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Abstract: An increasing number of applications require the accurate 3D layout reconstruction of
indoor environments. Various devices including laser scanners and color and depth (RGB-D) cameras
can be used for this purpose and provide abundant and highly precise data sources. However,
due to indoor environment complexity, existing noise and occlusions caused by clutter in acquired
data, current studies often require the idealization of the architecture space or add an implication
hypothesis to input data as priors, which limits the use of these methods for general purposes. In this
study, we propose a general 3D layout reconstruction method for indoor environments. The method
combines voxel-based room segmentation and space partition to build optimum polygonal models.
It releases idealization of the architectural space into a non-Manhattan world and can accommodate
various types of input data sources, including both point clouds and meshes. A total of four point
cloud datasets, four mesh datasets and two cross-floor datasets were used in experiments. The results
exhibit more than 80% completeness and correctness as well as high accuracy.

Keywords: 3D layout; indoor space; voxel; space partition; point cloud; mesh

1. Introduction

The three-dimensional (3D) layout reconstruction of indoor environments is of great
significance for many fields, such as games, films, intelligent buildings, building informa-
tion model (BIM) and robotics [1–4]. In the game and film industry, an indoor 3D layout of
the environment is helpful for the integration of the real-world and virtual information and
for realizing augmented reality (AR) and mixed reality (MR) [2]. In the field of architecture,
engineering and construction (AEC), indoor structure and layout are important compo-
nents of BIM [5]. Digital representations of urban architecture are becoming increasingly
important due to the increasing growth of urban buildings [6]. They are inseparable from
the meta-universe and digital twin cities.

Indoor 3D layout reconstruction is used to build 3D models integrating points, lines
and surfaces. Spatial layouts provide a higher level of knowledge of architectural space [7].
Image-based photogrammetry technology and laser scanning-based point cloud data acqui-
sition technology provide effective data sources for indoor spatial information acquisition
and layout information extraction [8]. To meet the demands of various applications, both
laser point clouds and images are crucial data sources, and their respective advantages are
combined to maximize the availability of information. However, the laser point clouds or
meshes obtained are usually unstructured and lack semantic information. The generalized
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point cloud data obtained contain noise, occlusion and incomplete data because of the
complicated indoor structure and the enormous number of items accumulating in the
space. Therefore, the construction of an urban information model is still time-consuming,
laborious and expensive.

Despite the heavy demand for digital buildings, the work to build accurate, up-to-date
and semantic-rich building models is still a difficult task. Points are obtained along the laser
scanner’s line of sight when data are being acquired. The generated mesh model or point
cloud data suffer from noise and data loss due to occlusion brought on by indoor items and
the various reflective qualities of different types of objects. Existing methods have difficulty
effectively building indoor 3D models with semantic and topological consistency. Many
scholars simplify the problem from the perspective of architecture space structure, limiting
the building space to a 2.5-dimensional (2.5D) idealization or adopting a more rigorous
Manhattan world assumption. Other scholars have studied rapid construction methods
of building models, where prior knowledge is added to the data acquisition process, such
as a laser scan for each room, and the trajectory forms an aggregation in the room [9].
Artificially adding prior knowledge to data increases the manual workload, and it cannot
meet the needs of the next generation of robot intelligence. In addition, none of the current
methods can solve the problem of cross-floor space reconstruction. Therefore, a general
indoor layout reconstruction method is still missing [1].

In this study, a general 3D layout reconstruction method combining voxel-based room
segmentation and space partitioning is proposed. The main contribution is creating polyg-
onal structural descriptions of buildings from laser scanners and camera image data for
other than simple Manhattan geometry. The method associates room semantic information
to divide subspaces to acquire optimum polygonal models of indoor environments. It pro-
vides 3D layout reconstructions of multiple rooms, multiple stories and a non-Manhattan
world, especially for the reconstruction of the cross-floor space. The data input can be point
cloud data or mesh data, with or without pose/viewpoint/trajectory information.

The paper is structured as follows: The associated research for this study is introduced
in Section 2, the proposed reconstruction method is introduced in Section 3, the experiments
are described in Section 4, the discussion is presented in Section 5, and the conclusions are
presented in Section 6.

2. Related Works

A growing interest in indoor 3D reconstruction has been sparked by the advancement
of laser scanning and photogrammetry technology. In the computer vision field, many stud-
ies focus on building a surface visualization 3D model, and all objects in the reconstructed
scene are represented by a triangular mesh. Commonly used scene surface reconstruction
methods include Delaunay triangulation [10] and Poisson reconstruction [11]. However,
the surface model lacks structural and semantic information and cannot meet the needs of
deep-seated analysis and calculation.

The interior layout provides high-level information on the interior space structure,
which is of great significance for virtual reality, interior design, navigation path planning
and energy calculation. Many scholars have studied the estimation and reconstruction of
indoor layouts [5]. According to the different data inputs, reconstruction can be divided
into laser scanning-based [7] and image-based reconstruction [12], and the images include
monocular images [13], panoramic images [14] and RGB-D images [15]. According to
different scenes, the indoor layout can be classified as single rooms [14], multiple rooms [16]
and large-scale indoor spaces [17]. The dimensionality can be two-dimensional (2D) [7,18]
or 3D [19]. Significant trends are that the space range of room layout estimation is increasing,
the indoor structure is becoming increasingly complex and the types of input data used are
becoming increasingly diverse.

