
Citation: Yan, X.; Yang, M. A

Comparative Study of Various Deep

Learning Approaches to Shape

Encoding of Planar Geospatial

Objects. ISPRS Int. J. Geo-Inf. 2022, 11,

527. https://doi.org/10.3390/

ijgi11100527

Academic Editors: Maria Antonia

Brovelli and Wolfgang Kainz

Received: 24 July 2022

Accepted: 16 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

A Comparative Study of Various Deep Learning Approaches to
Shape Encoding of Planar Geospatial Objects
Xiongfeng Yan 1 and Min Yang 2,*

1 College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai 200092, China
2 School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
* Correspondence: yangmin2003@whu.edu.cn; Tel.: +86-138-71176133

Abstract: The shape encoding of geospatial objects is a key problem in the fields of cartography
and geoscience. Although traditional geometric-based methods have made great progress, deep
learning techniques offer a development opportunity for this classical problem. In this study, a
shape encoding framework based on a deep encoder–decoder architecture was proposed, and three
different methods for encoding planar geospatial shapes, namely GraphNet, SeqNet, and PixelNet
methods, were constructed based on raster-based, graph-based, and sequence-based modeling for
shape. The three methods were compared with the existing deep learning-based shape encoding
method and two traditional geometric methods. Quantitative evaluation and visual inspection
led to the following conclusions: (1) The deep encoder–decoder methods can effectively compute
shape features and obtain meaningful shape coding to support the shape measure and retrieval task.
(2) Compared with the traditional Fourier transform and turning function methods, the deep encoder–
decoder methods showed certain advantages. (3) Compared with the SeqNet and PixelNet methods,
GraphNet performed better due to the use of a graph to model the topological relations between
nodes and efficient graph convolution and pooling operations to process the node features.

Keywords: shape encoding; encoder–decoder; deep learning; shape similarity; shape retrieval

1. Introduction

Shape is a basic property for expressing spatial objects and conveying spatial phe-
nomena. Shape representation and encoding has always been one of the fundamental
problems in the fields of geoscience and computer science, and it plays a critical role in
many applications, including spatial cognition [1–3], map generalization [4–6], spatial
pattern recognition [7,8], and shape matching and retrieval [9–11]. From a cognitive per-
spective, shape can be understood as a kind of visual structural feature perceived by an
object or phenomenon itself [12]. However, structural features are very difficult to define
formally, and they are comprehensively reflected in the interactions and composition of
many components, such as the inner, boundary, and external environments.

In recent decades, numerous methods for representing shape have been proposed [13,14].
These methods can be roughly divided into three categories: region-based, structure-
based, and boundary-based methods. Region-based methods are mainly achieved through
operations of regional units (e.g., pixels). These operations can be based on a mathematical
morphological framework [15], either density distribution statistics [16] or region-based
two-dimensional transformations (e.g., Fourier descriptors) [17]. The most widely used
structure-based method is the skeleton method [18], which uses the central axis to represent
the overall morphology and topology of the shape. Boundary-based methods are to used
extract descriptive features to represent a shape using its boundary. These features include
the shape context (SC) descriptor calculated by the distributions of boundary points [9],
the turning function (TF) defined by the angle changes along the boundary [19], and the
multi-scale convexity concavity (MCC) [20] and triangle area representation (TAR) [21]

ISPRS Int. J. Geo-Inf. 2022, 11, 527. https://doi.org/10.3390/ijgi11100527 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11100527
https://doi.org/10.3390/ijgi11100527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-4748-464X
https://orcid.org/0000-0003-1973-527X
https://doi.org/10.3390/ijgi11100527
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11100527?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2022, 11, 527 2 of 14

descriptors measured by local or global concave–convex features. These methods are
dominated by geometrical and statistical measures, with the advantages of intuitiveness
and computational stability, which promote their wide application in shape similarity
measures and shape retrieval. However, these methods lack cognitive mechanisms and
are far from equaling human cognitive abilities. Considering that shapes are extremely
complex and cognitively related, focusing only on the design of geometrical algorithms,
and not on the improvement of deep-seated characterization, is not conducive to shape
representation and cognition.

In recent years, deep learning has profoundly influenced the development of several
disciplines [22]. Through multilayer simple but nonlinear modules, deep learning has a
powerful representation capability for local visual features. These advantages have also
enabled the successful application of deep learning to many cartographic analysis tasks, in-
cluding pattern recognition [7,23], map generalization [24,25], and spatial interpolation [26].
Using deep learning to construct a shape encoding method is a positive and promising
approach that effectively supplements traditional methods. Moreover, deep learning has
been experimentally proven to exhibit a shape bias; that is, an object is preferentially
distinguished by shape rather than color or texture [27]. Some scholars have attempted
to introduce deep learning methods to extract latent features for describing shapes. For
example, Yan et al. [3] proposed a graph auto-encoder (GAE) model for encoding shape
as a one-dimensional feature vector, Liu et al. [28] constructed a deep point convolutional
network using the well-designed TriangleConv operator for recognizing and classifying
building shapes, and Hu et al. [29] proposed a building footprint shape recognition method
based on a relation network with few labeled samples.

However, applying deep learning to shape representation and encoding is still in its
infancy, and many key issues remain unresolved [30,31]. For example, there are several
methods to model a shape and serve as input to learning models, including raster-based,
sequence-based, and graph-based methods. Different modeling methods are fundamentally
different, and they must be processed using different feature computation methods and
learning architectures. In this regard, this study conducted a comparative assessment
of various deep learning methods for shape representation and encoding of geospatial
objects. Specifically, we first proposed a shape encoding framework based on the deep
encoder–decoder architecture. Then, for the raster-based, sequence-based, and graph-
based modeling methods of a shape, we designed three different encoder–decoders and
performed self-supervised learning to obtain one-dimensional encoding for each shape. Fi-
nally, the performance of the shape encoding produced by different methods was compared
from visual and quantitative perspectives.

The remainder of this paper is organized as follows. Section 2 details the shape
encoding framework based on deep learning and constructs three deep encoder–decoders.
Section 3 presents the experimental results of the shape encoding and analyzes them
through visual inspection and quantitative evaluation. Section 4 concludes the paper.

2. Methodology

The encoder–decoder is a type of unsupervised neural network used to learn efficient
encodings of unlabeled data [22]. It contains five main components: the input, encoder,
code, decoder, and output. The encoder is used to encode the inputs into the code, and the
decoder reconstructs the input from the code. The goal of learning is to make the output as
similar as possible to the input.

The feature computations used in the encoder and decoder differ for different shape
modeling methods. In this study, raster-based, sequence-based, and graph-based methods
for modeling two-dimensional shapes were considered. Correspondingly, three deep
encoder–decoders were built to extract the hidden encoding features for representing the
shapes, as illustrated in Figure 1. The following sections detail the three encoder–decoders.

ISPRS Int. J. Geo-Inf. 2022, 11, 527 3 of 14ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 3 of 14

Figure 1. Shape encoder–decoders designed for different data modeling of two-dimensional shapes.

2.1. Pixel-Based Shape Coding Model
The method of rasterization is commonly used to work with spatial vector-based data

because regularized organization is better adapted to many algorithms or models [31],
such as the deep convolutional neural networks. Another advantage of this approach is
that the regional characteristics of the shapes are considered.

To obtain a raster-based image for a shape, the differences between the maximum
and minimum values on the horizontal and vertical axes were calculated, and the larger
value was taken as the edge length to obtain a square with the centroid of the shape con-
sidered as the center. This square was appropriately expanded outward (e.g., 10%) to en-
sure the integrity of the shape. A suitable grid was then established to rasterize the square.
The size of the grid cells directly affects the clarity of the data content representation. If
the cell size is too large, a serious mosaic phenomenon occurs, which makes it difficult to
present the outline details. If the cell size is too small, the training efficiency of the model
is affected. By considering the clarity of the images and the complexity of the model com-
prehensively, the grid size was set at 28 × 28 pixels in this study. Finally, the grid cell is
binarized. That is, when a cell falls within the shape with more than half of the area, the
cell is set to black; otherwise, it is white.

After converting the shape into a raster-based image, the classical encoder–decoder
based on a grid-like topology can be used to extract the latent representation of the shape.
Figure 2 shows the architecture of the pixel-based encoder–decoder (PixelNet) used in this
study for shape encoding.

Figure 2. Raster-based encoder–decoder model (PixelNet) for shape encoding.

Figure 1. Shape encoder–decoders designed for different data modeling of two-dimensional shapes.

2.1. Pixel-Based Shape Coding Model

The method of rasterization is commonly used to work with spatial vector-based data
because regularized organization is better adapted to many algorithms or models [31], such
as the deep convolutional neural networks. Another advantage of this approach is that the
regional characteristics of the shapes are considered.

