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Abstract: The ability to quickly calculate or query the shortest path distance between nodes on a road
network is essential for many real-world applications. However, the traditional graph traversal short-
est path algorithm methods, such as Dijkstra and Floyd–Warshall, cannot be extended to large-scale
road networks, or the traversal speed on large-scale networks is very slow, which is computational
and memory intensive. Therefore, researchers have developed many approximate methods, such as
the landmark method and the embedding method, to speed up the processing time of graphs and
the shortest path query. This study proposes a new method based on landmarks and embedding
technology, and it proposes a multilayer neural network model to solve this problem. On the one
hand, we generate distance-preserving embedding for each node, and on the other hand, we predict
the shortest path distance between two nodes of a given embedment. Our approach significantly
reduces training time costs and is able to approximate the real distance with a relatively low Mean
Absolute Error (MAE). The experimental results on a real road network confirm these advantages.

Keywords: road networks; shortest path distance; landmarks; graph embedding; neural networks

1. Introduction

In the context of a large-scale road network [1,2] with a large number of users sending
out remote distance queries at the same time, determining how to provide a timely response
to such a large number of queries is a very important research question for many navigation
applications. The aforementioned problem of efficiently and accurately predicting the
shortest path distance between nodes in a road network [3,4] has attracted researchers’
attention, and a number of exact methods [5–9] capable of performing error-free distance
prediction have been proposed, as well as approximate methods [10–14] that sacrifice some
prediction accuracy to reduce computation and memory costs.

The traditional Dijkstra algorithm [5] has a time complexity of O(nlogn + m) and a
space complexity of O(n), using big O notation [15], where m and n are the number of
edges and the number of nodes in the graph, respectively. Moreover, the Floyd–Warshall [6]
algorithm has a time complexity of O

(
n3) and a space complexity of O

(
n2). Such a time

complexity is acceptable for small graphs, but for large million-node graphs, the calculation
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of a single node distance requires massive computational resources and time [16]. In order
to speed up the query times compared with traditional methods, a number of labeling
methods have been proposed [7,8,17], all of which use distance labels. The basic idea is to
calculate the distance from each node to other nodes (in extreme cases, this may be all the
remaining nodes) in advance in the data preprocessing stage in order to form a tuple as
the distance label of the node. Then, by checking the distance label, the distance between
any two nodes can be calculated in O(1) time. However, the difficulty of these labeling
methods is to find the minimum node set that needs to calculate and store the distance so
as to accurately calculate all the shortest paths. Finding the optimal node set of a graph has
been proved to be an NP-hard problem. At the same time, the memory cost consumed by
these methods is still O

(
n2) [18].

In order to reduce the memory cost, researchers proposed approximate shortest path
distance methods [12,13], which further reduce the memory and computation costs by
sacrificing some prediction accuracy. The sacrifice is worthwhile, because in many practical
applications, or some special graphs (large road network graphs), if the exact distance
is not necessary, it is enough to find the approximate distance between nodes. A typical
representative of the approximate shortest path distance method is the landmark-based
method [16,19–21]. This method usually selects l nodes as landmarks, and then, similar to
the marking method, assigns a distance label to each node, which contains the distance from
the node to these landmark nodes. When querying the distance between any two nodes,
the approximation is the sum of the minimum distances between these two nodes and
the same landmark node. Although the landmark-based methods can reduce the memory
cost to O(ln), these methods cannot guarantee the approximation quality in theory [22],
and the accuracy of the prediction distance largely depends on the selection of landmarks.
Therefore, landmark selection is critical to improve the landmark-based method, but it is
also NP-hard [16] to select the best landmarks.

The embedding method [13,23–25] is another representative approximate shortest
path distance method. In the data preprocessing stage, this method learns the vector
embedding of each node through embedding technology [26–29] to maintain the shortest
path distance; that is, each node is embedded into the k-dimensional mapping space, such
as Euclidean space [30] and hyperbolic space [31], to calculate the shortest path distance
between nodes. Therefore, each node has a corresponding k-dimensional embedding
vector. When querying the distance, the embedding method uses a more effective distance
approximation function, such as directly calculating the p-norm between the embedding
vectors or training the neural network to predict the distance according to the embedding
vectors and the pre-calculated real shortest path distance. It is precisely because of this that
the embedding method can make the query speed faster than other approximation methods.
In addition, different embedding technologies, embedding dimensions and embedding
spaces have a great impact on the accuracy of prediction distance. Therefore, it is also a
challenging problem to select the appropriate embedding technology, dimension and space
for different graph data.