Rule-based methods and data-driven methods are the two groups into which the
3D layout reconstruction techniques may be divided. Rule-based methods manually use
definitions of grammar rules, application orders and parameters, which are also known
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as grammatical information in the 3D reconstruction process. A two-rule grammar was
suggested by Khoshelham and Diaz-Vilarino [20] to reconstruct 3D interior spaces of
Manhattan world buildings from point clouds. One of the rules is the absolute orientation
of the main walls and the floors/ceilings. The other is that neighboring cuboids are
connected when they are not separated by an interior wall. Becker et al. [21] used a
grammar-based method that embeds the reconstruction process into an automatic learning
and verification loop to reconstruct the 3D layout of building interiors from raw point
clouds. Ikehata et al. [22] applied grammar rules to recover a structure graph together
with geometries and segmented rooms with a heuristics algorithm. Murali et al. [23]
implicitly used rules in which axis-aligned cuboids are connected. The method checks
the intersections of detected planes and creates a connected wall graph. The cuboids are
constructed after cycles are found in the wall graph. Subsequently, the cuboids are clustered
together to form rooms. However, because extracting usable shape grammars for irregular
structures (e.g., with slanted walls or with walls intersecting at random angles) is extremely
difficult, these approaches are adopted mainly for regular Manhattan-world buildings.

When compared with rule-based methods, data-driven methods for indoor layout
reconstruction are more susceptible to imperfect data [24]. These methods are commonly
used for the 3D layout reconstruction of building interiors. The buildings have varying
and complex structures, and many objects, such as furniture, exist in the room. During the
process of image-based visual camera and laser scanning, due to the differences in line-of-
sight obstruction caused by indoor objects and the reflection characteristics of different types
of objects, the noise, obstruction and incomplete broad point cloud data obtained bring
many difficulties to the estimation of indoor 3D layouts. To simplify the problem, many
studies have imposed assumptions about architecture space or manually added experience-
based information to data acquisition processes to reconstruct the building interior layout.
The abstractions vary from the 2.5D space assumption and rigorous Manhattan-world
assumption to single-story procedures. As the z-axis orientation is basic and adopted
in most studies, we do not separately treat it as an assumption. Then, the 3D layout of
the indoor environment is solved by dividing the indoor space according to the cellular
characteristics of the space (such as room).

The rigorous Manhattan-world [21] hypothesis assumes that a plane is parallel to
one of the three principal planes of the orthogonal coordinate system. There are only two
possible relationships between the wall and the wall at this point: parallel and orthogonal.
The wall is perpendicular to the floor. Armeni et al. [17] assumed that rooms were aligned
to the Manhattan-world frame and parsed large-scale 3D point clouds of buildings into
rooms. Building components such as walls, doors and objects were further categorized. To
overcome the limitations of the Manhattan-world hypothesis, some scholars have adopted
the weak Manhattan-world hypothesis. The weak Manhattan world assumes that the wall is
vertical to the floor and that the vertical plane can be arbitrarily oriented around the vertical
direction, which can achieve indoor 3D modeling in the case of nonorthogonal walls [25].
The 3D point clouds are projected to the XOY plane to realize 2D room segmentation. The
2.5D assumption is similar to the weak Manhattan-world hypothesis that was employed
to model environments with vertical walls and horizontal floors and ceilings. However,
the 2.5D assumption cannot be applied to the indoor environment of cross-floor space
and nested rooms (rooms inside room), which limits room reconstruction in the non-
Manhattan world.

Mura et al. [26] automatically selected the number of room clusters by grouping the
viewpoint cells according to their visibility overlaps. This method overcomes the limitations
of the 2.5D assumption and allows for the modeling of slanted wall and sloped ceiling
structures. However, this ability is obtained by utilizing an artificial prior throughout
the data collecting process, i.e., assuming that every room has at least one scan position.
Ambrus et al. [27] computed a collection of simulated sensor poses/viewpoints that resulted
in the preliminary labeling of the input point cloud.
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Some researchers have applied trajectory information to the semantic classification
of indoor space [9,28]. In contrast to terrestrial laser scanners (TLS), when a mobile laser
scanner (MLS) is used for data acquisition, the perception of the space is continuous, and no
separate scanning is performed for each room [29]. These methods assume that two places
are connected by doors and subdivide indoor space into floors, stairs, porches and rooms.
However, this method relies on a closed-loop strategy in the data acquisition process to
form a trajectory cluster and thus a trajectory set in the room. When a room has more than
one door and the distance between the trace points passing through the two doors is large,
this method may fail.

Cui et al. [28] proposed a visibility analysis-based multiroom segmentation method.
The visibility analysis is achieved by using ray tracing along the sampled trajectory points
and the cells’ center points of each detected patch. Similarly, Ochmann et al. [19] ran
visibility tests between point patches on surfaces using ray casting and built a visibility
graph. The regions of the point cloud with high mutual visibility formed clusters corre-
sponding to the rooms of the building. However, the method is not so reliable, especially
for cross-floor reconstruction.

Reconstructing indoor 3D models from 3D point clouds with noise and missing data
is an ill-conditioned problem, and optimization is the best solution to this problem. Based
on the above assumptions, researchers have constructed cell complexes to represent indoor
spaces. The cell complex is constructed by taking the disjoint union of zero-dimensional,
one-dimensional, two-dimensional and three-dimensional cells, called vertices, edges,
polygons and polyhedrons, respectively. The vertexes, segments and facets elements
of the divided 3D entity and their spatial topology are uniquely determined [16]. The
advantage of the cell complex ensures topological consistency. The indoor 3D modeling
is converted into an optimization problem based on the cell complex. According to the
different optimization algorithms used, the methods can be divided into two categories:
one is integer linear programming, which selects the optimal subset from the candidate
facets of the cell complex to form a closed polygonal surface model, but this method ignores
the semantic information of the indoor space; the other is graph-based combinatorial
optimization, which transforms the indoor modeling problem into the optimal labeling
problem of the cell complex, which is expressed by the Markov random field (MRF) model.
This method relies on initial room semantic segmentation.