To obtain a raster-based image for a shape, the differences between the maximum and
minimum values on the horizontal and vertical axes were calculated, and the larger value
was taken as the edge length to obtain a square with the centroid of the shape considered
as the center. This square was appropriately expanded outward (e.g., 10%) to ensure the
integrity of the shape. A suitable grid was then established to rasterize the square. The size
of the grid cells directly affects the clarity of the data content representation. If the cell size
is too large, a serious mosaic phenomenon occurs, which makes it difficult to present the
outline details. If the cell size is too small, the training efficiency of the model is affected.
By considering the clarity of the images and the complexity of the model comprehensively,
the grid size was set at 28 × 28 pixels in this study. Finally, the grid cell is binarized. That
is, when a cell falls within the shape with more than half of the area, the cell is set to black;
otherwise, it is white.

After converting the shape into a raster-based image, the classical encoder–decoder
based on a grid-like topology can be used to extract the latent representation of the shape.
Figure 2 shows the architecture of the pixel-based encoder–decoder (PixelNet) used in this
study for shape encoding.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 3 of 14

Figure 1. Shape encoder–decoders designed for different data modeling of two-dimensional shapes.

2.1. Pixel-Based Shape Coding Model
The method of rasterization is commonly used to work with spatial vector-based data

because regularized organization is better adapted to many algorithms or models [31],
such as the deep convolutional neural networks. Another advantage of this approach is
that the regional characteristics of the shapes are considered.

To obtain a raster-based image for a shape, the differences between the maximum
and minimum values on the horizontal and vertical axes were calculated, and the larger
value was taken as the edge length to obtain a square with the centroid of the shape con-
sidered as the center. This square was appropriately expanded outward (e.g., 10%) to en-
sure the integrity of the shape. A suitable grid was then established to rasterize the square.
The size of the grid cells directly affects the clarity of the data content representation. If
the cell size is too large, a serious mosaic phenomenon occurs, which makes it difficult to
present the outline details. If the cell size is too small, the training efficiency of the model
is affected. By considering the clarity of the images and the complexity of the model com-
prehensively, the grid size was set at 28 × 28 pixels in this study. Finally, the grid cell is
binarized. That is, when a cell falls within the shape with more than half of the area, the
cell is set to black; otherwise, it is white.

After converting the shape into a raster-based image, the classical encoder–decoder
based on a grid-like topology can be used to extract the latent representation of the shape.
Figure 2 shows the architecture of the pixel-based encoder–decoder (PixelNet) used in this
study for shape encoding.

Figure 2. Raster-based encoder–decoder model (PixelNet) for shape encoding. Figure 2. Raster-based encoder–decoder model (PixelNet) for shape encoding.

ISPRS Int. J. Geo-Inf. 2022, 11, 527 4 of 14

The encoder in PixelNet encoded the input 28 × 28 image as a 128-dimensional vector.
It contained three convolutional layers with a kernel size of 3 × 3 and kernel numbers of 3,
18, and 8, respectively. After each convolutional layer, a max-pooling layer with a window
size of k = 2 × 2 and a stride length of s = 2 was connected. The decoder also contained
three convolutional layers with 8, 18, and 3 kernels, respectively. The upsampling, the
opposite of pooled sizing, restored the image to its original size. Finally, a convolutional
layer with feature one was added to ensure that the feature dimension of the output was
consistent with that of the input.

2.2. Sequence-Based Shape Encoding Model

The boundary of a shape is a natural sequence that comprises a series of contiguous
points. Thus, constructing a shape representation and analysis framework based on the
boundary sequence is a promising strategy.

Because the distance between two adjacent nodes on a shape boundary is not identical,
the processing unit is not stationary. To address this issue, the boundary was divided into a
series of consecutive linear units of equal lengths, termed lixels [32], and the midpoints of
the lixels were considered as the sequence nodes. For each sequence node, the horizontal
and vertical differences between the two ends of the associated lixel were used as the two
features to describe it. Finally, a vector, PN×2 = {p1, p2, . . . , pN}, containing N sequence
nodes with two-dimensional features, was constructed to serve as the input for the shape
encoding model. Referring the parameter settings used in the literature [3], N was set to 64.

To process the constructed sequence, a neural network was used to construct an
encoder–decoder. As the classical neural network does not consider the node orders
in sequence, the Seq2seq network (SeqNet) [33], which uses long short-term memory
(LSTM) [34] as the encoder and decoder, was adopted. The architecture is illustrated
in Figure 3.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 4 of 14

The encoder in PixelNet encoded the input 28 × 28 image as a 128-dimensional vector.
It contained three convolutional layers with a kernel size of 3 × 3 and kernel numbers of
3, 18, and 8, respectively. After each convolutional layer, a max-pooling layer with a win-
dow size of k = 2 × 2 and a stride length of s = 2 was connected. The decoder also contained
three convolutional layers with 8, 18, and 3 kernels, respectively. The upsampling, the
opposite of pooled sizing, restored the image to its original size. Finally, a convolutional
layer with feature one was added to ensure that the feature dimension of the output was
consistent with that of the input.

2.2. Sequence-Based Shape Encoding Model
The boundary of a shape is a natural sequence that comprises a series of contiguous

points. Thus, constructing a shape representation and analysis framework based on the
boundary sequence is a promising strategy.

Because the distance between two adjacent nodes on a shape boundary is not identi-
cal, the processing unit is not stationary. To address this issue, the boundary was divided
into a series of consecutive linear units of equal lengths, termed lixels [32], and the mid-
points of the lixels were considered as the sequence nodes. For each sequence node, the
horizontal and vertical differences between the two ends of the associated lixel were used
as the two features to describe it. Finally, a vector, 𝑃 × = {𝑝 , 𝑝 , … , 𝑝 }, containing 𝑁
sequence nodes with two-dimensional features, was constructed to serve as the input for
the shape encoding model. Referring the parameter settings used in the literature [3], 𝑁
was set to 64.

To process the constructed sequence, a neural network was used to construct an en-
coder–decoder. As the classical neural network does not consider the node orders in se-
quence, the Seq2seq network (SeqNet) [33], which uses long short-term memory (LSTM)
[34] as the encoder and decoder, was adopted. The architecture is illustrated in Figure 3.

Figure 3. Sequence-based encoder–decoder model (SeqNet) for shape encoding. For simplicity, the
illustrated sequence does not show the actual number of nodes; however, the labels on the node
number and dimensions are the actual values used in the model.

The encoder was an LSTM network that received the sequence 𝑃 × as the input.
The number of neurons in the hidden layer was set to 𝑧 = 128, i.e., the encoding di-
mension of the input shape. The Tanh function was used to activate the neurons to ensure
that each value of the output vector ranged from −1 to 1. The computation of each time
step in the loop is as follows: [ℎ ; 𝑐] = 𝑓 (𝑝 , ℎ , 𝑐), (1)

where ℎ and 𝑐 denote the output and state values of the LSTM unit, respectively, 𝑝
denotes the input features, and 𝑓 (⋅) denotes the computation of each time step in the

Figure 3. Sequence-based encoder–decoder model (SeqNet) for shape encoding. For simplicity, the
illustrated sequence does not show the actual number of nodes; however, the labels on the node
number and dimensions are the actual values used in the model.

The encoder was an LSTM network that received the sequence PN×2 as the input. The
number of neurons in the hidden layer was set to zsize = 128, i.e., the encoding dimension
of the input shape. The Tanh function was used to activate the neurons to ensure that each
value of the output vector ranged from −1 to 1. The computation of each time step in the
loop is as follows:

[hi; ci] = fe(pi, hi−1, ci−1), (1)

where hi and ci denote the output and state values of the LSTM unit, respectively, pi denotes
the input features, and fe(·) denotes the computation of each time step in the encoder. The
output of the last time step is the shape encoding, i.e., z = hT , where T denotes the number
of time steps.

ISPRS Int. J. Geo-Inf. 2022, 11, 527 5 of 14

The decoder consisted of an LSTM network and a fully connected layer. It received
the combination of the intermediate shape encoding and the features pi as input, i.e., the
input was an N × (zsize + 2) matrix. The number of hidden layer neurons was set to zsize
to maintain the same dimension as the state value in the encoder. The Tanh function was
also used as an activation function. The output of the LSTM added a linear fully connected
layer that constrained the dimension of the sequence output to the input dimension to
reconstruct the original sequence. The computation process is as follows:

[Hi; Ci] = fd([pi; z], Hi−1, Ci−1), (2)

p̂i = Wi × Hi + bi, (3)

where Hi and Ci denote the output and state values of the LSTM unit, [pi; z] denotes
the input for the decoder formed by the shape encoding and feature, fd(·) denotes the
computation of each time step in the decoder, Wi and bi are the weights and biases of the
fully connected layer, and p̂i is the feature reconstructed by the model.

The learning goal was to minimize the inputs, PN×2 = {p1, p2, . . . pN} and the outputs,
P̂N×2 = { p̂1, p̂2, . . . , p̂N}, and the difference was measured using the mean square error,
computed as:

L
(

P, P̂
)
=

1
N ∑N

i=1(pi − p̂i)
2. (4)

The decoder was trained through the ‘teacher-forcing’ approach to speed up the
convergence of the model, i.e., each input of the decoder does not use the output of
the previous time step but directly uses the value of the corresponding position in the
training data.

