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Abstract: Road curve attributes can be determined by using Geographic Information System (GIS)
to be used in road vehicle traffic safety and planning studies. This study involves analyzing the
GIS-based estimation accuracy in the length, radius and the number of small horizontal road curves
on a two-lane rural road and a forest road. The prediction success of horizontal curve attributes was
investigated using digitized raw and generalized/simplified road segments. Two different roads were
examined, involving 20 test groups and two control groups, using 22 datasets obtained from digitized
and surveyed roads based on satellite imagery, GIS estimates, and field measurements. Confusion
matrix tables were also used to evaluate the prediction accuracy of horizontal curve geometry.
F-score, Mathews Correlation Coefficient, Bookmaker Informedness and Balanced Accuracy were
used to investigate the performance of test groups. The Kruskal–Wallis test was used to analyze
the statistical relationships between the data. Compared to the Bezier generalization algorithm, the
Douglas–Peucker algorithm showed the most accurate horizontal curve predictions at generalization
tolerances of 0.8 m and 1 m. The results show that the generalization tolerance level contributes to
the prediction accuracy of the number, curve radius, and length of the horizontal curves, which vary
with the tolerance value. Thus, this study underlined the importance of calculating generalizations
and tolerances following a manual road digitization.

Keywords: spatial data; data quality; field measurement; curve geometry; transportation; line
generalization; low-cost

1. Introduction

According to the World Health Organization (WHO), nearly 1.2 million people lose
their lives every year in traffic accidents worldwide [1]. EU countries have organized
national and international partnerships to reduce traffic accidents on highways and have
adopted short- and long-term measures to minimize the number of these accidents (vision
zero) [2]. In the next few years, research on the analysis of transportation characteristics
will be promoted. Its goal is to reduce traffic accidents in EU countries to minimize them
by 2050. Therefore, multi- and interdisciplinary studies on transportation systems and
road networks have attracted attention in the scientific community to design more efficient
transportation systems around the world.

Several factors (such as vehicle type, road type, environment, and the driver) influ-
ence the intensity of traffic accidents and road safety on a highway, directly or indirectly.
Some of these factors have been revealed in different empirical and theoretical studies.
Research on vehicle accidents or collisions shows that driver characteristics are the most
important factors. A driver’s psychomotor skills (i.e., reaction speed and eye, hand and foot
coordination), mental characteristics (i.e., perception, attention, and memory), education
level, driving experience, age, gender, habit, and personality traits (such as risk taking,
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aggression, and responsibility) are directly effective variables in vehicle accidents and
collisions [3–7]. Some studies benefited from temporal and spatial analysis using different
variables to propose different road accident and safety models. In this respect, GIS is widely
used for the determination of various variables affecting traffic accidents on a critically
dangerous road [8–12]. Kernel density estimation (KDE) and Poisson’s method are also
used for traffic accident analysis [13–15], and road geometric parameters are used in GIS
environments. For the analysis of road safety and traffic accidents, much spatial data are
integrated into different techniques in GIS environments in order to offer effective solutions
to reduce and prevent the number of traffic accidents [8–12,16].

Road geometry (i.e., superelevation and lateral and horizontal curves) is a popular
research topic as it is considered one of the other determinants of traffic accidents and colli-
sions. The manual calculation of road curvatures may be costly for evaluating accident risks
on a road network. Thanks to their cost-effective and time-saving nature, GIS techniques
have become an important data production method in various technical and scientific
topics (i.e., traffic and wild animal crashes, habitat fragmentation, and setting speed limits)
for the prediction of geometric parameters in road networks [17–19]. In particular, the
increasing number of GIS-assisted studies in the analysis of accidents occurring on road
curves and in the estimation of horizontal curve characteristics offers great advantages in
terms of time and cost [20]. For estimating geometric road curve characteristics, several
software and add-ons are now available for the automatic, semi-automatic, or manual cal-
culation of different types of road curves, such as “Curve Calculator” (ESRI, USA), “Curve
Finder” [20,21], “Curvature Extension” [22], “Road Curvature Analyst” (ROCA) [23], and
“CurvS” [24].