Inspired by the above approximate shortest path distance methods, such as the
landmark-based method and the embedding method, we proposed a new approximate
shortest path distance model based on neural networks. The model integrates the landmark-
based method, the embedding method and a neural network model, which greatly reduces
the time cost by training.

The remainder of the paper is structured as follows: The preliminary knowledge
and related work are reviewed in Section 2. Section 3 introduces our model ndist2vec in
detail. We arrange the experiment in Section 4, and we describe the experimental dataset,
evaluation index, experimental parameters and experimental results. Finally, conclusions
are drawn in Section 5.
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2. Preliminary Knowledge and Related Work
2.1. Preliminary Knowledge

Let G = (V, E, W) be an undirected road network graph with n = |V| nodes and
m = |E| edges. For each node (road intersection), vi ∈ V has a pair of geocoordinates, and
the edge (roads) eij ∈ E connects nodes vi and vj, indicating that they are adjacent and
have the weight eij.w ∈ W, which represents the distance across the edge, i.e., the distance
between the two road intersections. Figure 1 shows an example, which contains 5 nodes
and 6 edges; v1 and v2 are two nodes of the graph, and the presence of edge e12 shows that
they are adjacent and have the weight e12.w, indicating that the distance between them is 2.
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Given node vi and node vj, there exists at least one path pij; this is connected by a
series of adjacent nodes, which can make vi reach vj. The path length

∣∣pij
∣∣ is the sum of

the weights between these series of nodes. For example, there are three paths from node
v1 to node v4, which are v1 − v2 − v3 − v4, v1 − v2 − v5 − v4 and v1 − v5 − v4, and the
corresponding path lengths are 8, 9 and 10, respectively. We specify that the shortest path
between node vi and node vj is p∗ij and that dij =

∣∣∣p∗ij∣∣∣ denotes the real shortest path length,
so for node v1 and node v4, the shortest path length is 8.

2.2. Related Work

Researchers at the University of Passau proposed a new method [13] for approximating
the shortest path distance between two nodes in a social graph based on a landmark
approach, and they used simple neural networks with node2vec [27] or Poincare [28]
embeddings and obtained better results than Orion and Rigel on a social graph dataset. For
convenience, we name this method node2vec-Sg. In detail, in the first step, they utilized
node embedding technology to learn the vector embedding φ(v) ∈ Rd of each node v ∈ V
in the graph. In the second step, they extracted training sample pairs in the entire graph G.
They randomly selected l(l � n) nodes from V as landmarks, and they applied the breadth-
first search (BFS) algorithm to calculate the true distance duv from each landmark node u to
the remaining nodes v so as to obtain l(n− l) sample pairs similar to ((u, v), duv). In order
to approximately calculate the distance between two nodes, u and v, they combined their
embeddings, φ(u) and φ(v), through some binary operation 〈, ·〉 (the operations included
subtraction, averaging, multiplication or concatenating between vectors) so as to form a
training sample pair, such as (〈φ(u), φ(v)〉, duv). Finally, the feedforward neural network
composed of a single hidden layer was trained through these training samples, and the
neural network output the actual value prediction of the shortest path distance d̂uv. The
specific process is shown in Figure 2.
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In addition, since the neural network performs a regression task, the Mean Square
Error (MSE) is used as the loss function, and the Stochastic Gradient Descent (SGD) [32] is
used as the optimizer. In all their experiments, they confirmed that the node2vec embedding
gives better results than the Poincare embedding, adding that the node2vec embedding is
not able to learn the structural features of distant nodes, so it is not suitable for graphical
structures with many distant nodes, such as road networks.