Some scholars have segmented multiple floors and realized model reconstruction by
the single-floor method [30]. The 2D method is extended to 3D spatial layout reconstruction
without considering the geometric and topological relationships between floors, which
cannot meet the reconstruction of cross-floor space. Key features of the proposed method
and the state-of-art methods are compared and summarized in Table 1.
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Table 1. Overview of recent 3D layout reconstruction methods for indoor environments.

References Type Multiroom Single Floor Multistory Cross-Floor
2.5D Assumption

Slanted
Surface

Prior Knowledge Adding
to DataOrthogonal

Walls (MW)
Nonorthogonal

Walls

Khoshelham and
Diaz-Vilarino [20] Rule-based

√ √
# #

√
# # #

Becker et al. [21] Rule-based
√ √ √

#
√ √

# #
Ikehata et al. [22] Rule-based

√ √
# #

√
# # #

Murali et al. [23] Data-driven
√ √

# #
√

# # Graph of connected walls
Armeni et al. [17] Data-driven

√ √
# #

√
# # #

Yang et al. [25] Data-driven
√ √ √

#
√ √

# #

Mura et al. [26] Data-driven
√ √ √

#
√ √ √ Every room has at least one

scan position

Ambrus et al. [27] Data-driven
√ √

# #
√ √

#
Synthetic sensor

poses/viewpoints
Oesau et al. [30] Data-driven #

√ √
#

√
# # #

Ochmann et al. [31] Data-driven
√ √ √

#
√ √

#
Every room has one scan

position

Ochmann et al. [19] Data-driven
√ √ √

#
√ √

#
Oriented point clouds and
visibility analysis between

patches

Lim and Doh [9] Data-driven
√ √ √

#
√ √

#
Loop close trajectory to
form a trajectory cluster

Cui et al. [28] Data-driven
√ √ √

#
√ √

#
Visibility analysis between

trajectory and patches
Our method Data-driven

√ √ √ √ √ √ √
#

Note:
√

indicates that the method supports this kind of data; # indicates that this kind of data is not supported by the method. The “multistory” mark in Table 1 is based on whether the
multistory data experiment is conducted in the article, which does not indicate the ability for multistory modeling. In most cases, multiple floors can usually be divided into single-floor
modeling problems.
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3. Methods
3.1. Overview

This section introduces our polygonal 3D layout reconstruction method for indoor
environments. The inputs include either a point cloud or a mesh. If we define the 3D
building model as a space with a boundary surface, then the point cloud or mesh contains
two informational aspects: one aspect is the geometric information of sampling points on
the object surface, and the other is the spatial information.

Figure 1 depicts the flowchart for the proposed polygonal reconstruction method. The
method is divided into five major phases.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 1. The flowchart of the proposed polygonal reconstruction method. 

3.2. 3D Occupancy Probability Grid 
Two types of 3D point clouds are utilized as the inputs. One is a point cloud cap-

tured by TLS, P = 𝑣 , 𝑃 . Each frame of the scanned point cloud is associated with a 
viewpoint v . The world coordinate system is used to determine the x , y , z  coordi-
nates of point p ∈ P . The other type is a point cloud captured by MLS, P = 𝑝 , 𝜑 . 
Each scanned point is associated with pose information. As shown in Figure 2c, the 
bounding box is discretized into m × n × h grids, and the 3D Bresenham line algorithm 
(Algorithm 1) is used to calculate the 3D occupancy probability of voxels in the grid [25]. 
The value of a voxel p is labeled with one of three marks 𝑠 = 𝑓𝑟𝑒𝑒 = 0, 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 =1, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = −1 . A 3D occupancy probability grid map is generated to represent the 
certainty with which a voxel is occupied by obstacles. The probability value is stored in 
the 3D grid data structure based on VDB [32], which is an efficient and sparse volume 
data structure. 

Algorithm 1. 3D occupancy probability calculation for a point cloud 
Input: 𝑃 //input point cloud 𝑣 //viewpoint 𝑏𝑏𝑀𝑎𝑥, 𝑏𝑏𝑀𝑖𝑛//bounding box of the point cloud 
Initialize: 𝑀 ← ∅;// 3D occupancy probability grid 
(1) for each (p ∈ P ) 
(2)    // calculate the coordinates of occupied and free voxels in the grid 
(3)     bresenham_in_3D(𝑣 , 𝑝 , 𝑀 ); 
(4) end for 
(5) return 𝑀 ; 

Figure 1. The flowchart of the proposed polygonal reconstruction method.

3.2. 3D Occupancy Probability Grid

Two types of 3D point clouds are utilized as the inputs. One is a point cloud captured
by TLS, P = {vτ , Pτ}N

τ=1. Each frame of the scanned point cloud is associated with a
viewpoint vτ. The world coordinate system is used to determine the {xi, yi, zi} coordinates
of point pi ∈ Pτ. The other type is a point cloud captured by MLS, P = {pi, ϕi}i=1. Each
scanned point is associated with pose information. As shown in Figure 2c, the bounding
box is discretized into m× n× h grids, and the 3D Bresenham line algorithm (Algorithm 1)
is used to calculate the 3D occupancy probability of voxels in the grid [25]. The value of a
voxel p is labeled with one of three marks sp = { f ree = 0, occupied = 1, unknown = −1}.
A 3D occupancy probability grid map is generated to represent the certainty with which a
voxel is occupied by obstacles. The probability value is stored in the 3D grid data structure
based on VDB [32], which is an efficient and sparse volume data structure.