The horizontal curve as one of the geometric road characteristics obtained using low-
cost methods often includes irrelevant spatial locations, which may affect the collected
spatial data negatively. The impact of generalization in the prediction and calculation
accuracy of the elements of the horizontal curve is quite decisive in GIS [25,26]. Thus,
digital vector lines such as roads should be generalized/simplified for a higher prediction
accuracy rate [17]. The general standards for digitized road networks in the prediction
of the characteristics of the horizontal curve using the automatic and semi-automatic
methods are usually set without any further details. However, these methods do not offer
standard workflows regarding the road vector line obtained using different methods and
the impact of generalization tolerance. The data related to linear structures such as a road
network are stored in the digital line vector format. Road network vector data are obtained
using different methods with different precision and spatial accuracy. Semi-automatic and
automatic curve detection software require high-quality data to perform successfully [21].
Therefore, it is essential to pay attention to the performance and accuracy of the small
horizontal curves radius analysis software, which will help GIS users to obtain reliable
information about the road segments. Accordingly, it is important to deal with the factors
that affect the geospatial accuracy of cartographic and digital data obtained from complex
GIS analysis [27,28].

The main contribution of this study was to evaluate whether the automatically pre-
dicted horizontal curve geometry attributes in a GIS can be used for road geometry-vehicle-
accident modeling, and whether there is an influence of generalization algorithms on the
success of horizontal curve prediction. The aim of this study is to analyze the prediction
accuracy for small radius horizontal road curves on two digitized roads. An automatic
road curve calculation tool, which was used in a GIS environment, was performed and
tested for small horizontal road curves. The radius and length of the horizontal curve
were also measured and calculated in the field. As the road was a digital line vector, the
impact of the generalization factor and the precision of the algorithm for the dataset were
also evaluated. Then, using the horizontal curve information obtained from the GIS, the
two different roads were grouped and statistically compared. Briefly, the main purpose
was also to provide secure, easy, fast, and effective data generation in detecting dangerous
horizontal curves using GIS techniques.
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2. Materials and Methods
2.1. Study Area

In this study, two-lane rural and forest road sections with sharp and dangerous curves,
low geometric standards, and a low traffic volume were investigated. These two roads are
located within the borders of Andirin district in the province of Kahramanmaras, in the
eastern Mediterranean Region of Türkiye. The lengths of low-volume roads in this study,
i.e., a rural road and a forest road segment, are approximately ∼=6900 m and ∼=3400 m,
respectively, and they are located in a mountainous region with a steep terrain structure
(Figure 1).
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2.2. Equipment

Leica Disto s910 was used for the measurement of geometric road characteristics,
and Garmin Oregon 600 handheld GPS was used to collect spatial data. A drone (DJI
Phantom 4) and a 12 MP camera were also used for bird’s-eye view images of the study
area [29]. ArcGIS software and its add-on (i.e., ROCA) were used for the prediction of
curve attributes, storage and processing of vector data, and mapping. An i7 16 Gigabyte
(GB) random-access memory (RAM) desktop computer was used for data processing.

A 1/25,000 topographic map and Google Earth satellite images were used as a basis
for the digitization of both roads and manual measurement of curve elements. The curves
were detected in ArcGIS with Road Curvature Analyst (ROCA) add-on [23] and analyzed
using spatial join, intersection, overlay processing, and mapping [30].

2.3. Data and Database Preparation

The roads on Google Earth satellite images were digitized in a GIS environment at
a drawing scale of 1/4000 by a user with an experience of at least 10 years. Then, the
digitized roads were checked via a topographic map with a scale of 1/25,000. WGS84 UTM
Zone 37 was used as a spatial projection system. The obtained data were processed and
stored as ShapeFile (*.shp) data.

The horizontal curve data, which were manually obtained from the satellite images
(ASat), were attached to feature tables using a field calculator tool. It was necessary to
simplify digital line vectors in order to remove drawing vertices on road segments, which
were digitized manually in a GIS environment. Therefore, in order to reveal the impact of
generalization on the automatic calculation of horizontal curves, digital line vector data
with and without generalizations were produced (ANoT) and divided into different data
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groups. As a result, 20 different digital line vector data were produced for the rural (A) and
forest (B) roads. Douglas-Peucker and Bezier generalization algorithms were used in order
to delete drawing vertices while considering a generalization tolerance of 20 cm, 40 cm,
60 cm, 80 cm, 1 m, 2 m, 3 m, and 4 m. The highest horizontal curve radius values to be
calculated for the paved rural road (A) and forest road (B) were set to 400 m and 100 m,
respectively. Figure 2 shows the general concepts of this study.