Researchers have proposed a learning-based model called vdist2vec [25]. The model
can effectively and accurately predict the shortest path distance between two nodes in a
road network, and the distance prediction time and the storage space of the model are O(k)
and O(nk), respectively, in which k is the dimension of node embedding. As shown in
Figure 3, in the 2|V|-dimensional one-hot layer, vdist2vec takes the n-dimensional one-hot
vectors hi and hj of nodes vi and vj as inputs, and the next layer is an embedding layer
composed of k nodes. In this layer, the embedding of each node is learned to generate
the weight matrix V. Through the formula vi = hiV, the embedding of each node can be
obtained; in this case, vi and vj are obtained, and then vi. and vj are connected as input
to train a multilayer perceptron (MLP) in order to predict the shortest path distance for a
given embedding of two nodes. Moreover, researchers have proposed improved models
vdist2vec-L and vdist2vec-S of the base model vdist2vec, where vdist2vec-L uses Huber
loss as the loss function and is able to reduce more errors than the base model vdist2vec,
which uses the Mean Square Error (MSE). The model vdist2vec-S is driven by ensemble
learning. Four independent MLPs are replaced with the last hidden layer of vdist2vec to
focus on the distances in different ranges, and their outputs are added to obtain the final
distance prediction.
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The above models achieve fast distance prediction without increasing the spatial
cost. The advantages of the three models have been confirmed in experiments on several
different real road networks, and vdist2vec-S is the best one of the three models. However,
in order to better learn the node embeddings and to obtain a higher prediction accuracy,
the models use all n(n− 1) node pairs as training samples to train the neural network,
thus significantly increasing the training time. Inspired by the above-mentioned use
of embedding methods and landmark-based methods in the approximate shortest path
distance problem, we propose a new approximate shortest path distance prediction model,
ndist2vec. The goal is to maintain a relatively high prediction accuracy and fast query time
while greatly reducing the training time. In the next section, we elaborate on the details
of ndist2vec.
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3. Ndist2vec

In this section, we proposed the ndist2vec model. As shown in Figure 4, we used
the method of randomly selecting landmarks to divide the set of nodes V into a set of
landmark nodes VL and a set of remaining nodes VR. Then, our ndist2vec model selects two
nodes, vL

i ∈ VL, i = 1, . . . , l and vR
j ∈ VR, j = 1, . . . , n− l, and obtains their corresponding

embedding vectors, vL
i and vR

j , respectively, by using the vector embedding matrix H ∈
Rn∗k (each node has a corresponding embedding vector), and it finally connects the vectors
vL

i and vR
j as input to train a multilayer neural network to output the distance d̂ij between

the two given nodes, vL
i and vR

j .
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Specifically, our goal was to extract training pairs from the entire graph G to train a
multilayer neural network and then to predict the shortest path distance d̂ij between any
two nodes vi and vj in a graph G. In the first stage, we selected l (where l < n) nodes in the
node set V as landmarks and generated the set of landmark nodes VL, and the remaining
nodes in V generated the set of remaining nodes VR; i.e., the set V is divided into sets VL

and VR (where
∣∣VL

∣∣ = l and
∣∣VR

∣∣ = n− l). In the second stage, we randomly initialized a
vector embedding matrix H ∈ Rn×k so that we could obtain an embedding vector vi ∈ Rk

for each node vi ∈ V. Since our embeddings can be guided directly by distance prediction,
we can update H based on the back propagation of the training predictions for each epoch,
which also means updating each embedding vector vi. In the third stage, using the vector
embedding matrix H, we could obtain the embedding vector vL

i corresponding to node
vL

i of the landmark node set VL and the embedding vector vR
j corresponding to node

vR
j of the remaining node set VR, and we connected them together as training samples

while calculating the actual shortest path distance dij of these two nodes as the supervision
information (label) of this sample. Then, we utilized the above method to traverse each
landmark node and the remaining nodes to obtain l(n− l) training samples, along with
their corresponding supervision information. Finally, the training samples were used as
input to a multilayer neural network. The neural network maps the input training samples
to real-valued distances.

As shown in Figure 5, we designed a four-layer neural network consisting of an input
layer, two hidden layers and an output layer. The size of the input layer depends on the
dimension k of the vector embedding, and since two vectors are connected in series, 2k
neurons are required. Since the ReLU [33] function is effective in training neural networks,
we set the activation function for the first three layers to the ReLU function. In the output
layer, we learned the distances in different ranges in the form of ensemble learning, and we
added their outputs to obtain the final distance prediction.
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We used the Mean Square Error (MSE) to measure the quality of the predictor because
the network performs a regression task, so the Mean Square Error of the actual node
distance dij and the predicted distance d̂ij was taken as our training loss function Ld:

Ld =
1
N ∑

(
dij − d̂ij

)2
(1)

Finally, we used adaptive moment estimation (ADAM) [34] as an optimizer, which
controls the learning rate after bias correction with a defined range of learning rates per
iteration. We made the parameters relatively smooth, and their effectiveness has been
verified in a large number of deep neural network experiments. During training, all
parameters of the neural network are randomly initialized. The training samples are fed
into the network in batches for training. The training loss Ld is passed back to optimize all
parameters in the network.