2.3. Graph-Based Shape Autoencoder

Compared with the sequence, the graph can better express the relationship between
nonadjacent nodes. A graph is mathematically denoted as G = (V, E, A), where
V = {v1, . . . , vN} and E are the sets of N nodes and edges connecting them, respectively,
and A is an N × N adjacency matrix that records the edge weights. The Laplacian matrix L
of A is computed as L = IN − D−1/2 AD−1/2, where IN is the N-order identity matrix and
D = diag(d1, · · · , dN) is the degree matrix composed of the degree di = ∑j Ai,j of node

i. The eigenvectors of L are denoted by
{

xT
l
}N−1

l=0 , and the corresponding eigenvalues are{
λT

l
}N−1

l=0 . They satisfy L = XΛXT , where X is a matrix formed by
{

xT
l
}N−1

l=0 , and Λ is a

diagonal matrix of
{

λT
l
}N−1

l=0 .
In the same way that a sequence was constructed, the midpoints of lixels were consid-

ered as the graph nodes, and the horizontal and vertical differences between the two ends
were used as the features of the graph nodes. To compute the edge weights, a Delaunay
triangulation (DT) was constructed using all nodes. If a DT edge existed between two
nodes, the weight of the edge connecting them was set as the reciprocal of the length of
the DT edge; otherwise, it was 0. Finally, the graph node features matrix, fN×2, and the
adjacency matrix, A, were obtained to serve as inputs to the model. N was also set to 64
to ensure that the node number and features are consistent with the SeqNet method for
better comparison.

A graph-based encoder–decoder (GraphNet) was built to process the constructed
graph. The overall architecture is illustrated in Figure 4. The encoder included one graph
convolution layer with 32 feature maps (i.e., the number of kernels), and the polynomial
order of each kernel was set to 3. It also contained two graph pooling layers. After pooling,
the number of nodes and feature dimensions were set to 32 and 24 and 16 and 8, respectively.
The output of the last layer in the encoder was expanded into a 128-dimensional feature
vector, that is, the shape encoding. Correspondingly, there were two graph upsampling
layers and one graph convolutional layer in the decoder to restore the size of the graph to
be the same as the input.

ISPRS Int. J. Geo-Inf. 2022, 11, 527 6 of 14

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 6 of 14

feature vector, that is, the shape encoding. Correspondingly, there were two graph up-
sampling layers and one graph convolutional layer in the decoder to restore the size of
the graph to be the same as the input.

Figure 4. Graph-based encoder–decoder model (GraphNet) for shape encoding. For simplicity, the
illustrated graph does not show the actual number of nodes and features; however, the labels on the
dimensions of the adjacency matrix and node features, as well as the convolution kernel parameters,
are the actual values used in the model.

The convolutional layer was implemented by a fast and localized graph convolution
operation, which was defined based on the graph Fourier transform [35]. The 𝑗-th output
features of the (𝑙 + 1)-th layer 𝑓[] are computed by the layer-by-layer forward propa-
gation rule: 𝑓() = 𝜎 𝜃 , 𝑇 2𝜆 𝐿 − 𝐼 𝑓() + 𝑏() , (5)

where 𝜎(∙) denotes a nonlinear activation function; 𝑓() is the 𝑖 graph of the 𝑙 layer; 𝑇 (𝑥) is K-order Chebyshev polynomial, which is recursively computed by 𝑇 (𝑥) =2𝑥𝑇 (𝑥) − 𝑇 (𝑥), with 𝑇 (𝑥) = 1 and 𝑇 (𝑥) = 𝑥; 𝜆 is the largest eigenvalue of 𝐿; 𝜃 , and 𝑏() are the trainable 𝐹 × 𝐹 × 𝐾 coefficients and 1 × 𝐹 bias vector in the 𝑙 layer, respectively, and 𝐹 and 𝐹 are the number of graphs of the 𝑙 and (𝑙 + 1)
layers, respectively.

The graph convolutional layer uses the Laplacian matrix to map the node features 𝑓 × to 𝑓 × . This process updates the graph node features, but it does not change the
size of the graph (i.e., number of graph nodes). To this regard, the DIFFPOOL method [36]
was used to implement the graph pooling and upsampling operations, which helps to
change the graph size and extract hierarchical features. This layer learns a differentiable
assignment matrix 𝑆 ∈ ℝ × to map the 𝑛 nodes to the 𝑚 nodes to obtain node features
with different granularities. It is implemented through two graph convolutions: 𝑍 ×() =𝐶𝑜𝑛𝑣 𝐴 ×() , 𝑓 ×() and 𝑆 ×() = 𝐶𝑜𝑛𝑣 𝐴 ×() , 𝑓 ×() , where 𝐶𝑜𝑛𝑣 generates
new node features, and 𝐶𝑜𝑛𝑣 generates the assignment matrix. The adjacency matrix
and node features of the graph in the (𝑙 + 1) layer are computed as follows: 𝑓 ×() = 𝑆 ×() × 𝑓 ×() , (6)

𝐴 ×() = 𝑆 ×() × 𝐴 ×() × 𝑆 ×() . (7)

This process changes the number and features of the graph nodes. If 𝑚 is less than 𝑛, it implies that the number of nodes is reduced, which can be understand as a pooling
operation. Conversely, the number of nodes increases, that is, the upsapling operation.

Figure 4. Graph-based encoder–decoder model (GraphNet) for shape encoding. For simplicity, the
illustrated graph does not show the actual number of nodes and features; however, the labels on the
dimensions of the adjacency matrix and node features, as well as the convolution kernel parameters,
are the actual values used in the model.

The convolutional layer was implemented by a fast and localized graph convolu-
tion operation, which was defined based on the graph Fourier transform [35]. The j-th
output features of the (l + 1)-th layer f [l+1]

j are computed by the layer-by-layer forward
propagation rule:

f (l+1)
j = σ

(
∑Fin

i=1

(
∑K

k=0 θi,jkTk

(
2

λmax
L− IN

)
f (l)i

)
+ b(l)j

)
, (5)

where σ(·) denotes a nonlinear activation function; f (l)i is the i graph of the l layer; Tk(x) is K-
order Chebyshev polynomial, which is recursively computed by Tk(x) = 2xTk−1(x)−Tk−2(x),
with T0(x) = 1 and T1(x) = x; λmax is the largest eigenvalue of L; θi,jk and b(l)j are the
trainable Fin × Fout × K coefficients and 1× Fout bias vector in the l layer, respectively, and
Fin and Fout are the number of graphs of the l and (l + 1) layers, respectively.

The graph convolutional layer uses the Laplacian matrix to map the node features
fn×Fin to fn×Fout . This process updates the graph node features, but it does not change the
size of the graph (i.e., number of graph nodes). To this regard, the DIFFPOOL method [36]
was used to implement the graph pooling and upsampling operations, which helps to
change the graph size and extract hierarchical features. This layer learns a differentiable
assignment matrix S ∈ Rn×m to map the n nodes to the m nodes to obtain node fea-
tures with different granularities. It is implemented through two graph convolutions:
Z(l)

n×q = Convembed

(
A(l)

n×n, f (l)n×q

)
and S(l)

n×m = Convpool

(
A(l)

n×n, f (l)n×q

)
, where Convembed

generates new node features, and Convpool generates the assignment matrix. The adjacency
matrix and node features of the graph in the (l + 1) layer are computed as follows:

f (l+1)
m×q = S(l)

n×m
T × f (l)n×q, (6)

A(l+1)
m×m = S(l)

n×m
T × A(l)

n×n × S(l)
n×m. (7)

This process changes the number and features of the graph nodes. If m is less than
n, it implies that the number of nodes is reduced, which can be understand as a pooling
operation. Conversely, the number of nodes increases, that is, the upsapling operation.

The GraphNet was trained in an unsupervised manner to minimize the differences
between the input and output. Considering the difficulty of optimizing the assignment
matrices in the pooling layer, two constraints were added to the loss function [36]: minimiz-

ISPRS Int. J. Geo-Inf. 2022, 11, 527 7 of 14

ing the difference of the adjacent matrices A for each layer and minimizing the entropy of
the assignment matrices S row by row. The former guarantees the stability of the edges in
the adjacent matrices, and the latter guarantees that the assignment for each node is close
to a one-hot vector to clearly describe the relationship with the next layer. The final loss
function is defined as follows:

Loss = ∑n×p
i=1

√(
fi − f̂i

)2
+ ∑L

l=0

(
‖A(l), S(l) × S(l)T

‖F +
1
n ∑n

i=1 H
(

S(l)
i

))
, (8)

where L is the number of all layers (i.e., six in this study), and ‖·‖F and H(·) denote the
Frobenius norm and entropy function, respectively.

3. Experimental Results and Analysis

The three deep encoder–decoders were implemented using Python in TensorFlow,
and experiments on two datasets were conducted with an environment of Intel(R) Core
(TM) i9-9920X CPU and NVIDIA GeForce RTX 2080Ti to test their performance for shape
encoding. The following sections describe the experimental datasets, results, and analyses
and provide a discussion.