1 
 

 

Figure 2. General workflow and brief explanation.

2.4. Measuring Horizontal Curves

Satellite image and digital line vectors were overlaid in a GIS environment. Subse-
quently, the starting point (PC) and ending point (PT) of the curvature were found and
marked on the high-resolution image, and the digital point layer was saved. PC and PT
were combined to create a chord (C). The chord midpoint (MC) was attached to the farthest
point (tangent of curve = ToC) on the road curve. Thus, a polyline was drawn in order to
determine a middle ordinate (MO), which is the distance between MC and ToC on the cur-
vature. Then, the relationship between C length (CL), MO, and radius (R) were calculated
(Figure 3). Finally, the data were defined in the attribute tables of the related layers.
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Straight roads (tangents) and curves were separated from each other using ArcGIS
based on PC and PT points. Afterwards, horizontal curve lengths were calculated in the
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feature database, and a mathematical radius equation (Equation (1)) was used to calculate
the radius values [31].

Radius =
CL2

8 × MO
+

MO
2

(1)

2.5. Field Measurements

Field measurements were performed for each horizontal curve on the road thanks to
a laser range finder. A handheld GPS was used to specify the location on the field map.
“Chord length” method was used for calculations, where three opposite measurements
were performed in the inner and outer sides of the curve between PC, ToC, and PT points
on the horizontal curve (Figure 3). Ambiguous points on the beginning and end of the
curve were checked using a drone at an altitude lower than 120 m, as specified by the law
(Figure 4). In addition, current conditions of both roads were checked.
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Figure 4. The latest drone images for the curve and sharp curve on the rural road (a) and forest road (b).

All curve points were calculated based on the points on a helical spring instead of
adjacent tangent lines. The point data of the measured curves were obtained from opposite
road sidelines. Two different opposite measurements were performed on the beginning
and end of the curve to find the actual curve radius and the middle point of the road.
Then, the curve on the road midpoint was used to calculate the curve radius. The value
calculated using this method was assumed to be the actual radius and compared with the
value predicted using satellite images [31,32].

2.6. Main Concept of Automatic Curve Detection Tool

In this study, ROCA, which involves the idea of the naïve Bayes classifier, was exam-
ined as a toolbox for ArcGIS [23]. The main steps include digitized road data generalization,
computation of explanatory variables, and generalized road network data analysis using
training and testing datasets. It is also possible to create different training datasets for
the GIS add-on. The model then consists of a classification process, radii calculation, and
the use of heuristics [17]. More details about the ROCA add-on and horizontal curve
analysis training data can be found at https://roca.cdvinfo.cz/downloads/ (accessed on
19 September 2022).

2.7. Comparison of Data

Field- and GIS-based measurements played a reference role in observing the current
conditions on the study area and predicting the curve radius and length accurately. To
validate GIS-based manually measured curve attributes, total root mean square error
(RMSE) values were considered as an error metric (Equation (2)). Linearity was also
considered for the relationship between the radius and length of the road curve for field
and image measurement. Thus, the differences between radius and length values in control

https://roca.cdvinfo.cz/downloads/
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and field measurements were defined on a mathematical basis. This step was performed to
ensure the reliable calculation of GIS-based automatic curve attribute prediction.