4. Experiment

In this section, we tested our proposed ndist2vec on four road network datasets and
compared it with node2vec-sg and vdis2vec. All these methods were implemented by
Python 3.7 on a PC with an Intel Core Duo Processor (double 4.2 GHz) with 16 GB RAM.
Next, we first described the datasets, some parameter settings and evaluation metrics; then,
we described the experiments that we conducted and presented the results; and, finally, we
presented the conclusions drawn from the experimental results and the reasons why they
turned out the way they did. The source code of the program and the experimental data
were archived on figshare [35].

4.1. Datasets and Hyperparameters

We used four different road network graphs [2] for the experiments. We extracted
the maximum connected component from these road graphs, renamed the node name and
specified the coordinates. Therefore, all datasets contain weighted edges and unique map
coordinates for each node. In addition, they are all undirected, and the number of nodes
n = |V|, number of edges m = |E|, the maximum distance dmax, the minimum distance
dmin and the average distance dmean between the nodes are summarized in Table 1, and
Figure 6 shows the original road network.
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Table 1. Statistics of road network datasets.

Datasets n m dmax dmin dmean

Surat, India (SU) 2508 3591 50,954.24 m 1.24 m 8866.22 m
Dongguan, China (DG) 7658 10,542 96,547.07 m 1.43 m 35,096.00 m

Ahmedabad, India (AH) 12,747 18,117 130,910.82 m 1.05 m 17,634.84 m
Dhaka, Bangladesh (DH) 14,689 19,457 74,156.86 m 1.02 m 10,468.47 m
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For all comparison methods, we used their recommended hyperparameter settings. In
our ndist2vec model, the neural network consists of four layers: an input layer containing
2k neurons; an output layer containing 1 neuron; and two hidden layers containing 100
and 20 neurons, respectively, where k is the embedding dimension, and we set k = 50. The
four parameters of ensemble learning, dmax > λ4 > λ3 > λ2 > λ1 > 0, were randomly
initialized and updated with each epoch of training. The model was trained for a total of
30 epochs. All n(n− 1) sample pairs were trained in the first epoch, and in the remaining
29 epochs, l = 10%n− 15%n landmarks were randomly re-generated for each epoch; i.e.,
l(n− l) sample pairs were trained for each epoch, and all epochs were trained at a learning
rate of 0.01.

We used two types of metrics to measure the accuracy and speed of our method.
Firstly, we utilized the Mean Absolute Error (MAE) and the Mean Relative Error (MRE)
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to measure the difference between our predicted value d̂ij and the real value dij. Their
definitions are

MAE =
1
N ∑ |dij − d̂ij| (2)

and

MRE =
1
N ∑

|dij − d̂ij|
dij

(3)

respectively, and the smaller the value, the higher the accuracy. Secondly, we used the
training time (PT) and the average distance prediction time (AT) to measure the speed of
the model. In our experiment, our prediction set consists of n(n− 1) pairs of all nodes.

4.2. Overall Results

Table 2 shows the experimental results of the prediction error and time cost of
ndist2vec, vdist2vec-S and node2vec-Sg on the four road network datasets. In terms
of the prediction error, it can be seen that vdist2vec-S has the smallest MAE and MRE for
each dataset because it learns all node pair information and retains the distance information
of the node pairs through node embedding (Bolded numbers indicate best performance).
Our method ndist2vec has a larger MAE and MRE than those of vdist2vec-S, but the size
is limited. We used the landmark-based method for learning, and we did not learn all
the node pair information but retained the node embedding information in the vector
embedding matrix. Node2vec-Sg is an approximate method for predicting the shortest
path distance of social networks. We changed its weight to the real distance and carried
out experiments on road networks, but we did not obtain good results. The reason is that
node2vec-Sg sometimes oversamples and undersamples in the process of generating train-
ing samples; that is, the samples are not evenly divided, and not all node pair information
is learned. At the same time, the embedding technology node2vec is not suitable for road
network nodes; this is explained in our subsequent experiments.

Table 2. Experimental results of three models.