Sensors such as monocular cameras and RGB-D sensors are now widely used for
interior reconstruction. The output is often a surface mesh that can fulfill the visualization
purpose. The mesh datasets are unstructured and contain no semantic information. As
these devices are often less expensive than LiDAR, it is important to reconstruct the 3D lay-
out of buildings from these datasets. Multiview geometry and a multiview reconstruction
algorithm are used in the reconstruction process, and the pose information is used in the
multiview stereo (MVS) to obtain the oriented mesh. Because the viewpoint information



ISPRS Int. J. Geo-Inf. 2022, 11, 530 7 of 22

is fused in the dense reconstruction process, the viewpoint information cannot be used
directly in a mesh model for occupancy probability calculation. The indoor and outdoor en-
vironments can be distinguished by using the normal information of triangles. The value of
a voxel p is labeled with one of three marks sp = { f ree = 0, occupied = 1, unknown = −1}.
The algorithm contains three main steps (Algorithm 2). First, all the grid voxels are ini-
tialized with free values. Second, the voxel located on the triangle is marked with an
occupied value. The normal vector is classified into 26 regular directions, and the encoded
direction value of the voxel ranges from 1 to 26 (the initial direction value is 0). Third, a
wavefront algorithm checks the 26 adjacent voxels around the current voxel and updating
the direction of the current voxel. If all 26 adjacent voxels’ directions point toward the
current voxel, the direction value of the current voxel after wavefront growth is set to 27.
If the direction value of a voxel equals zero, the corresponding voxel in the occupancy
probability grid is set to unknown. If the direction value of a voxel is greater than zero, the
corresponding voxel in the occupancy probability grid is set to free.

Algorithm 1. 3D occupancy probability calculation for a point cloud.

Input:
Pτ//input point cloud
vi//viewpoint
bbMax, bbMin//bounding box of the point cloud
Initialize:
Mocc ← ∅ ;// 3D occupancy probability grid
(1) for each (pi ∈ Pτ)
(2) //calculate the coordinates of occupied and free voxels in the grid
(3) bresenham_in_3D(vi, pi, Mocc);
(4) end for
(5) return Mocc;
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poses/viewpoints, frontier is used to mark unknown voxels.
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Algorithm 2. 3D occupancy probability calculation for an oriented mesh.

Input:
Pmesh(P, T);//normal oriented mesh
bbMax, bbMin;//bounding box of the point cloud
Initialize:
Mocc ← ∅ ;//3D occupancy probability grid
Mdir ← ∅ ;//D-26 direction grid
(1) for each (ti ∈ T)
(2) box = getBoundingBox(ti);//calculate the coordinates of occupied and free points in the
metric map
(3) for i = minx:maxx
(4) for j = miny:maxy
(5) for k = minz:maxz
(6) sp = voxel(i,j,k);
(7) if (sp.inside(ti))
(8) Mocc.setValue(sp,255);
(9) N = getNormal(ti);
(10) D = normalTo26Directoin(N);
(11) Mdir.set(sp,D);
(12) end if
(13) end for
(14) end for
(15) end for
(16) end for
(17) Mdir = wavefront(Mdir);
(18) Mocc = updateUnknown(Mocc, Mdir);
(19) return Mocc;

However, in practical application, the existence of point cloud holes affects the indoor
and outdoor differentiation effects of the directional mesh. At the same time, due to the
existence of indoor green plants and other objects, the normal vectors in some areas are
messy and cannot meet the need to distinguish between free space and unknown space.
Therefore, a more general algorithm is proposed that assumes that the mesh model meets
the vertical orientation and the ceiling area is completely scanned, which is easy to satisfy
for most data-acquiring devices (Algorithm 3).

The first step is to initialize the occupancy probability grid and set the value of each
voxel to free. Then, the voxel located on the triangle is marked with an occupied value. The
last step marks the unknown area. First, we initialize the frontier (the maximum value of
the point cloud elevation range), set each voxel as unknown and traverse the voxel layer
by layer according to the z-axis direction (Figure 2d). When the voxel value of the current
layer in the occupied grid is the same as that of the previous layer, this value is marked as
unknown, and if the voxel value of the current layer is different from that of the previous
layer, traversal ceases. Finally, all unknown areas are marked. The returned occupancy
probability grid contains sp = { f ree = 0, occupied = 1, unknown = −1} three values.

3.3. 3D Room Segmentation

A significant difference between indoor space and outdoor space is the cellular nature
of indoor space. Taking the fact that local maxima of distance transform (DT) values usually
reside in the middle of a room and that rooms are connected by small passageways (doors
and junctions), the 3D room segmentation method [33] utilizes the volumetric represen-
tation and sphere packing of indoor space to separate rooms as connected components.
This method contains five main steps. First, the method applies 3D Euclidean distance
transformation (EDT) to the occupancy probability grid to determine how far each voxel is
from the closest occupancy point. Second, the distance map acquired following the EDT
is then divided into segments according to the specified distance threshold. Third, areas
with distance values larger than the specified threshold are filled with inner spheres. A
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topological graph is constructed according to the adjacency relationship between the filled
inner spheres. Fourth, the connected subgraphs of the topological graph are segmented
(Figure 3). By adding the space occupied by each inner ball to the connected subgraph, the
initial room seed region is obtained. Fifth, the wavefront growth algorithm starts with a
seed voxel in each seed room area and uses the wavefront growth algorithm to determine
the unlabeled voxels belonging to the same room to obtain the final 3D room segmentation
result. Free space is labeled with room information after 3D room segmentation (Figure 4).
In this study, to speed up the filling speed of the inner ball, we used a combination of
random filling and ordered filling.