RMSE =

√
∑n

i=1
(Measured − Estimated)2

n
(2)

Sampling units with a resolution of 10 × 10 m were designed for an evaluation of
the prediction performances of GIS-based automatic curve detection. The road and the
sample units were intersected to calculate the sensitivity of the predicted curve charac-
teristics. A true/false analysis was performed in the confusion matrix table to calculate
the curve prediction sensitivity in sampling units via Equations (3)–(6). Thus, the pre-
diction accuracy was evaluated using F-Score analysis as true positive (TP), false positive
(FP = commission error), and false negative (FN = omission error). F-Score was calculated
as given in Equation (3). In this formula, TP represents correctly detected curve number,
FP denotes extra curve segment that is absent in the area, and FN refers to curves that are
present in the study area but cannot be detected in the study area. As F-Score values are
sometimes likely to be biased, other metric measurements were also taken into account [33].
Therefore, Mathews Correlation Coefficient (MCC) (Equation (4)) [34], Balanced Accuracy
(BA) (Equation (5)) and Bookmaker Informedness (BM) (Equation (6)) were also used as
metric criteria.

F − Score = 2 ×
( nTP

nTP+nFN
)× ( nTP

nTP+nFP
)

( nTP
nTP+nFN

) + ( nTP
nTP+nFP

)
(3)

MCC =
nTP × nTN − nFP × nFN√

(nTP + nFP)× (nFP + nFN)× (nTN + nFP)× (nTN + nFN)
(4)

BA =

nTP
nTP+nFN

+ nTN
nTN+nFP

2
(5)

BM =
nTP

nTP + nFN
+

nTN
nTN + nFP

− 1 (6)

Homogeneity and normality tests were applied to the data groups. When they dis-
played a homogenous distribution, ANOVA (p < 0.05) and Kruskal–Wallis was used for
group comparison and non-parametric group data. The following statements were hypoth-
esized to compare the horizontal curve radius and length values.

• H0: The curve radii in different groups for the rural road do not differ from each other
significantly.

• H1: The curve length values in different groups for the rural road differ from each
other significantly.

• H0a: The curve radii values in different groups for the forest road do not differ from
each other significantly.

• H1a: The curve length values in different groups for the forest road differ from each
other significantly.

3. Results
3.1. The Comparison of Curve Data Obtained from Field- and GIS-Based Measurements

In this study, curve radius and length values obtained from GIS-assisted high resolu-
tion satellite images were compared with field measurements (Figure 5). GIS-measured
and field measurements for the length and radius of the horizontal curve of both rural
(Figure 5a) and forest (Figure 5b) roads show line goodness of fit with R2. Total RMSE,
which is a parametric value, was calculated for 30 curve values measured on the rural road
and 29 curve values measured on the forest road. RMSE for curve radius and length on
the rural road were calculated as 22.86 m and 22.99 m, respectively. Alternatively, RMSE
for curve radius and length on the forest road were calculated as 16.17 m and 8.63 m,
respectively. It was later discovered that some maintenance and repair work was done
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in the forest road (such as widening on some curves). Similarly, some asphalt patchwork
has been applied to the rural road, which did not lead to any changes in its geometric
structure and alignment. Curve calculation and measurement by using GIS-supported
satellite images took less time than field studies.
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3.2. Calculation of Rural Road Curves

As the groups were evaluated based on different generalization tolerance values, differ-
ent curve values were found in each method, except those with generalization tolerance of
20 cm and 40 cm. Although mean curve radii were different in the data groups except those
with generalization tolerance of 20 cm and 40 cm, mean curve length values were different in
all groups. Mean curve length values in the groups with generalization tolerance of 20 cm
and 40 cm calculated in GIS were partially similar. The number of ASat (satellite-based curve
measurements from paved road), A20cm (Douglas-Peucker method with generalization
tolerance of 20 cm), and A40cm was 30 curves. The predicted minimum and maximum
radius and length values were similar in the data groups with generalization tolerance in
centimeters. Based on the data from Bezier algorithm generalization, the number of calcu-
lated curves (ABez) was much higher compared to the predicted curves. The statistical curve
data calculated and predicted in GIS for the rural road are summarized in Table 1.

Table 1. The statistical curve data groups calculated and predicted for the rural road.