3.1. Experimental Datasets

An open building shape dataset was used in the experiments [3]. As a typical artificial
geographical feature, buildings are often represented in maps as two-dimensional shapes,
with obvious visual features such as right-angle turns and symmetry. In this dataset,
10 categories of buildings were distinguished according to the forms of English letters, as
shown in Figure 5. Each category contained 501 buildings, with a total of 5010 shapes.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 7 of 14

The GraphNet was trained in an unsupervised manner to minimize the differences
between the input and output. Considering the difficulty of optimizing the assignment
matrices in the pooling layer, two constraints were added to the loss function [36]: mini-
mizing the difference of the adjacent matrices 𝐴 for each layer and minimizing the en-
tropy of the assignment matrices 𝑆 row by row. The former guarantees the stability of the
edges in the adjacent matrices, and the latter guarantees that the assignment for each node
is close to a one-hot vector to clearly describe the relationship with the next layer. The
final loss function is defined as follows: 𝐿𝑜𝑠𝑠 = 𝑓 − 𝑓× + 𝐴(), 𝑆() × 𝑆() + 1𝑛 𝐻 𝑆() , (8)

where 𝐿 is the number of all layers (i.e., six in this study), and ‖∙‖ and 𝐻(∙) denote the
Frobenius norm and entropy function, respectively.

3. Experimental Results and Analysis
The three deep encoder–decoders were implemented using Python in TensorFlow,

and experiments on two datasets were conducted with an environment of Intel(R) Core
(TM) i9-9920X CPU and NVIDIA GeForce RTX 2080Ti to test their performance for shape
encoding. The following sections describe the experimental datasets, results, and analyses
and provide a discussion.

3.1. Experimental Datasets
An open building shape dataset was used in the experiments [3]. As a typical artificial

geographical feature, buildings are often represented in maps as two-dimensional shapes,
with obvious visual features such as right-angle turns and symmetry. In this dataset, 10
categories of buildings were distinguished according to the forms of English letters, as
shown in Figure 5. Each category contained 501 buildings, with a total of 5010 shapes.

Figure 5. Examples of the 10 categories of building shapes in the experimental dataset.

Because PixelNet, SeqNet, and GraphNet are all unsupervised models, the building
dataset was not divided into training and test sets. All buildings were used to train the
three models to eventually encode a one-dimensional vector for each building. The train-
ing batch size was set to 50, and each model was trained for 50 rounds using the Adam
optimizer [37] with a learning rate of 0.01.

3.2. Experimental Results and Analysis

3.2.1. Quantitative Evaluation
Four shape retrieval metrics were used to evaluate the effectiveness of the shape en-

coding quantitatively: the nearest neighbor (NN), first tier (FT), second tier (ST), and dis-
counted cumulative gain (DCG). All metrics range from 0 to 1, with a higher value indi-
cating a better performance. For more information on the definitions and computation of
these metrics, refer to the work of Shilane et al. [38].

Figure 5. Examples of the 10 categories of building shapes in the experimental dataset.

Because PixelNet, SeqNet, and GraphNet are all unsupervised models, the building
dataset was not divided into training and test sets. All buildings were used to train the three
models to eventually encode a one-dimensional vector for each building. The training batch
size was set to 50, and each model was trained for 50 rounds using the Adam optimizer [37]
with a learning rate of 0.01.

3.2. Experimental Results and Analysis
3.2.1. Quantitative Evaluation

Four shape retrieval metrics were used to evaluate the effectiveness of the shape
encoding quantitatively: the nearest neighbor (NN), first tier (FT), second tier (ST), and
discounted cumulative gain (DCG). All metrics range from 0 to 1, with a higher value
indicating a better performance. For more information on the definitions and computation
of these metrics, refer to the work of Shilane et al. [38].

To calculate FT, ST, and DCG, one shape was randomly selected from each category
as the retrieval object and the others were the shapes to be retrieved. In addition, we
also counted the average cost time of calculating the similarities between each retrieval
object and other shapes to evaluate the retrieval efficiency of the models. For comparison,

ISPRS Int. J. Geo-Inf. 2022, 11, 527 8 of 14

an existing graph-based deep learning model (GAE) proposed by Yan et al. [3] and two
traditional methods, namely, the Fourier shape descriptor (FD) [9] and tangent function
(TF) representation [19], were also implemented. The differences between the GAE and
GraphNet methods are that GAE uses a sequence to represent the shape boundaries, while
GraphNet uses a graph to model the shapes and integrates a pooling operation in the
network. In addition, their input features are different. Table 1 lists the evaluation results
of the shape retrieval on the building datasets.

Table 1. Four quantitative evaluation metrics and cost time for the shape retrieval of the building
dataset using different shape encoding methods.

Method NN FT ST DCG Cost Time (s)

PixelNet 0.989 0.473 0.622 0.883 1.949
SeqNet 0.978 0.503 0.609 0.873 1.991

GraphNet 0.993 0.619 0.694 0.925 1.904
GAE [3] 0.989 0.466 0.591 0.874 1.881
FD [3] 0.968 0.25 0.339 0.777 11.588
TF [3] 0.978 0.31 0.416 0.82 26.483

Several observations were made through the comparison. First, GraphNet outper-
formed PixelNet and SeqNet for all four metrics in the building shape retrieval task.
GraphNet not only considered the connections of non-adjacent nodes through a DT edge
in the graph construction stage but also the spatial proximity between nodes using graph
convolution. These considerations may be beneficial for capturing the contextual char-
acteristics. Second, the overall performance of PixelNet was somewhere between those
of the GraphNet and SeqNet models. This result proves that both the raster-based and
vector-based methods are feasible for shape encoding. The raster-based method is simple
and intuitive, whereas the vector-based method has the advantages of low redundancy,
high precision, and being information intensive. For vector-based methods, the graph
method is abler to mine the topological relationships between non-adjacent nodes than the
sequence method. For this reason, although GraphNet and SeqNet methods have the same
input features, GraphNet has displayed better shape coding capabilities than SeqNet for
the building dataset.

Furthermore, compared with the traditional FD and TF methods, the four deep learn-
ing methods (GraphNet, PixelNet, SeqNet, and GAE methods) performed better. This result
proves the effectiveness of deep learning technologies in extracting the implicit features of
shapes and obtaining valuable encodings. In addition, by comparing the cost time, it was
found that deep learning greatly improved the efficiency of shape retrieval. This is because
the shape similarity measures obtained using the FD and TF methods are highly related to
the starting point of the enclosed boundaries. For a more reliable retrieval, the similarity
between two shapes was computed repeatedly by traversing all nodes in the boundaries as
the starting point. This process incurs considerable computational cost. In contrast, deep
learning provides only one encoding vector for each shape, with a very small computation
when performing matching and retrieval.

3.2.2. Visualization Analysis

To demonstrate the performance of the shape encoding more intuitively, the t-SNE
algorithm [39] was used to reduce the dimension of the shape encodings to two and
visualize them in a plane space, as shown in Figure 6. Under ideal conditions, two shapes
of the same category are more similar, their positions are closer in the space, and the
positions of shapes with different categories are farther apart. Eventually, all building
shape encodings form some independent clusters.

ISPRS Int. J. Geo-Inf. 2022, 11, 527 9 of 14

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 9 of 14

the same category are more similar, their positions are closer in the space, and the posi-
tions of shapes with different categories are farther apart. Eventually, all building shape
encodings form some independent clusters.

Figure 6. Visualization of the building shape encodings produced by the four deep learning-based
methods: (a) GraphNet, (b) SeqNet, (c) PixelNet, and (d) GAE. The same color indicates the same
category.

From the results, the shape encodings produced by the four methods exhibited a cer-
tain aggregation phenomenon. A detailed comparison shows that the shape encodings
produced by the GraphNet and PixelNet methods have a stronger aggregation, whereas
the clusters formed by the same shapes in the SeqNet and GAE results show obvious sep-
aration. Analysis revealed that this phenomenon may be caused by the shape orientation
and the starting point. Although the extracted features in the SeqNet and GAE methods
are scalar, the node features of the input sequences vary greatly with the selection of the
starting points. This leads to a significant difference in the shape encodings. In contrast,
the separations of the shapes with the same category in the results of the GraphNet and
PixelNet methods were mitigated greatly. This occurred because each shape was repre-
sented using a unified raster grid regardless of the choice of starting point in the PixelNet
method. In the GraphNet method, this problem was effectively alleviated by considering
the topological relationships between nodes. These separations resulted in non-negligible
errors in the shape similarity measure, which may explain why the evaluation metrics of
the SeqNet and GAE methods for the shape retrieval task were slightly lower than those
of the GraphNet method.

Further, it was observed that there was overlap for some shape encodings in the
GraphNet and PixelNet results. Especially, in the PixelNet result, E-shaped and F-shaped
encodings have an obvious overlap. This phenomenon occurred may be because some
shapes have a certain visual similarity, for example, the E-shape and F-shape were both
rectangle-like and serrated. This overlap also led to errors in the shape similarity measure;

Figure 6. Visualization of the building shape encodings produced by the four deep learning-
based methods: (a) GraphNet, (b) SeqNet, (c) PixelNet, and (d) GAE. The same color indicates the
same category.