Algorithm 3. 3D occupancy probability calculation for a general mesh.

Input:
Pmesh(P, T)// general mesh
bbMax, bbMin// bounding box of the mesh
Initialize:
Mocc ← ∅ ;// 3D occupancy probability grid
(1) setValue(Mocc,FREE);
(2) for each (ti ∈ T)
(3) box = getBoundingBox(ti);// calculate the coordinates of occupied and free points in the
metric map
(4) for i = minx:maxx
(5) for j = miny:maxy
(6) for k = minz:maxz
(7) sp = voxel(i,j,k);
(8) if (sp.inside(ti))
(9) Mocc.setValue(sp, OCCUPIED);
(10) end if
(11) end for
(12) end for
(13) end for
(14) end for
(15) updateUnknown(Mocc);
(16) return Mocc;

The function of room segmentation can be divided into two aspects: one is to classify
detected planes from point cloud or mesh according to each room to reduce the complexity
of space partition. The other is to generate semantic information and provide semantic
initial values for room layout reconstruction.

3.4. Plane Detection and Classification

The global L0 gradient minimization-based plane detection method [34] is adopted
for the point cloud. It is a fast algorithm for regularity-constrained plane fitting (RCPF)
problems. Region growing is used for plane detection from meshes (Figure 5). Due to
the inevitable error of the measuring equipment, the extracted planes are not continuous
to build watertight polygonal models. A semantic enhancement and rejected strategy
are employed. For room layout reconstruction, only wall, ceiling and floor planes are
considered in the next space partition step.

The deviation of unit normal ni from plane pi with regard to vertical axis nz = (0, 0, 1)T

is measured by vertical attribute ah = |ni·nz|. The plane is categorized as a wall if ah < ε.
The threshold ε, for example, ε = cos(90◦ ± 10◦), used to identify a vertical plane is the
variable, which is the angle threshold’s cosine value. Walls with a height difference of
less than 1.5 m are not considered. Additionally, small plane patches, including flat and
slant planes with an area of less than 1 m2, are also removed. Because the automatic plane
extraction method cannot be guaranteed to be completely correct, it is necessary to correct
the errors interactively.
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3.5. Regularization

Because there are many extracted planes, too many planes with slight difference will
make the space partition very complex and increase the computational burden. The angles
of the plane normals and the distances between the planes are often used to compute the
difference. Therefore, we cluster the approximate planes through the regularization process.
The regularization process includes vertical orientation and normal vector clustering.

First, we orient the planar walls to make the walls orthogonal to the floor. The
constrained least square method is used to realize the plane refitting of the wall point cloud.
Second, we construct the nearest neighborhood Mi for each plane i. If the normal ni of
plane i and nj of plane j satisfy

∣∣ni·nj
∣∣ ≥ 1− cosβ, plane j is regarded as a neighbor of

plane i and added to the neighborhood Mi. Finally, parallel plane clusters are created using
Gaussian-map clustering. Each plane is given a weight equal to the number of related
points and is projected onto the unit sphere by its normal. By taking into account the
mirrored point on the sphere, the normal of the cluster is also oriented. The mean-shift
algorithm [35] is used to extract the peaks. All planes within one peak are considered
to be parallel, and the normal of the cluster is defined as the average normal of parallel
planes, weighted with the area of each plane. The adjusted planes in the cluster are used
for space partitioning.

3.6. Space Partition

In this step, we take a set of planes as input and return a partition of the bounding 3D
space. The goal of space partition is to generate cell complex, and we adopt a relatively
simple implementation. The method utilizes a polygon mesh data structure [36] to store
the subdivided space. The detected planes are classified for each room based on the room
segmentation results. The space partitioning is performed per room. A binary space
partition (BSP) is used to maintain the hierarchical relationship of the subdivided space. A
polygon mesh is a group of vertices, edges, and faces that determines how a polyhedral
object is shaped. A polygon mesh is a half-edge data structure that is oriented consistently
in counterclockwise order around each face and along each boundary. It is considered to
have the topology of a 2-manifold. The basic idea of binary space partitioning is that any
plane can divide the space into two half spaces. For a bounding 3D space or subspaces,
all points on one side of the split plane define a half space, and points on the other side
of the split plane define another half space. If we continue to define a plane in any half
space, we further divide the half space into two smaller subspaces. Continuing this process,
the subspace is segmented to be progressively smaller, and finally, a spatial binary tree
is formed. Each subspace constructs a convex polyhedron. The topological geometric
relationship between different polyhedrons can be effectively expressed by searching the
BSP tree (Figure 6). The space partition algorithm is outlined in Algorithm 4.

3.7. Optimal Labeling and Merging

After space partitioning, the 3D space is partitioned into a set of polyhedron cells.
The polyhedron cells with the same label are considered in the same room. An undirected
graph G =< v, e > is defined to encode the set of polyhedron cells to the label set L. Node
v represents the polyhedron cell in the cell complex, and edge e represents the topological
relationship between cells. The neighbors of node v are stored in N. The energy function
for the labeling problem is defined as:

U(l) = ∑
i∈v

Di(li) + ∑
i,j∈N

Vij
(
li, lj

)
·T
(
li 6= lj

)
(1)

Unary energy
The unary energy is designed to describe the likelihood that a polyhedron belongs to

a label. The value is computed as the ratio of the volume of occupied voxels with label li to
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the volume of subdivided polyhedron. Whether a voxel is inside a polyhedron is tested
using the function of the polygon mesh.