Group Curve
N

Min.
Radius

Mean
Radius

Max.
Radius

Min.
Length

Mean
Length

Max.
Length

ASat 30 40.33 122.32 236.63 58.67 103.33 159.90
ANoT 33 31.47 131.34 303.62 31.45 105.34 233.40
A20cm 30 58.47 128.07 253.65 40.07 147.50 288.58
A40cm 30 58.47 128.37 253.65 40.07 152.53 288.58
A60cm 27 60.67 140.27 253.65 40.08 161.73 288.58
A80cm 26 61.96 141.10 253.65 40.08 157.87 288.58
A1m 27 41.97 151.09 303.38 58.40 127.10 245.92
A2m 23 43.42 150.05 326.98 60.31 144.25 283.59
A3m 15 63.33 129.51 314.81 47.01 151.49 267.54
A4m 13 84.42 149.54 298.46 107.24 203.34 365.38
ABez 78 29.79 142.19 357.00 12.33 53.73 119.30

ASat stands for: A = rural road and Sat = control data obtained from the satellite images.

3.3. The Calculation of Forest Road Curves

Similar to the rural road, the curve numbers, radii and lengths in different data groups
were also calculated for the forest road. Since this study focuses on curves with a maximum
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curve radius of 100 m, the statistical data related to the control groups are given in Table 2.
It can be seen that different numbers of curves and curve length values were calculated
because of generalization values on the road line, except those without generalizations
and with a generalization tolerance of 20 cm, 60 cm and 1 m. The statistical relationship
analysis between the curve radii calculated using satellite images and digitized line vectors
with generalization tolerance of 20 cm, 40 cm, 60 cm and 1 m yielded similar predictions
with partial mean differences. The highest number of curves was predicted on the road
with Bezier generalization. On the other hand, the number of curves predicted on the roads
with generalization tolerance of 2 m or higher was lower.

Table 2. The statistical data related to the predicted and calculated curves on the forest road.

Group Curve N Min.
Radius

Mean
Radius

Max.
Radius

Min.
Length

Mean
Length

Max.
Length

BSat * 29 10.50 35.46 84.64 22.95 46.87 134.65
BNoT 29 12.54 33.26 70.95 17.86 48.01 120.90
B20cm 27 12.54 35.71 70.95 17.86 51.11 120.90
B40cm 26 12.54 36.46 70.95 17.86 52.73 120.90
B60cm 27 12.49 39.21 75.23 17.86 54.65 120.90
B80cm 25 12.54 39.84 82.86 17.86 63.60 186.85
B1M 29 12.54 33.26 70.95 17.86 48.01 120.90
B2M 15 14.58 36.01 73.76 28.83 68.44 117.47
B3M 10 14.58 39.73 70.43 55.04 98.45 196.53
B4M 7 21.71 47.81 79.85 64.78 109.00 193.27
BBez 68 5.40 36.32 72.26 6.21 25.61 89.50

* BSat stands for: B = forest road and Sat = control data obtained from the satellite images.

3.4. The Prediction Accuracy for the Rural Road

The roads selected for the test groups were divided into 437 equal sampling units
for the rural road (Figure 6). An error matrix was created in the GIS environment for the
prediction accuracy rates in all groups. The rural roads were divided into sampling units
in order to see any curve predictions in each unit. The spatial distributions of true-false
analysis for the rural road were shown in Figure 6. We observed that the accuracy rates of
curve prediction in the groups (Figure 6b–f,h–k) with and without generalization tolerance
increased significantly in small curve standards, except for those with generalization
tolerance of 1 m (Figure 6g).

F-Score, (Equation (3)), Mathews Correlation Coefficient (MCC) (Equation (4)), Bal-
anced Accuracy (BA) (Equation (5)) and Bookmaker Informedness (BM) (Equation (6)) were
taken into account in the analysis. Based on these metrics, the curves measured manually
on satellite images and the prediction accuracy rates of 10 test groups obtained from ROCA
analysis of curves with and without a generalization tolerance value were calculated. The
results demonstrated that the curve data using GIS environment displayed different predic-
tion accuracy rates depending on different generalization coefficients and algorithms. It
was also observed that the highest prediction accuracy rates in the digitized road curves
were obtained with generalization tolerance of 20 cm and 1 m using Douglas-Peucker
method (Table 3). The most successful test group data, on the other hand, belonged to
Douglas-Peucker method, with generalization tolerance of 1 m (A1m).
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Figure 6. Sampling units (10 × 10 m) for the control and test groups in the study area (a). Spatial
data accuracy without generalization tolerance (b), Douglas-Peucker generalization tolerance values:
20 cm (c), 40 cm (d), 60 cm (e), 80 cm (f), 1 m (g), 2 m (h), 3 m (i), 4 m (j) and the map displaying
true/false distributions for the forest road with Bezier generalization algorithm (k).
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Table 3. The comparison of curve prediction accuracy rates for the rural road in terms of generaliza-
tion tolerance values.