Datasets Models MAE MRE PT (h) AT (µs)

SU
ndist2vec 99.74 0.034 0.10 7.79

vdist2vec-S 87.22 0.028 0.41 8.11
node2vec-Sg 642.09 0.171 0.35 8.02

DG
ndist2vec 278.41 0.046 0.48 16.95

vdist2vec-S 144.32 0.030 2.40 17.12
node2vec-Sg 2412.34 0.203 1.37 18.06

AH
ndist2vec 146.32 0.033 2.50 25.56

vdist2vec-S 100.98 0.021 12.00 40.37
node2vec-Sg 3711.44 0.258 9.74 35.69

DH
ndist2vec 109.73 0.029 3.10 30.20

vdist2vec-S 90.77 0.020 18.50 45.40
node2vec-Sg 4103.29 0.273 15.63 39.69

In terms of the training time cost PT, our method ndist2vec has the best performance.
The advantage of our model is that it sacrifices some accuracy to greatly reduce the training
time, and this accuracy sacrifice is worthwhile. Specifically, for the datasets SU, AH and
DH, the MAEs of ndist2vec are 1.14, 1.44 and 1.20 times those of vdist2vec-s, respectively,
but the training time PT is at least one-quarter of that of vdis2vec-S. Moreover, with an
increase in the number of nodes (n), the time gap will become increasingly larger. Although
node2vec-Sg is also a landmark-based method, it is very time consuming because of the
different ways of selecting training samples.

The average prediction time AT is calculated by dividing the total prediction time S
of all node pairs of samples by the number of sample pairs n(n− 1) of all the nodes, and
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the unit is microseconds (µs). The three models need to link the embedded vectors of two
nodes in the prediction distance and input them into the corresponding neural network
(the neural network structure of the three methods is similar) for forward propagation to
obtain the prediction results. It can be seen that the AT of ndist2vec for the four datasets is
the smallest. This is because the vector embedding dimension k of ndist2vec is always 50,
while the embedding dimension k of vdist2vec-S is 0.02n, and the dimension of node2vec
is k = 128; more dimensions will increase the training time PT and the average prediction
time AT.

Ndist2vec performs the worst in terms of prediction error in the Dongguan dataset.
This is because although the Dongguan dataset only has 7658 nodes, a total of about 59 mil-
lion sample pairs, its average distance between nodes is the highest, dmean = 35, 096 m. It
is conceivable that the node distribution in the Dongguan dataset is dominated by a large
distance. In addition, our method is based on landmarks. We did not learn all the sample
pairs during training, so we lack the learning of large-distance sample pairs. Therefore, our
method may not be suitable for datasets with large distances between nodes, and this will
be our next breakthrough direction.

Our training strategy is to train 30 epochs. The first epoch trains all n(n− 1) sample
pairs, the remaining 29 epochs train l(n− l) landmark sample pairs, and landmarks are
randomly selected again in each epoch. In addition, our vector embedding matrix H
is updated according to the prediction results. Using the control variable method, we
summarized the four models in Table 3 and compared them in Table 4 to verify the
effectiveness of our model training strategy.

Table 3. Model settings.

Models Embedding Epoch Landmark

ndist2vec L Epoch1 S
ndist2vec-1 N Epoch1 S
ndist2vec-2 L Epoch2 S
ndist2vec-3 L Epoch1 F

Table 4. Comparison results of ndist2vec and three variant models.

Datasets Models MAE MRE PT (h) AT (µs)

SU

ndist2vec 99.74 0.034 0.10 7.79
ndist2vec-1 632.11 0.166 0.19 13.56
ndist2vec-2 805.76 0.287 0.07 8.58
ndist2vec-3 601.29 0.161 0.10 7.81

DG

ndist2vec 278.41 0.046 0.48 16.95
ndist2vec-1 2212.16 0.199 1.37 20.60
ndist2vec-2 1663.10 0.140 0.36 15.07
ndist2vec-3 1118.09 0.084 0.61 16.76

AH

ndist2vec 146.32 0.033 2.50 25.56
ndist2vec-1 3550.57 0.245 3.08 28.79
ndist2vec-2 962.04 0.182 2.08 25.88
ndist2vec-3 902.58 0.111 2.49 25.72

DH

ndist2vec 109.73 0.029 3.10 30.20
ndist2vec-1 3956.17 0.251 4.09 34.94
ndist2vec-2 448.66 0.088 2.33 29.31
ndist2vec-3 331.61 0.045 3.10 29.28

Table 3 shows the training settings of the different models. Embedding represents the
form of the vector embedding matrix, L indicates that the vector embedding matrix H
can be updated through the prediction results (that is, our method), and N indicates that
the vector embedding matrix H is learned in advance according to node2vec embedding
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technology and will not change with the prediction results. Epoch has two choices. Epoch1
indicates that the first epoch trains all sample pairs, and the remaining 29 epochs train
landmark sample pairs; Epoch2 indicates that 30 epochs train landmark sample pairs. The S
in Landmark indicates that each epoch generates new landmark sample pairs to participate
in training, and F indicates that the landmark is generated once and fixed to participate in
all epochs training; that is, each epoch is trained with fixed landmark sample pairs.