Di∈v(li) = − ln

(
count(voxel = li and voxel ∈ cell) ∗ s3

voxel
volum(cell)

)
(2)

Algorithm 4. Space partition.

Input:
Splane//input planes
bbMax, bbMin//3D bounding box of the point cloud
Initialize:
Polygon _mesh vol;//a polygon mesh
BSP_tree bsp;
(1) vol = buildBounding3DSpace(bbMax, bbMin);
(2) bsp.AddNode(vol);
(3) for each (si ∈ Splane)
(4) vol_tmp = bsp.getBeginNode();
(5) while(vol_tmp)
(6) [vol1,vol2] = clip( si, vol _tmp);
(7) bsp.update(vol_tmp, vol1,vol2);
(8) vol_tmp = bsp.getNextNode();
(9) end while
(10) bsp.getBeginNode();
(11) end for
(12) return bsp;
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Pairwise energy
The pairwise energy describes the likelihood that two polyhedron cells are contained

within the same room. It is defined as the ratio between voxels occupied by the original wall
patch and voxels in the cell complex facet. A weaker relationship between two polyhedron
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cells is indicated by a higher likelihood between them. A wall separating two cells indicates
that they are unlikely to be in the same room.

Vi,j∈N
(
li, lj
)
=

{
− ln

(
1− count(voxel = occupied and voxel ∈ facetcell)

count(voxel ∈ facetcell)

)
, if li 6= lj

0, if li = lj
(3)

The graph cut approach is applied to minimize the objective function to obtain opti-
mum labeling. The room layout reconstruction is transformed into an energy minimum and
can be solved through the α-β swap algorithm [37]. Then, rooms are created by merging
all the polyhedron cells with the same label.

4. Results

The program language is C++. The Computational Geometry Algorithms Library
(CGAL) [38] and Cloud Compare [39] are used in the algorithm’s implementation. All
experiments are performed with an Intel Core i7-10750H CPU (2.60 Hz) and 16 GB of RAM.
The quantitative evaluation method is used to evaluate the reconstruction results [40,41].
By comparing the reference model R with the reconstruction polygon model S called the
source model, the completeness, correctness and accuracy are quantitatively evaluated.
The definition of completeness is:

MComp =
∑n

i=1 ∑m
j=1

∣∣∣Si ∩ b
(

Rj
)∣∣∣

∑m
j=1

∣∣∣Rj
∣∣∣ (4)

Among them, the intersection area is calculated on all facets between Si and Rj, and
the completeness changes with the size of buffer b. The definition of correctness is:

MCorr =
∑n

i=1 ∑m
j=1

∣∣∣Si ∩ b
(

Rj
)∣∣∣

∑n
i=1

∣∣∣Sj
∣∣∣ (5)

Accuracy is defined as:

MAcc = Med‖πT
j pi‖, if ‖πT

j pi‖ ≤ r (6)

where ‖πT
j pi‖ is the vertical distance between vertex pi in the source model and plane

π in the reference model and r is the truncation threshold to avoid the influence of an
incomplete or inaccurate source model. Relatively high completeness and low correctness
scores mean that the reconstructed models contain most of the elements that are present in
the corresponding reference models but that they also include a considerable number of
incorrect facets.

4.1. Point Cloud Datasets

We first test our method on four point cloud datasets, named A1, A2, A3 and A4. A1,
A2 and A3 are derived from the University of Zurich (UZH) Rooms detection datasets [26].
They are scanned with a Faro Focus 3D laser range scanner. The A4 dataset is derived from
the International Society for Photogrammetry and Remote Sensing (ISPRS) Benchmark on
Indoor Modeling [42]. The datasets are captured by MLS (i.e., Zeb-Revo). This dataset
consists of point clouds, corresponding trajectory information and timestamps. The dataset
is preprocessed by aligning the coordinate points and trajectories with timestamps. The
point cloud noise level of A4 is low, and the relative accuracy is 2–3 cm.

The original point clouds are shown in Figure 7, and the descriptions of the dataset are
listed in Table 2. The room segmentation results for each dataset are shown in the second
column in the figure with different colors. The layout of the datasets is reconstructed and
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represented as polygon models in the third column. The input parameters for different
datasets are listed in Table 3.
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Table 2. Detailed descriptions of the experimental point cloud datasets.

Test Sites Frames Size (m) Points Single Floor Multistory
2.5D Assumption Slanted

Walls/Sloped
Ceilings

Orthogonal
Walls (MW)

Nonorthogonal
Walls

A1 7 9.0 × 8.0 × 3.2 12.4 × 106 √
#

√
#

√

A2 7 7.9 × 12.0 × 2.8 19.0 × 106 √
#

√
#

√

A3 8 7.7 × 13.8 × 6.2 21.9 × 106 #
√ √ √ √

A4 - 41.8 × 16.5 × 8.5 21.8 × 106 #
√ √

# #

Note:
√

indicates that the data has the characteristics of this aspect; # indicates that the data doesn’t have the
characteristics of this aspect.