Group (A) TN FN FP TP N Recall Precision F-Score MCC BA BM

ANoT–ASat 168 81 51 137 437 0.63 0.73 0.67 0.40 0.70 0.40
A20cm–ASat 167 82 62 126 437 0.61 0.67 0.64 0.34 0.67 0.34
A40cm–ASat 169 80 59 129 437 0.62 0.69 0.65 0.36 0.68 0.36
A60cm–ASat 167 82 64 124 437 0.60 0.66 0.63 0.33 0.66 0.32
A80cm–ASat 169 80 69 119 437 0.60 0.63 0.61 0.31 0.65 0.31
A1m–ASat 181 68 40 148 437 0.69 * 0.79 * 0.73 * 0.51 * 0.75 * 0.50 *
A2m–ASat 178 71 49 139 437 0.66 0.74 0.70 0.45 0.72 0.45
A3m–ASat 193 56 104 84 437 0.60 0.45 0.51 0.24 0.62 0.25
A4m–ASat 188 61 88 100 437 0.62 0.53 0.57 0.29 0.65 0.30
ABez–ASat 139 110 46 142 437 0.56 0.76 0.65 0.31 0.66 0.31

* is the highest score.

3.5. The Statistical Relationships between Control and Test Groups for the Rural Road Curves

The curve radius obtained from the data groups on the rural road displayed a homo-
geneous distribution (p > 0.05, p = 0.752, F = 0.620), which verifies H0. In other words, no
statistically significant differences were observed among the data groups. However, as
far as the mean values are concerned, a statistically significant difference was observed
between the data groups with and without Douglas-Peucker and Bezier generalization
(Figure 7).
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Similar to the forest road, the curve length values for the rural road did not display
a homogenous distribution. Therefore, Kruskal-Wallis test was applied instead of ANOVA
analysis. The test results (χ2 = 158.561, p < 0.005) indicated a statistically significant difference
among the data groups, which contradicts H1. Thus, it can be stated that a statistically
significant difference was found among the data groups. The standard deviations among
control groups, i.e., ASat, A20cm, A1m and ANoT, were partially similar. Therefore, when
the standard deviations in all groups were calculated, a statistically significant difference
was observed among all groups (Figure 6).

The difference between the mean radius length calculated using ANoT and ASat
for the rural road (±2.01 m) was lower compared to other control groups, whereas the
difference between the mean curve radius calculated using A20cm and ASat (±5.75 m) was
lower compared to other groups.
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3.6. The Prediction Accuracy for the Forest Road

The spatial distribution of true/false analysis for the forest road is shown in Figure 8.
Two hundred and thirteen (213) sample sites were selected for the forest road (Figure 8a).
An error matrix was produced in a GIS environment for the prediction accuracy rates in
all data groups. The data groups with generalization tolerances of 20 cm and 40 cm in the
sampling units modeled in GIS displayed similar sensitivity for road alignment and curve
predictions (Figure 8c,d). However, it was observed that the road alignment and curve
prediction accuracy rates decreased for generalization tolerance higher than 1 m and Bezier
algorithm generalization (Figure 8h–k). The sampling units may display differences in the
map analysis.

Figure 8. Sampling units (10 × 10 m) for the control and test groups in the study area (a). Spatial
data accuracy without generalization tolerance (b), Douglas-Peucker generalization tolerance values:
20 cm (c), 40 cm (d), 60 cm (e), 80 cm (f), 1 m (g), 2 m (h), 3 m (i), 4 m (j) and the map displaying
true/false distributions for the forest road with Bezier algorithm generalization (k).
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Similar to the rural road, since the statistical analysis for the forest road is limited to
a maximum curve radius of 100 m, the highest prediction accuracy rates were obtained in
the groups with generalization tolerance of 80 cm and 1 m using Douglas-Peucker algorithm.
Additionally, the curve prediction accuracy rates in the data groups without generalization
and with generalization tolerance of 20 cm and 40 cm were similar to each other. According
to true/false analysis of the sampling units, the data groups with generalization tolerance of
0 m and 2 m displayed a higher prediction accuracy rate compared to other generalization
tolerance values (Table 4).