From the results, the shape encodings produced by the four methods exhibited a
certain aggregation phenomenon. A detailed comparison shows that the shape encodings
produced by the GraphNet and PixelNet methods have a stronger aggregation, whereas the
clusters formed by the same shapes in the SeqNet and GAE results show obvious separation.
Analysis revealed that this phenomenon may be caused by the shape orientation and the
starting point. Although the extracted features in the SeqNet and GAE methods are scalar,
the node features of the input sequences vary greatly with the selection of the starting points.
This leads to a significant difference in the shape encodings. In contrast, the separations of
the shapes with the same category in the results of the GraphNet and PixelNet methods
were mitigated greatly. This occurred because each shape was represented using a unified
raster grid regardless of the choice of starting point in the PixelNet method. In the GraphNet
method, this problem was effectively alleviated by considering the topological relationships
between nodes. These separations resulted in non-negligible errors in the shape similarity
measure, which may explain why the evaluation metrics of the SeqNet and GAE methods
for the shape retrieval task were slightly lower than those of the GraphNet method.

Further, it was observed that there was overlap for some shape encodings in the
GraphNet and PixelNet results. Especially, in the PixelNet result, E-shaped and F-shaped
encodings have an obvious overlap. This phenomenon occurred may be because some
shapes have a certain visual similarity, for example, the E-shape and F-shape were both
rectangle-like and serrated. This overlap also led to errors in the shape similarity measure;
therefore, the evaluation metrics of the PixelNet method for the shape retrieval task were
inferior to those of the GraphNet method. From these two observations, the SeqNet and
GAE methods are able to group shapes with the same starting point and orientation into a
category. However, for the two shapes with different directions, these two methods may
measure their similarity incorrectly. For the PixelNet and GraphNet methods, they are not

ISPRS Int. J. Geo-Inf. 2022, 11, 527 10 of 14

affected by the orientation and starting points of the shapes, but they may not be able to
distinguish some specific shapes sufficiently, especially for the PixelNet method.

3.2.3. Similarity Measurements between Shape Pairs

To explain the above results better, Table 2 lists the shape similarities between some
typical shape pairs obtained using different methods. The similarity between two shapes
was calculated using the Euclidean distance between their encodings. The smaller the
value is, the more similar the two shapes are.

Table 2. Shape similarities between some typical shape pairs using different methods. Red hollow
dots indicate the starting point of the shapes, and small blue arrows indicate the node order.

Shape Pair
Shape Similarity

PixelNet SeqNet GraphNet

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 14

therefore, the evaluation metrics of the PixelNet method for the shape retrieval task were
inferior to those of the GraphNet method. From these two observations, the SeqNet and
GAE methods are able to group shapes with the same starting point and orientation into
a category. However, for the two shapes with different directions, these two methods may
measure their similarity incorrectly. For the PixelNet and GraphNet methods, they are not
affected by the orientation and starting points of the shapes, but they may not be able to
distinguish some specific shapes sufficiently, especially for the PixelNet method.

3.2.3. Similarity Measurements between Shape Pairs
To explain the above results better, Table 2 lists the shape similarities between some

typical shape pairs obtained using different methods. The similarity between two shapes
was calculated using the Euclidean distance between their encodings. The smaller the
value is, the more similar the two shapes are.

Table 2. Shape similarities between some typical shape pairs using different methods. Red hollow
dots indicate the starting point of the shapes, and small blue arrows indicate the node order.

Shape Pair
Shape Similarity

PixelNet SeqNet GraphNet

0.089 0.046 0.022

0.565 0.485 0.496

0.383 0.112 0.173

0.214 0.387 0.115

0.29 0.329 0.138

For the first shape pair, the orientations, starting points, and overall shapes were rel-
atively close, and all three methods could describe their similarities accurately. The orien-
tations and starting points of the second shape pair were similar, but the shapes were
different and the similarities computed by the three methods were low. The results show
that the three methods can distinguish the shape features well under ideal conditions, i.e.,
with consistent orientations and starting points. The third shape pair has the same starting
points and shapes, but the orientations are different, SeqNet performed well, GraphNet
reasonably well, and PixelNet performed the worst. This result indicates that the orienta-
tion affected the performance of PixelNet observably; it also affected GraphNet to a certain
extent but within an acceptable range. The results of the fourth and fifth shape pairs re-
vealed that the SeqNet method always perform poorly when the starting points were dif-
ferent, even when the orientations were the same. This means that these methods are still
very sensitive to the order of the points, even though the extracted features are scalar-free.
This problem was significant alleviated in GraphNet. These detailed comparative analysis
results are consistent with the previous quantitative results.

3.3. Discussions on the Coding Dimension
The encoding dimension variable is critical for the encoder–decoder method. There-

fore, a supplemental experiment was conducted to investigate the effects of this parameter
on the performance of the three methods. To achieve a change in dimensions, PixelNet
and GraphNet adjusted the number of convolutional kernels in the last convolutional

0.089 0.046 0.022

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 14

therefore, the evaluation metrics of the PixelNet method for the shape retrieval task were
inferior to those of the GraphNet method. From these two observations, the SeqNet and
GAE methods are able to group shapes with the same starting point and orientation into
a category. However, for the two shapes with different directions, these two methods may
measure their similarity incorrectly. For the PixelNet and GraphNet methods, they are not
affected by the orientation and starting points of the shapes, but they may not be able to
distinguish some specific shapes sufficiently, especially for the PixelNet method.

3.2.3. Similarity Measurements between Shape Pairs
To explain the above results better, Table 2 lists the shape similarities between some

typical shape pairs obtained using different methods. The similarity between two shapes
was calculated using the Euclidean distance between their encodings. The smaller the
value is, the more similar the two shapes are.

Table 2. Shape similarities between some typical shape pairs using different methods. Red hollow
dots indicate the starting point of the shapes, and small blue arrows indicate the node order.

Shape Pair
Shape Similarity

PixelNet SeqNet GraphNet

0.089 0.046 0.022

0.565 0.485 0.496

0.383 0.112 0.173

0.214 0.387 0.115

0.29 0.329 0.138

For the first shape pair, the orientations, starting points, and overall shapes were rel-
atively close, and all three methods could describe their similarities accurately. The orien-
tations and starting points of the second shape pair were similar, but the shapes were
different and the similarities computed by the three methods were low. The results show
that the three methods can distinguish the shape features well under ideal conditions, i.e.,
with consistent orientations and starting points. The third shape pair has the same starting
points and shapes, but the orientations are different, SeqNet performed well, GraphNet
reasonably well, and PixelNet performed the worst. This result indicates that the orienta-
tion affected the performance of PixelNet observably; it also affected GraphNet to a certain
extent but within an acceptable range. The results of the fourth and fifth shape pairs re-
vealed that the SeqNet method always perform poorly when the starting points were dif-
ferent, even when the orientations were the same. This means that these methods are still
very sensitive to the order of the points, even though the extracted features are scalar-free.
This problem was significant alleviated in GraphNet. These detailed comparative analysis
results are consistent with the previous quantitative results.

3.3. Discussions on the Coding Dimension
The encoding dimension variable is critical for the encoder–decoder method. There-

fore, a supplemental experiment was conducted to investigate the effects of this parameter
on the performance of the three methods. To achieve a change in dimensions, PixelNet
and GraphNet adjusted the number of convolutional kernels in the last convolutional

0.565 0.485 0.496

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 14

therefore, the evaluation metrics of the PixelNet method for the shape retrieval task were
inferior to those of the GraphNet method. From these two observations, the SeqNet and
GAE methods are able to group shapes with the same starting point and orientation into
a category. However, for the two shapes with different directions, these two methods may
measure their similarity incorrectly. For the PixelNet and GraphNet methods, they are not
affected by the orientation and starting points of the shapes, but they may not be able to
distinguish some specific shapes sufficiently, especially for the PixelNet method.

3.2.3. Similarity Measurements between Shape Pairs
To explain the above results better, Table 2 lists the shape similarities between some

typical shape pairs obtained using different methods. The similarity between two shapes
was calculated using the Euclidean distance between their encodings. The smaller the
value is, the more similar the two shapes are.

Table 2. Shape similarities between some typical shape pairs using different methods. Red hollow
dots indicate the starting point of the shapes, and small blue arrows indicate the node order.