Each reconstructed model’s completeness, correctness and accuracy are calculated
for buffer sizes and cutoff distances ranging from 1 cm to 15 cm. For completeness and
correctness, larger numbers suggest more complete and correct models, whereas smaller
values for accuracy indicate the better accuracy of the reconstructed models. The exe-
cution time includes three parts: room semantic segmentation, plane segmentation and
optimization modeling.
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Table 3. Input parameters for the point cloud datasets.

Parameters Descriptions

3D room segmentation

svoxel Voxel size of the grid map.
∆d Distance threshold for distance map segmentation.

δoverlap Overlap ratio between two spheres
τ Minimum volume of a seed room region

Plane detection

k Searching k nearest neighbors
ns Minimum support points of a plane
np Number of plane normals

Parameters A1 A2 A3 A4

svoxel 0.08 m 0.08 m 0.08 m 0.1 m
∆d 0.7 m 0.7 m 0.8 m 1.0 m

δoverlap 0.8 0.8 0.8 0.8
τ 0.03 m3 0.3 m3 0.3 m3 0.3 m3

k 10 10 10 10
ns 50 50 50 50
np 30 30 30 30

The A1 dataset contains point clouds of single-floor building interiors with orthogonal
and slant walls. As shown in Figure 7, seven rooms are detected. The results show that the
reconstruction methods achieve the highest completeness and correctness. The accuracy is
0.56 cm at a buffer size of 10 cm. A2 contains point clouds of single-floor building interiors
with orthogonal and slant walls. As shown in the figure, four rooms are detected. A2
achieves high completeness of 99.3% and correctness of 99.0% at a buffer size of 10 cm. The
execution time of optimization modeling is the longest of all datasets because the room is
quite complex.

A3 contains point clouds of large-scale building interiors with nonorthogonal walls.
Seven rooms are reconstructed. The A3 dataset reached 83.6% completeness and 81.3%
correctness when using a 10 cm buffer. The experiments on A1, A2 and A3 prove the
effectiveness of 3D room segmentation for multistory indoor environments that contain
wall structures with arbitrary orientations. A4 represents a double-story office building.
The point clouds contain orthogonal walls, and two floors are connected by stair. A4
achieves a completeness of 90.2% and a correctness of 92.9% at a buffer size of 10 cm but
with the lowest completeness and correctness values at small buffer sizes. The accuracy is
3.0 cm, which is the highest and indicates the lowest accuracy.

Figure 8 compares the completeness, correctness and accuracy of polygon models
to the reference model. The models built for dataset A1 are generally more accurate and
complete than those for other datasets, according to a comparison of the results. This can be
attributed to the dataset’s lower complexity and, possibly, higher data quality. The lowest
accuracy of A4 is attributed to the worse data quality. The results presented in the table
demonstrate that the proposed method successfully models the entire dataset (Table 4).

The algorithm counts only the execution time of the program, including room segmen-
tation, plane detection and optimization modeling, without considering the time of human
interaction. The more complex the structure of the room, namely, the more planes used for
space partition, the longer the execution time of the program.
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Table 4. The evaluation results for point cloud datasets.

Test Sites Detected
Rooms

Completeness
@ 10 cm

Correctness
@ 10 cm

Accuracy
@ 10 cm (cm)

Time (s)

Room
Segmentation

Plane
Detection

Optimization
Modeling

A1 7 99.3% 99.0% 0.56 4.561 21.477 44.055
A2 4 90.7% 84.8% 0.83 8.331 29.655 365.782
A3 6 83.6% 81.3% 0.72 16.756 23.339 333.616
A4 20 90.2% 92.9% 3.0 461.625 16.69 202.027

4.2. Mesh Datasets

In order to confirm the method’s efficacy on meshes, four mesh datasets of interior
scenes from the Matterport3D dataset [41] and Stanford 2D–3D-semantics dataset [17] were
used to test the proposed method. The datasets were captured by RGB-D cameras in a
variety of indoor buildings. The parameter descriptions are listed in Table 5.

The 3D occupancy probability grid’s voxel size is set to the same value of 0.08 m, as
shown in Table 6. The lower bound of the room area is the same. The original meshes, room
segmentation results and reconstructed layout of each dataset are displayed in Figure 9.
With a buffer size of 10 cm and a cutoff distance ranging from 1 to 15 cm, Figure 10 compares
the completeness, correctness and accuracy of polygon models with the reference model.

The B1 dataset contains meshes of single-floor building interiors with nonorthogonal
walls. Six rooms are detected and reconstructed. As shown in Table 7, B1 achieves 85.1%
completeness and 91.6% correctness at a buffer size of 10 cm. The dataset represents
relatively simple environments.
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Table 5. Detail descriptions of the experimental mesh datasets.

Test Sites Size (m) Points Triangles Single Floor Multi-Storey

2.5D Assumption
Slanted

Walls/ Sloped
Ceilings

Orthogonal
Walls (MW)

Non-
Orthogonal

Walls

B1 11.8 × 9.2 × 3.5 166,336 648,654
√

#
√ √ √

B2 15.0 × 8.4 × 3.1 124,032 408,782
√

#
√ √ √

B3 29.7 × 25.8 × 11.4 159,284 139,577
√

#
√ √

#
B4 22.4 × 15.3 × 11.0 201,328 753,526 #

√ √
#

√

Note:
√

indicates that the data has the characteristics of this aspect; # indicates that the data doesn’t have the
characteristics of this aspect.

Table 6. Parameters and descriptions of the proposed method for mesh datasets.

Parameters Descriptions

3D room segmentation

svoxel The voxel size of grid map.
∆d Distance threshold for distance map segmentation.