Table 4. The comparison of curve prediction accuracy rates for the forest road in terms of generaliza-
tion tolerance values.

Group (B) TN FN FP TP N Recall Precision F-Score MCC BA BM

BNoT–BSat 85 19 41 68 213 0.78 0.62 0.69 0.45 0.73 0.46
B20cm–BSat 84 20 42 67 213 0.77 0.61 0.68 0.43 0.72 0.44
B40cm–BSat 85 19 42 67 213 0.78 0.61 0.69 0.44 0.72 0.45
B60cm–BSat 85 19 35 74 213 0.80 0.68 0.73 0.50 0.75 0.50
B80cm–Bsat 86 18 26 83 213 0.82 0.76 * 0.79 * 0.59 0.79 0.59
B1m–BSat 87 17 26 83 213 0.83 0.76 * 0.79 * 0.60 * 0.80 * 0.60 *
B2m–BSat 97 7 53 56 213 0.89 * 0.51 0.65 0.49 0.77 0.54
B3m–BSat 92 12 62 47 213 0.80 0.43 0.56 0.35 0.70 0.39
B4m–BSat 98 6 69 40 213 0.87 0.37 0.52 0.38 0.73 0.46
BBez–BSat 74 30 35 74 213 0.71 0.68 0.69 0.39 0.70 0.39

* is the highest score.

3.7. The Statistical Relationships between Control and Test Groups for the Forest Road Curves

The curve radii obtained from the data groups for the forest road displayed a homo-
geneous distribution (p > 0.05, p = 0.733, F = 0.691), which verifies H0a. The statistical
difference between the average values in the control group data increases in proportion to
the Douglas-Peucker algorithm. In line with this, the most similar mean curve values were
observed in the data groups with generalization tolerance of 1 m (Figure 8). A statistically
significant difference was observed among the mean values because of similar standard
deviations in all data groups. The curve length values among the data groups did not
display a homogenous distribution, and Kruskal–Wallis was applied instead of ANOVA.
The test results (χ2 = 127.152, p < 0.005) contradicted H1a. Thus, no statistical relationships
were found among the curve length values in the data groups. As far as mean values are
concerned, the data groups without generalization and with generalization tolerance of
0.2 m and 1 m using Douglas-Peucker algorithm were more similar compared to the curve
length values in the other data groups (Figure 9).
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On the other hand, the difference between the mean curve length values calculated
using BNoT and B1m for the forest road (±1.14 m), which had a lower horizontal curve
radius, was lower compared to other control groups. However, compared with the other
groups, the difference between the average curve radii calculated using B20cm and BSat
(±0.25 m) is lower.

4. Discussion

The assessment of this study was carried out with the use of existing road digitizing
data according to the estimation of success in the road curve parameters. We suggested
accuracy control method with different generalization/simplified effect on the automatic
estimation of road attributes (curve radius, length, and number).

It usually takes a long time and a high cost to use the manual/traditional methods to
perform on-site measurements of the road network. Photogrammetry, aerial laser scanners,
and terrestrial laser scanners performing in the study area, which also increased the number
of high-cost and time-consuming steps in the field measurement, will contribute greatly
to the field measurements [35]. Alternatively, vision learning techniques can detect the
road curve characteristics from aerial or satellite images [36]. However, curve geometry
detection by using the current advanced computer vision techniques for large-scale road
networks are still limited. In short, all techniques used in curve detection have pros and
cons [16]. Analyzing vector data in digitized road networks in a GIS needs lower-capacity
processors and costs rather than advanced image processing techniques and expensive
surveying equipment.