Shape Pair
Shape Similarity

PixelNet SeqNet GraphNet

0.089 0.046 0.022

0.565 0.485 0.496

0.383 0.112 0.173

0.214 0.387 0.115

0.29 0.329 0.138

For the first shape pair, the orientations, starting points, and overall shapes were rel-
atively close, and all three methods could describe their similarities accurately. The orien-
tations and starting points of the second shape pair were similar, but the shapes were
different and the similarities computed by the three methods were low. The results show
that the three methods can distinguish the shape features well under ideal conditions, i.e.,
with consistent orientations and starting points. The third shape pair has the same starting
points and shapes, but the orientations are different, SeqNet performed well, GraphNet
reasonably well, and PixelNet performed the worst. This result indicates that the orienta-
tion affected the performance of PixelNet observably; it also affected GraphNet to a certain
extent but within an acceptable range. The results of the fourth and fifth shape pairs re-
vealed that the SeqNet method always perform poorly when the starting points were dif-
ferent, even when the orientations were the same. This means that these methods are still
very sensitive to the order of the points, even though the extracted features are scalar-free.
This problem was significant alleviated in GraphNet. These detailed comparative analysis
results are consistent with the previous quantitative results.

3.3. Discussions on the Coding Dimension
The encoding dimension variable is critical for the encoder–decoder method. There-

fore, a supplemental experiment was conducted to investigate the effects of this parameter
on the performance of the three methods. To achieve a change in dimensions, PixelNet
and GraphNet adjusted the number of convolutional kernels in the last convolutional

0.383 0.112 0.173

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 14

therefore, the evaluation metrics of the PixelNet method for the shape retrieval task were
inferior to those of the GraphNet method. From these two observations, the SeqNet and
GAE methods are able to group shapes with the same starting point and orientation into
a category. However, for the two shapes with different directions, these two methods may
measure their similarity incorrectly. For the PixelNet and GraphNet methods, they are not
affected by the orientation and starting points of the shapes, but they may not be able to
distinguish some specific shapes sufficiently, especially for the PixelNet method.

3.2.3. Similarity Measurements between Shape Pairs
To explain the above results better, Table 2 lists the shape similarities between some

typical shape pairs obtained using different methods. The similarity between two shapes
was calculated using the Euclidean distance between their encodings. The smaller the
value is, the more similar the two shapes are.

Table 2. Shape similarities between some typical shape pairs using different methods. Red hollow
dots indicate the starting point of the shapes, and small blue arrows indicate the node order.

Shape Pair
Shape Similarity

PixelNet SeqNet GraphNet

0.089 0.046 0.022

0.565 0.485 0.496

0.383 0.112 0.173

0.214 0.387 0.115

0.29 0.329 0.138

For the first shape pair, the orientations, starting points, and overall shapes were rel-
atively close, and all three methods could describe their similarities accurately. The orien-
tations and starting points of the second shape pair were similar, but the shapes were
different and the similarities computed by the three methods were low. The results show
that the three methods can distinguish the shape features well under ideal conditions, i.e.,
with consistent orientations and starting points. The third shape pair has the same starting
points and shapes, but the orientations are different, SeqNet performed well, GraphNet
reasonably well, and PixelNet performed the worst. This result indicates that the orienta-
tion affected the performance of PixelNet observably; it also affected GraphNet to a certain
extent but within an acceptable range. The results of the fourth and fifth shape pairs re-
vealed that the SeqNet method always perform poorly when the starting points were dif-
ferent, even when the orientations were the same. This means that these methods are still
very sensitive to the order of the points, even though the extracted features are scalar-free.
This problem was significant alleviated in GraphNet. These detailed comparative analysis
results are consistent with the previous quantitative results.

3.3. Discussions on the Coding Dimension
The encoding dimension variable is critical for the encoder–decoder method. There-

fore, a supplemental experiment was conducted to investigate the effects of this parameter
on the performance of the three methods. To achieve a change in dimensions, PixelNet
and GraphNet adjusted the number of convolutional kernels in the last convolutional

0.214 0.387 0.115

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 14

therefore, the evaluation metrics of the PixelNet method for the shape retrieval task were
inferior to those of the GraphNet method. From these two observations, the SeqNet and
GAE methods are able to group shapes with the same starting point and orientation into
a category. However, for the two shapes with different directions, these two methods may
measure their similarity incorrectly. For the PixelNet and GraphNet methods, they are not
affected by the orientation and starting points of the shapes, but they may not be able to
distinguish some specific shapes sufficiently, especially for the PixelNet method.

3.2.3. Similarity Measurements between Shape Pairs
To explain the above results better, Table 2 lists the shape similarities between some

typical shape pairs obtained using different methods. The similarity between two shapes
was calculated using the Euclidean distance between their encodings. The smaller the
value is, the more similar the two shapes are.

Table 2. Shape similarities between some typical shape pairs using different methods. Red hollow
dots indicate the starting point of the shapes, and small blue arrows indicate the node order.

Shape Pair
Shape Similarity

PixelNet SeqNet GraphNet

0.089 0.046 0.022

0.565 0.485 0.496

0.383 0.112 0.173

0.214 0.387 0.115

0.29 0.329 0.138

For the first shape pair, the orientations, starting points, and overall shapes were rel-
atively close, and all three methods could describe their similarities accurately. The orien-
tations and starting points of the second shape pair were similar, but the shapes were
different and the similarities computed by the three methods were low. The results show
that the three methods can distinguish the shape features well under ideal conditions, i.e.,
with consistent orientations and starting points. The third shape pair has the same starting
points and shapes, but the orientations are different, SeqNet performed well, GraphNet
reasonably well, and PixelNet performed the worst. This result indicates that the orienta-
tion affected the performance of PixelNet observably; it also affected GraphNet to a certain
extent but within an acceptable range. The results of the fourth and fifth shape pairs re-
vealed that the SeqNet method always perform poorly when the starting points were dif-
ferent, even when the orientations were the same. This means that these methods are still
very sensitive to the order of the points, even though the extracted features are scalar-free.
This problem was significant alleviated in GraphNet. These detailed comparative analysis
results are consistent with the previous quantitative results.

3.3. Discussions on the Coding Dimension
The encoding dimension variable is critical for the encoder–decoder method. There-

fore, a supplemental experiment was conducted to investigate the effects of this parameter
on the performance of the three methods. To achieve a change in dimensions, PixelNet
and GraphNet adjusted the number of convolutional kernels in the last convolutional

0.29 0.329 0.138

For the first shape pair, the orientations, starting points, and overall shapes were
relatively close, and all three methods could describe their similarities accurately. The
orientations and starting points of the second shape pair were similar, but the shapes were
different and the similarities computed by the three methods were low. The results show
that the three methods can distinguish the shape features well under ideal conditions,
i.e., with consistent orientations and starting points. The third shape pair has the same
starting points and shapes, but the orientations are different, SeqNet performed well,
GraphNet reasonably well, and PixelNet performed the worst. This result indicates that the
orientation affected the performance of PixelNet observably; it also affected GraphNet to a
certain extent but within an acceptable range. The results of the fourth and fifth shape pairs
revealed that the SeqNet method always perform poorly when the starting points were
different, even when the orientations were the same. This means that these methods are still
very sensitive to the order of the points, even though the extracted features are scalar-free.
This problem was significant alleviated in GraphNet. These detailed comparative analysis
results are consistent with the previous quantitative results.

3.3. Discussions on the Coding Dimension

The encoding dimension variable is critical for the encoder–decoder method. There-
fore, a supplemental experiment was conducted to investigate the effects of this parameter
on the performance of the three methods. To achieve a change in dimensions, PixelNet
and GraphNet adjusted the number of convolutional kernels in the last convolutional
layer, and SeqNet adjusted the number of neurons in the hidden layer. Table 3 lists the
evaluation metrics for the encoding performance of the different methods by varying the
coding dimension from 32 to 512.

ISPRS Int. J. Geo-Inf. 2022, 11, 527 11 of 14

Table 3. Quantitative evaluation results with four metrics for the shape retrieval of the building
dataset using the three deep encoder–decoder methods with different encoding dimensions.

Dimension
PixelNet SeqNet GraphNet

NN FT ST DCG NN FT ST DCG NN FT ST DCG

32 0.976 0.427 0.509 0.852 0.97 0.477 0.559 0.872 0.992 0.577 0.659 0.902
64 0.985 0.46 0.544 0.867 0.977 0.49 0.604 0.874 0.991 0.57 0.644 0.907
128 0.989 0.473 0.622 0.883 0.978 0.503 0.609 0.873 0.993 0.619 0.694 0.925
256 0.990 0.487 0.617 0.888 0.977 0.505 0.61 0.876 0.99 0.578 0.647 0.908
512 0.988 0.484 0.614 0.88 0.978 0.5 0.604 0.874 0.991 0.589 0.644 0.904

In theory, when the encoding dimension is higher, the feature representation ability
is stronger. However, the experimental results contradicted this finding. The comparison
revealed that the performance of all three methods first improved but then stabilized
or even decreased as the encoding dimension increased. GraphNet performed the best
when the encoding dimension was 128. For the PixelNet and SeqNet methods, the most
appropriate encoding dimension was 256. This result may be attributable to the lack of
sparsity in training to limit the base vector, resulting in performance degradation due to
over-completeness at higher encoding dimensions.