δoverlap The overlap ratio between two sphere
τ Minimum volume of a seed room region

Region growing plane detection

∆d2 Distance threshold between point to the plane
θ Angle threshold for normals between vertex and plane

tarea Small area planes are rejected

Parameters B1 B2 B3 B4

svoxel 0.08 m 0.08 m 0.08 m 0.1 m
∆d 0.7 m 0.7 m 0.8 m 1.0 m

δoverlap 0.8 0.8 0.8 0.8
τ 0.03 m3 0.3 m3 0.3 m3 0.3 m3

∆d2 0.02 m 0.02 m 0.02 m 0.02 m
θ 25◦ 25◦ 25◦ 25◦

tarea 0.5 m2 0.5 m2 0.5 m2 0.5 m2

Table 7. Evaluation results for mesh datasets.

Test Sites Detected
Rooms

Completeness
@ 10 cm

Correctness
@ 10 cm

Accuracy
@ 10 cm (cm)

Time (s)

Room Seg-
mentation

Plane
Detection

Optimization
Modeling

B1 6 85.1% 91.6% 0.53 26.732 5.047 33.441
B2 9 92.2% 94.6% 1.5 13.867 2.572 68.211
B3 18 86.8% 86.0% 0.85 72.594 1.435 296.121
B4 20 88.1% 87.2% 1.1 75.636 4.661 258.346

B2 contains meshes of single-floor building interiors with nonorthogonal walls and
slanted ceilings. Eight rooms are detected and reconstructed. The findings indicate that the
reconstruction methods perform worse when the buffer size is small but quickly improve
as the buffer size is increased to 10 cm, where they perform better, with completeness and
correctness reaching 92.2% and 94.6%, respectively. Despite the lowest accuracy of all mesh
datasets at a buffer size of 10 cm, the accuracy is 1.5 cm (Table 7). This is explained by the
fact that of these four datasets, dataset B2 is the least complex and may also have the worst
data quality.

B3 contains meshes of single-floor building interiors with nonorthogonal walls, which
represents a more complex environment on a large scale. Due to the complexity of the
dataset, oversegmentation occurs. The stair region was not segmented out because the
original data was very incomplete. The segmented room is further divided using a virtual
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closure plane. B3 achieves a completeness of 86.8% and a correctness of 86.0% at a buffer
size of 10 cm, which is the lowest of all four datasets. The accuracy is 0.85 cm with a cutoff
distance of 10 cm (Table 7).
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result, reconstructed room layout for different meshes.

B4 contains meshes of multistory building interiors. The studied building contains
three floors, and the three floors are connected by a staircase and hall. Twenty rooms are
detected. As shown in Table 7, B4 achieves a completeness of 88.1% and a correctness of
87.2% when the buffer size is 10 cm. The accuracy is 1.1 cm with a cutoff distance of 10 cm.

The overall accuracy of mesh modeling is high, which is closely related to the high
accuracy of the extraction planes for mesh datasets. The reference model is created manually,
based on the mesh slices, and hence may differ from the ground truth in some ways.

4.3. Cross-Floor Spaces

The proposed method was also tested on datasets of cross-floor indoor spaces. Figure 11
shows the original point cloud data (Figure 11a), room segmentation results (Figure 11b)
and polygonal modeling results. Because the three corridors are connected with the stair
space, this space is further divided into three corridors and a stair space using a virtual
door plane (Figure 11c). The building space is divided into a 3D cell complex using the
segmented planes and semantic labeling. Finally, the 3D polygonal model is obtained
(Figure 11e).
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Figure 11. (a) Original point cloud; (b) initial room segmentation result; (c) further division into three
corridors and a stair space using a virtual closure plane; (d) segmented planes; (e) reconstructed
room layout of cross-floor spaces.
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When there are too many planes involved in dividing the bounding 3D space, the
process produces a small piece of subspaces, resulting in defects in the result model,
although the model is still a watertight polyhedron (Figure 12).
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many small pieces of subspaces result in defects in the result model.

5. Discussion

In this research, both point clouds and meshes are used for room layout reconstruction.
When compared with point clouds, meshes have the following advantages: In the process
of constructing a mesh through image or image and point cloud fusion, the surface is
optimized through the fusion process, and the accuracy of the surface is better than that
of raw point clouds. Moreover, the fusion process takes into account the pose/viewpoint
information, and the neighbor of each vertex is clear, so parallel plane extraction from
meshes is not a problem.

In the modeling process, the method in this study tends to build the connected area
into a room. When the opening is large enough to be treated as a virtual door, the semantic
segmentation of the room produces undersegmentation, and the room reconstruction
process reconstructs the two rooms connected by the virtual door into a whole. Thus,
further space partitioning is needed using the virtual closure plane where the virtual door
is located. When compared with the existing methods, it can be found that on dataset B4,
this method has high completeness, correctness and accuracy.

6. Conclusions

This paper presents a general room layout reconstruction method for building interiors.
The method combines voxel-based room segmentation and space partitioning and creates
optimal indoor models with room layout information. Various data sources, including
point clouds and meshes, can be used as input. The method can be used to reconstruct
the layouts of complex indoor environments, including multiple rooms, multiple stories,
slanted planes, cross-floor spaces and so on. It provides a general solution for 3D layout
reconstruction in a non-Manhattan world.

However, the method is not fully automatic. At present, room segmentation and plane
detection are still not completely accurate, and some human interaction is needed. The
efficiency of the 3D room segmentation and space partition algorithm needs to be improved.
Planned future work includes the development of a more efficient 3D room segmentation
algorithm and space partition algorithm.
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