Table 4 shows the experimental results of ndist2vec and the other variant models.
Specifically, by comparing ndist2vec and ndist2vec-1, we can see that for the four datasets,
the result of ndist2vec is better than that of ndist2vec-1, which shows that the method
of updating the vector embedding matrix according to the prediction results is more
suitable for the prediction of the shortest path distance of a road rather than directly using
node2vec embedding technology. Node2vec embedding technology pays more attention
to capturing the similarity between nodes, but the shortest path prediction of the road
network pays more attention to the distance relationship between nodes. Therefore, the
method of updating the vector embedding matrix according to the prediction results is more
appropriate to capture the characteristics of the road network. It measures the distance
between the nodes rather than the similarity.

Ndist2vec trained all n(n− 1) sample pairs in the first epoch, while ndist2vec-2 used
the landmark-based method in the first epoch and only trained l(n− l) sample pairs. As a
result, the training time PT of ndist2vec was higher than that of ndist2vec-2 (only higher
in the first epoch time of training), but the MAE and MRE were reduced. The reason for
this is that, although the landmark-based method can reduce the training time, we used
the random landmark selection method, which may not generate better sample pairs for
training in the first epoch, and then we updated the vector embedding matrix H. However,
training all sample pairs in the first epoch can better teach and update the vector embedding
matrix H and provide a good foundation for the next 29 epochs of training.

Comparing the ndist2vec model and the ndist2vec-3 model, in the landmark-based
training epoch (the remaining 29 epochs), BB repeats learning 29 times for l(n− l) sample
pairs, so it can only learn the information of l(n− l) sample pairs. When the random
landmark selection is not good, the performance of ndis2vec-3 deteriorates. However, in
the epoch landmark-based training of the ndist2vec model, each epoch randomly selects
new landmarks and generates new sample pairs for training; that is, the ndist2vec model
can learn more information of |∪29

i=1Ti|−| ∩29
i=1 Ti| sample pairs (where Ti is the set of

sample pairs generated by the combination of VLi and VRi ). For regression tasks, the more
information used for learning means better fitting. Therefore, it can be seen in Table 4 that
ndist2vec performs better than ndis2vec-3.

4.3. Discussion

In this paper, we studied undirected road networks. In fact, in a directed road network,
whether all nodes are bidirectionally connected determines whether our model is feasible.
When all nodes are bidirectionally connected, a feasible solution for our model in directed
road networks is to change the connection order of the node embedding vectors and to
train two prediction models in order to predict the bidirectional node distances separately.
Currently, we cannot come up with a solution to apply this model to a case where only
some nodes are bidirectionally connected. In addition, our model uses a randomly selected
landmark method; i.e., l landmark nodes are randomly selected from the node set.

The method of randomly selecting landmarks does not seem to be the best choice, and
a better landmark selection method may cause a large improvement in the results. We also
tried some other methods of selecting landmarks, such as using the k-media algorithm to
select l median nodes and using the concave hull algorithm to select all edge nodes, but
the effect was not as good as directly selecting l nodes at random. We were not able to
determine the specific reasons for this.
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5. Conclusions and Future Work

This paper presents a model, nidst2vec, based on embedding and landmark technology,
which uses multi-layer neural networks to obtain an approximate solution to the shortest
path distance problem. Ndist2vec learns the distance information between nodes through
embedding technology; i.e., it learns the updated vector embedding matrix H to maintain
the accuracy of prediction, and only O(50n) space is required to store the vector embedding
matrix H. The landmark method is added to ndist2vec, which greatly reduces the training
time. In particular, in each training round, the model selects new landmarks to learn more
information about the node pairs without increasing the training time, which facilitates the
updating of node embeddings. The experimental results show that, while the prediction
error is elevated (by up to 20%), the training time is significantly reduced (by at least 75%)
compared to that of the benchmark method.

In future work, we plan to adapt our method to a road network graph with a large
distance between nodes and to extend it to other types of graph data. In addition, combin-
ing our method, studying more reasonable methods of landmark selection, and exploring
the impact of different embedding techniques and embedding dimensions are all worth-
while research directions. We will use a geospatial big data computing framework [36,37]
to improve the performance of the deep learning model considering large datasets in
future work.
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