3.4. Tests with a More Complex Dataset

Because the building shapes used in this study were relatively simple, we tested the
different shape encoding methods on a more complex dataset, the MPEG-7 dataset [40],
to verify and compare the performance further. This database is characterized by a wide
variety of categories. It includes a total of 70 shape categories covering animals, plants, and
supplies. Each category includes 20 shapes, for a total of 1400 shapes. Figure 7 shows some
examples from the dataset.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 11 of 14

layer, and SeqNet adjusted the number of neurons in the hidden layer. Table 3 lists the
evaluation metrics for the encoding performance of the different methods by varying the
coding dimension from 32 to 512.

In theory, when the encoding dimension is higher, the feature representation ability
is stronger. However, the experimental results contradicted this finding. The comparison
revealed that the performance of all three methods first improved but then stabilized or
even decreased as the encoding dimension increased. GraphNet performed the best when
the encoding dimension was 128. For the PixelNet and SeqNet methods, the most appro-
priate encoding dimension was 256. This result may be attributable to the lack of sparsity
in training to limit the base vector, resulting in performance degradation due to over-
completeness at higher encoding dimensions.

Table 3. Quantitative evaluation results with four metrics for the shape retrieval of the building
dataset using the three deep encoder–decoder methods with different encoding dimensions.

Dimension
PixelNet SeqNet GraphNet

NN FT ST DCG NN FT ST DCG NN FT ST DCG
32 0.976 0.427 0.509 0.852 0.97 0.477 0.559 0.872 0.992 0.577 0.659 0.902
64 0.985 0.46 0.544 0.867 0.977 0.49 0.604 0.874 0.991 0.57 0.644 0.907

128 0.989 0.473 0.622 0.883 0.978 0.503 0.609 0.873 0.993 0.619 0.694 0.925
256 0.990 0.487 0.617 0.888 0.977 0.505 0.61 0.876 0.99 0.578 0.647 0.908
512 0.988 0.484 0.614 0.88 0.978 0.5 0.604 0.874 0.991 0.589 0.644 0.904

3.4. Tests with a More Complex Dataset
Because the building shapes used in this study were relatively simple, we tested the

different shape encoding methods on a more complex dataset, the MPEG-7 dataset [40],
to verify and compare the performance further. This database is characterized by a wide
variety of categories. It includes a total of 70 shape categories covering animals, plants,
and supplies. Each category includes 20 shapes, for a total of 1400 shapes. Figure 7 shows
some examples from the dataset.

Figure 7. Examples of shapes in the MPEG-7 dataset.

For the four deep learning models, all of the shapes in the MPEG-7 dataset were used
to train them, and each shape was encoded as a vector. For each category, one shape was
chosen randomly to retrieve the other shapes. The four quantitative metrics and the cost
time of the retrieval task using different methods are listed in Table 4. The comparison
shows that GraphNet still performed better on all four quantitative metrics compared
with the PixelNet and SeqNet methods, and that the overall results are consistent with
those for the building dataset, indicating that GraphNet also has a certain of advantages
for the similarity measures and retrieval of complex shapes. The four metrics of the GAE
method were still lower than the Graph method, but the gap had narrowed. Careful anal-
ysis revealed that the reason for this result may be that GAE had a simpler network archi-
tecture and received more input features, and therefore it performed more stably on the
MPEG-7 dataset with complex categories and fewer shapes. It was also observed that, the

Figure 7. Examples of shapes in the MPEG-7 dataset.

For the four deep learning models, all of the shapes in the MPEG-7 dataset were used
to train them, and each shape was encoded as a vector. For each category, one shape was
chosen randomly to retrieve the other shapes. The four quantitative metrics and the cost
time of the retrieval task using different methods are listed in Table 4. The comparison
shows that GraphNet still performed better on all four quantitative metrics compared with
the PixelNet and SeqNet methods, and that the overall results are consistent with those
for the building dataset, indicating that GraphNet also has a certain of advantages for the
similarity measures and retrieval of complex shapes. The four metrics of the GAE method
were still lower than the Graph method, but the gap had narrowed. Careful analysis
revealed that the reason for this result may be that GAE had a simpler network architecture
and received more input features, and therefore it performed more stably on the MPEG-7
dataset with complex categories and fewer shapes. It was also observed that, the metrics of
FT and ST improved on the tests with the MPEG-7 dataset, especially for the FD and TF
methods, which may be related to the reduction in the number of shapes in each category.

ISPRS Int. J. Geo-Inf. 2022, 11, 527 12 of 14

Table 4. Four quantitative evaluation metrics and cost time for the shape retrieval of the MPEG-7
dataset using different shape encoding methods.

Method NN FT ST DCG Cost Time (s)

PixelNet 0.873 0.491 0.55 0.76 0.523
SeqNet 0.861 0.486 0.564 0.749 0.509

GraphNet 0.912 0.532 0.608 0.813 0.511
GAE 0.909 0.517 0.606 0.801 0.539
FD 0.859 0.48 0.533 0.763 18.761
TF 0.862 0.465 0.538 0.735 636.725

In addition, the cost time of the retrieval task for the four deep learning methods was
shortened due to fewer retrieval objects in the dataset. The FD and TF methods, however,
required more time because the shapes were more complex and the number of nodes were
larger. This result further demonstrates the advantages of deep learning methods in terms
of retrieval efficiency.

4. Conclusions

Shape representation and encoding is a foundational problem in cartography and
geosciences. According to three basic modeling methods for shape, three different shape
encoding methods based on deep learning, PixelNet, SeqNet, and GraphNet were con-
structed in this study. PixelNet was built on a raster-based modeling, SeqNet was built on
a sequence-based modeling, and GraphNet was built on a vector-based modeling using a
graph structure. Experimental analysis using two datasets produced the following conclu-
sions: (1) The encoder–decoder methods based on deep learning could effectively compute
the shape features and obtain meaningful encodings to support the shape measurement
and retrieval task. (2) The deep learning methods demonstrated some advantages over
the traditional FD and TF methods on the building dataset; the FT and ST metrics of FD
and TF methods improved significantly on the MPEG-7 dataset. (3) GraphNet performed
better than SeqNet and PixelNet due to its use of a graph to model the topological relations
between nodes and an efficient graph convolution and pooling operation to process the
node features.

Further research would be carried out from the following aspects: (1) The planar shape
encoding problem should be extended to a three-dimensional (3D) shape encoding problem
and the performance of encoder–decoders for encoding 3D objects, including 3D buildings
and 3D points, should be evaluated. (2) For feature extraction of shape nodes, additional
features deserve study to capture the morphology and topological associations between
shape nodes, such as shape context descriptors. (3) In terms of learning architecture, some
emerging learning techniques, such as attentional mechanisms and reinforcement learning,
can be considered to enhance representation capability.

Author Contributions: Conceptualization, Xiongfeng Yan and Min Yang; methodology, Xiongfeng
Yan; writing—original draft preparation, Xiongfeng Yan; writing—review and editing, Xiongfeng
Yan and Min Yang; funding acquisition, Xiongfeng Yan and Min Yang. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
nos. 42001415, 42071450), the Open Research Fund Program of Key Laboratory of Digital Map-
ping and Land Information Application Engineering, Ministry of Natural Resources (Grant no.
ZRZYBWD202101), and the State Key Laboratory of Geo-Information Engineering (Grant no.
SKLGIE2020-Z-4-1).

Data Availability Statement: Data sharing is not applicable to this article as no new data were
created in this study.

Conflicts of Interest: The authors declare no conflict of interest.

ISPRS Int. J. Geo-Inf. 2022, 11, 527 13 of 14

References
1. Klettner, S. Affective communication of map symbols: A semantic differential analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 289.

[CrossRef]
2. Klettner, S. Why shape matters—On the inherent qualities of geometric shapes for cartographic representations. ISPRS Int. J.

Geo-Inf. 2019, 8, 217. [CrossRef]
3. Yan, X.; Ai, T.; Yang, M.; Tong, X. Graph convolutional autoencoder model for the shape coding and cognition of buildings in

maps. Int. J. Geogr. Inf. Sci. 2021, 35, 490–512. [CrossRef]
4. Samsonov, T.E.; Yakimova, O.P. Shape-adaptive geometric simplification of heterogeneous line datasets. Int. J. Geogr. Inf. Sci.

2017, 31, 1485–1520. [CrossRef]
5. Yan, X.; Ai, T.; Zhang, X. Template matching and simplification method for building features based on shape cognition. ISPRS Int.

J. Geo-Inf. 2017, 6, 250. [CrossRef]
6. Yang, M.; Yuan, T.; Yan, X.; Ai, T.; Jiang, C. A hybrid approach to building simplification with an evaluator from a backpropagation

neural network. Int. J. Geogr. Inf. Sci. 2022, 36, 280–309. [CrossRef]
7. Yan, X.; Ai, T.; Yang, M.; Yin, H. A graph convolutional neural network for classification of building patterns using spatial vector

data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 259–273. [CrossRef]
8. Yang, M.; Jiang, C.; Yan, X.; Ai, T.; Cao, M.; Chen, W. Detecting interchanges in road networks using a graph convolutional

network approach. Int. J. Geogr. Inf. Sci. 2022, 36, 1119–1139. [CrossRef]
9. Ai, T.; Cheng, X.; Liu, P.; Yang, M. A shape analysis and template matching of building features by the Fourier transform method.

