each RN, we collect 60 samples with a
time interval of 2 s, and a total of 18,000 sample data are obtained. Moreover, we set the
number of training samples to 15,000 and the verification sample to 3000. L is set to 100, C
is selected to 10, and 8 nodes are randomly selected to be tested in the rooms of 521, 520,
and the corridor. Then the positioning accuracy obtained is shown in Figures 4–6. The
Root Mean Square Error (RMSE) between the estimated position of the unknown nodes
and the true position is calculated, and RMSE is the evaluation standard of the algorithm’s
performance:

RMSE =

√√√√ 1
M

M

∑
i=1

(xi − xio)
2 + (yi − yio)

2, (22)
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where M is the Testing Node (TN) number, (xi, yi) and (xio, yio)represent the predicted
position coordinates and actual position coordinates of the unknown node, respectively.

Figure 3. Nodes distribution map of indoor localization experiment area. ( AP1~AP8 are the
8 APs deployed; is the reference point for establishing the fingerprint database; 516~521 are the
laboratory room numbers for indoor positioning).

Figure 4. Positioning accuracies of different algorithms in room 521.
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Figure 5. Positioning accuracies of different algorithms in room 520.

Figure 6. Positioning accuracies of different algorithms in the corridor.

The specific positioning accuracy comparison results of different algorithms in differ-
ent indoor spaces are shown in Figures 4–6. The positioning accuracies of the PF, GP-PF
and KELM-PF algorithms in room 521 are shown in Figure 4. The positioning accuracies
of the PF, GP-PF and KELM-PF algorithms in room 520 are shown in Figure 5, and the
positioning accuracies of the PF, GP-PF and KELM-PF algorithms in the corridor are shown
in Figure 6. It can be seen from Figures 4–6 that the positioning accuracy of the KELM-PF
algorithm is better than that of the PF and GP-PF algorithms. The KELM-PF algorithm has
been tested in many places, and its positioning accuracy fluctuates little. Compared with a
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single PF algorithm, the positioning accuracies in room 521, room 520 and the corridor are
improved by 17.5%, 17.3%, and 16.1%, respectively.

4.2. Reference Node Density and Positioning Accuracy Experiments

As shown in Figure 3, four APs are placed in the laboratory 521. In the same envi-
ronment, the same TNs are compared with its positioning accuracy at three densities of
0.5 m, 1.0 m, and 2.0 m. The KELM-PF algorithm estimated the position coordinates of
TNs, and formula (22) is used to calculate the positioning errors at the three densities, as
shown in Table 1. It can be seen from Table 1 that the positioning accuracies of the PF,
GP-PF, and KELM-PF algorithms are related to the density of the fingerprint collection data.
The smaller the distance between the collected data and the denser the fingerprint map
database established, the higher the positioning accuracies. From the analysis of the results
in Table 1, the positioning accuracies of KELM-PF is higher than that of GP-PF and PF, and
the accuracies of GP-PF is slightly higher than that of PF. Meanwhile, we calculate standard
deviation at an interval of 1.0 m with 400 samples. The standard deviations of the PF, GP-PF
and KELM-PF are 0.072 m, 0.051 m and 0.032 m, respectively. The standard deviation of
the KELM-PF algorithm is smallest, the one of the GP-PF algorithm is middle, and the one
of the PF algorithm is the largest. It can be seen that the accuracies of positioning using the
KELM-PF algorithm is higher than that of the GP-PF algorithm and the PF algorithm.

Table 1. Positioning accuracies of the same test nodes under different density.

0.5 m Intervals 1.0 m Intervals 2.0 m Intervals

PF 0.74 1.36 2.25
GP-PF 0.65 1.12 2.08

KELM-PF 0.52 1.06 1.87

4.3. Comparison of Positioning Errors When PF Adopts Different Observation Models

The indoor positioning accuracies of the PF algorithm based on the logarithmic shadow
propagation model, GP-PF and KELM-PF based observation model are compared. As
shown in Figures 7 and 8, the PF positioning algorithm based on the KELM reconstruction
observation model can track and locate faster than the GP-PF algorithm and the PF with the
propagation model and has less fluctuations. Moreover, the positioning error of KELM-PF
is smaller than that of PF and GP-PF, the tracking and positioning effect of KELM-PF is
better than PF and GP-PF.

4.4. Analysis of Computational Complexity of Different Algorithms

The computational complexity of different algorithms is analyzed through running
time of the positioning algorithm program on MATLAB (2020a). The computer is a
ThinkPad notebook, the processor is an Intel(R) CORE(TM) i5-2520M CPU @ 2.1 GHz
2.5 GHz, the memory is 8 GB, and the operating system is Microsoft Windows 10 Profes-
sional Edition (64 bit). Table 2 lists the operating time loss of PF, GP-PF, and KELM-PF at
1.0 m and 2.0 m reference node densities. In the experiment, the number of nodes in the
hidden layer of KELM is set to 100, and the number of particles of PF, GP-PF and KELM-PF
is set to 300. The number of samples and the number of tests in the two experiments are
the same. PF does not require offline training time, and positioning can be performed
only in the online phase. It can be seen from Table 2 that GP-PF takes the longest time,
and the KELM-PF algorithm is much faster than GP-PF in the offline training and online
positioning phases and is slower than the PF algorithm.
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Figure 7. The position results of PF, GP-PF and KELM-PF.

Figure 8. The RMSEs of PF, GP-PF and KELM-PF.

Table 2. Comparison of running time of different algorithms.

Algorithm Name Training Time(s) Testing Time(s)
1.0 m Intervals 2.0 m Intervals 1.0 m Intervals 2.0 m Intervals

PF —— —— 0.096 0.083
GP-PF 0.482 0.576 0.531 0.396

KELM-PF 0.389 0.365 0.189 0.136

5. Conclusions

This paper proposes the indoor positioning algorithm based on reconstructed observa-
tion model by KELM training and PF. It firstly uses the SLFN KELM algorithm to establish
nonlinear mapping relationship between unknown node positions and radio frequency
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signal strength, optimizes it by the PF algorithm to realize indoor positioning, and proposes
a control strategy based on the reception factor.

From the aspects of positioning accuracy, the relationship with fingerprint density,
algorithm execution time, etc., we have conducted experiments, analysis and comparison.
KELM-PF has higher positioning accuracy than GP-PF and PF. Furthermore, it is also
verified that the indoor positioning accuracy of the KELM-PF algorithm is different under
different reference node densities. The indoor positioning accuracy increases and improves
in accordance with the reference node density. By analyzing the standard deviation of
1.0 m interval, it can be seen that the accuracy of positioning using the KELM-PF algorithm
is higher than that of the GP-PF algorithm and the PF algorithm. However, the proposed
KELM-PF indoor positioning still has shortcomings and needs further research. This
method is only suitable for single-point positioning with little change in indoor positioning
scenes. Therefore, in order to enhance the real-time and robustness of the KELM-PF
algorithm, in the future we will study and discuss indoor positioning algorithms for
multi-target dynamic environments in the future.
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