Comput. Environ. Urban Syst. 2013, 41, 219–233. [CrossRef]
10. Fan, H.; Zhao, Z.; Li, W. Towards measuring shape similarity of polygons based on multiscale features and grid context descriptors.

ISPRS Int. J. Geo-Inf. 2021, 10, 279. [CrossRef]
11. Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach.

Intell. 2022, 24, 509–522. [CrossRef]
12. Mark, D.M.; Freksa, C.; Hirtle, S.C.; Lloyd, R.; Tversky, B. Cognitive models of geographical space. Int. J. Geogr. Inf. Sci. 1999,

13, 747–774. [CrossRef]
13. Basaraner, M.; Cetinkaya, S. Performance of shape indices and classification schemes for characterising perceptual shape

complexity of building footprints in GIS. Inter. J. Geogr. Infor. Sci. 2017, 31, 1952–1977. [CrossRef]
14. Wei, Z.; Guo, Q.; Wang, L.; Yan, F. On the spatial distribution of buildings for map generalization. Cartogr. Geogr. Infor. Sci. 2018,

45, 539–555. [CrossRef]
15. Li, W.; Goodchild, M.F.; Church, R. An efficient measure of compactness for two-dimensional shapes and its application in

regionalization problems. Int. J. Geogr. Inf. Sci. 2013, 27, 1227–1250. [CrossRef]
16. Akgül, C.B.; Sankur, B.; Yemez, Y.; Schmitt, F. 3D model retrieval using probability density-based shape descriptors. IEEE Trans.

Pattern Anal. Mach. Intell. 2009, 31, 1117–1133. [CrossRef]
17. Kunttu, I.; Lepisto, L.; Rauhamaa, J.; Visa, A. Multiscale Fourier descriptor for shape-based image retrieval. In Proceedings of the

17th International Conference on Pattern Recognition, Cambridge, UK, 23–26 August 2004; pp. 765–768. [CrossRef]
18. Sundar, H.; Silver, D.; Gagvani, N.; Dickinson, S. Skeleton based shape matching and retrieval. In Proceedings of the International

Conference on Shape Modeling and Applications, Seoul, Korea, 12–15 May 2003; pp. 130–139. [CrossRef]
19. Arkin, E.M.; Chew, L.P.; Huttenlocher, D.P.; Kedem, K.; Mitchell, J.S. An efficiently computable metric for comparing polygonal

shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 209–216. [CrossRef]
20. Adamek, T.; O’connor, N.E. A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans.

Circuits Syst. Video Technol. 2004, 14, 742–753. [CrossRef]
21. Yang, C.; Wei, H.; Yu, Q. A novel method for 2D nonrigid partial shape matching. Neurocomputing 2018, 275, 1160–1176. [CrossRef]
22. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; pp. 505–527.
23. Bei, W.; Guo, M.; Huang, Y. A spatial adaptive algorithm framework for building pattern recognition using graph convolutional

networks. Sensors 2019, 19, 5518. [CrossRef] [PubMed]
24. Courtial, A.; El Ayedi, A.; Touya, G.; Zhang, X. Exploring the potential of deep learning segmentation for mountain roads

generalisation. ISPRS Int. J. Geo-Inf. 2020, 9, 338. [CrossRef]
25. Feng, Y.; Thiemann, F.; Sester, M. Learning cartographic building generalization with deep convolutional neural networks. ISPRS

Int. J. Geo-Inf. 2019, 8, 258. [CrossRef]
26. Zhu, D.; Cheng, X.; Zhang, F.; Yao, X.; Gao, Y.; Liu, Y. Spatial interpolation using conditional generative adversarial neural

networks. Int. J. Geogr. Inf. Sci. 2020, 34, 735–758. [CrossRef]
27. Ritter, S.; Barrett, D.G.; Santoro, A.; Botvinick, M.M. Cognitive psychology for deep neural networks: A shape bias case study. In

Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2940–2949.
Available online: https://arxiv.org/abs/1706.08606 (accessed on 12 March 2022).

28. Liu, C.; Hu, Y.; Li, Z.; Xu, J.; Han, Z.; Guo, J. TriangleConv: A deep point convolutional network for recognizing building shapes
in map space. ISPRS Int. J. Geo-Inf. 2021, 10, 687. [CrossRef]

29. Hu, Y.; Liu, C.; Li, Z.; Xu, J.; Han, Z.; Guo, J. Few-shot building footprint shape classification with relation network. ISPRS Int. J.
Geo-Inf. 2022, 11, 311. [CrossRef]

http://doi.org/10.3390/ijgi9050289
http://doi.org/10.3390/ijgi8050217
http://doi.org/10.1080/13658816.2020.1768260
http://doi.org/10.1080/13658816.2017.1306864
http://doi.org/10.3390/ijgi6080250
http://doi.org/10.1080/13658816.2021.1873998
http://doi.org/10.1016/j.isprsjprs.2019.02.010
http://doi.org/10.1080/13658816.2021.2024195
http://doi.org/10.1016/j.compenvurbsys.2013.07.002
http://doi.org/10.3390/ijgi10050279
http://doi.org/10.1109/34.993558
http://doi.org/10.1080/136588199241003
http://doi.org/10.1080/13658816.2017.1346257
http://doi.org/10.1080/15230406.2018.1433068
http://doi.org/10.1080/13658816.2012.752093
http://doi.org/10.1109/TPAMI.2009.25
http://doi.org/10.1109/ICPR.2004.1334371
http://doi.org/10.1109/SMI.2003.1199609
http://doi.org/10.1109/34.75509
http://doi.org/10.1109/TCSVT.2004.826776
http://doi.org/10.1016/j.neucom.2017.09.067
http://doi.org/10.3390/s19245518
http://www.ncbi.nlm.nih.gov/pubmed/31847218
http://doi.org/10.3390/ijgi9050338
http://doi.org/10.3390/ijgi8060258
http://doi.org/10.1080/13658816.2019.1599122
https://arxiv.org/abs/1706.08606
http://doi.org/10.3390/ijgi10100687
http://doi.org/10.3390/ijgi11050311

ISPRS Int. J. Geo-Inf. 2022, 11, 527 14 of 14

30. Courtial, A.; Touya, G.; Zhang, X. Representing vector geographic information as a tensor for deep learning based map
generalisation. In Proceedings of the 25th AGILE Conference, Vilnius, Lithuania, 14–17 June 2022; p. 32. [CrossRef]

31. Touya, G.; Zhang, X.; Lokhat, I. Is deep learning the new agent for map generalization? Int. J. Cartogr. 2019, 5, 142–157. [CrossRef]
32. He, Y.; Ai, T.; Yu, W.; Zhang, X. A linear tessellation model to identify spatial pattern in urban street networks. Int. J. Geogr. Inf.

Sci. 2017, 31, 1541–1561. [CrossRef]
33. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the 27th International

Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3844–3852. Available
online: https://arxiv.org/abs/1409.3215 (accessed on 24 June 2022).

34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
35. Hammond, D.K.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal.

2011, 30, 129–150. [CrossRef]
36. Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W.L.; Leskovec, J. Hierarchical graph representation learning with differentiable

pooling. In Proceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December
2018; pp. 4805–4815. Available online: https://arxiv.org/abs/1806.08804 (accessed on 19 January 2022).

37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. Available online: https://arxiv.org/abs/1412.6980 (accessed on
20 July 2022).

38. Shilane, P.; Min, P.; Kazhdan, M.; Funkhouser, T. The Princeton shape benchmark. In Proceedings of the International Conference
on Shape Modeling Applications, Genova, Italy, 7–9 June 2004; pp. 167–178. [CrossRef]

39. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. Available online:
http://jmlr.org/papers/v9/vandermaaten08a.html (accessed on 21 July 2022).

40. Latecki, L.J.; Lakamper, R.; Eckhardt, T. Shape descriptors for non-rigid shapes with a single closed contour. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 13–15 June 2000; pp. 424–429. [CrossRef]

http://doi.org/10.5194/agile-giss-3-32-2022
http://doi.org/10.1080/23729333.2019.1613071
http://doi.org/10.1080/13658816.2017.1298768
https://arxiv.org/abs/1409.3215
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1016/j.acha.2010.04.005
https://arxiv.org/abs/1806.08804
https://arxiv.org/abs/1412.6980
http://doi.org/10.1109/SMI.2004.1314504
http://jmlr.org/papers/v9/vandermaaten08a.html
http://doi.org/10.1109/CVPR.2000.855850

	Introduction
	Methodology
	Pixel-Based Shape Coding Model
	Sequence-Based Shape Encoding Model
	Graph-Based Shape Autoencoder

	Experimental Results and Analysis
	Experimental Datasets
	Experimental Results and Analysis
	Quantitative Evaluation
	Visualization Analysis
	Similarity Measurements between Shape Pairs

	Discussions on the Coding Dimension
	Tests with a More Complex Dataset

	Conclusions
	References