There is no doubt that the prediction accuracy of automatic and semi-automatic
detection for geometric road elements is affected by spatial data measurement technology.
Ensuring the accuracy, resolution, scale, and precision of the data used in the GIS is crucial
for obtaining geometric characteristics of roads. Because the measurements of the geometric
characteristics of roads are obtained from light detection and ranging (LiDAR), such a high-
spatial accuracy and precise tool, they are still controversial today [37–39]. GIS-assisted
curve detection, which is still an alternative to LiDAR technology, is a cost-effective and
time-saving technique. Innovative and traditional methods (Digital imagery-, map-, and
Global positioning system-based road mapping) [40–42] also run the risk of producing
relatively low-quality and less sensitive data, making it necessary to conduct detailed
studies on the feasibility.

The use of technology in scientific research makes it easier to obtain data from the
field. For example, several types of geometric road features, such as curve radius, length,
midpoint, and angle, can be automatically generated on the road sampling unit within
a few seconds [43]. When compared with the duration and cost of field measurements,
the automatic calculation of horizontal curve data in GIS has great advantages for experts
studying road vehicle safety.

The number of spatial points in the calculation of prediction accuracy and sensitivity
for horizontal curve radius in GIS was directly proportional to the prediction accuracy of
Curve Calculator, whereas Curve Finder and Curvature Extension were not affected by the
sequence of spatial points (vertex) [28,44]. It was observed in the sensitivity analysis of
ROCA that generalization algorithms and tolerances have a significant impact on the results
(Tables 3 and 4) [17]. Therefore, for the comparison of the performance of curve geometry
estimation, it can be explained that it is more effective to perform on-site measurement
along the route instead of at a single point. The Douglas–Peucker algorithm, which was
used in the analysis of small radius curves in this study, increased the curve prediction
accuracy rate for the digital vector line, with generalization tolerance of 20 cm and 1 m.
Different performance metrics (such as F-Score, MCC, BA, and BM) demonstrated that the
prediction accuracy of the Bezier algorithm for mean curve radius and length values was
relatively low. This may be attributed to the frequency of points applied in the GIS or the
impact of the drawing scale. In this respect, a bigger drawing scale (>1/4000) for the road
network lines in mountainous areas is likely to increase the prediction performance. For
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the statistical relationship between the test and the control groups, there is a statistically
significant relationship between the calculated horizontal curve radius, which verifies the
H0 and H0a. However, no statistically significant relationship was observed between the
curve lengths, which contradicted the H0 and H0a of the two roads.

The performance of software in the automatic or semi-automatic calculation of hori-
zontal curve data in a GIS environment has been evaluated in some studies. The prediction
accuracy rates of models such as Curve calculator, Curve Finder, Curvature extension,
and ROCA are reported as 78%, 69%, 80%, and 95%, respectively [23,28]. According to
the results of the smaller radius curve detection, the detection performance of ROCA has
a downward trend. The trained data, which was provided by the owner of the extension,
may be revised for small curve radii. We assume that more reliable results can then be
obtained. We observed that the increasing number of curves detected using the digital
line vector with Bezier algorithm generalization increased the prediction sensitivity in
small curves. Douglas–Peucker with preferred tolerance value is crucial in the estimation
accuracy of geometric parameters. Due to high tolerance value usage during the general-
ization process, very close road segments with small radii can result in self-intersection
problems [26]. Further, the estimated curve length errors are larger than the estimated
radius. Thus, this study may show different performance in the detection and prediction of
the digitized road networks on a straight or flat alignment or horizontal road curve [45].

5. Conclusions and Future Work

This study shows that the automatic curve detection based on the GIS concept and
the point density of the digitized lines representing the road lanes directly affect the
prediction accuracy and sensitivity of the detection of small-radius horizontal curves.
It was found that the prediction accuracy for the number of horizontal curves, along
with curve radius and length values, varied depending on different tolerance values.
Therefore, different generalization tolerance values can be used to improve the prediction
accuracy and sensitivity for curve radius and length. For small radius horizontal curves,
the Douglas–Peucker algorithm outperforms Bezier.

The results of this study revealed that the generalization algorithm and tolerance
values significantly affected the prediction accuracy and sensitivity for the small radius
horizontal curves, which were digitized in GIS. It can be seen that in the horizontal curve
detection performance of the two roads, MC and BM are more sensitive to errors than other
metrics (Tables 3 and 4). In this respect, future studies must benefit from the metric criteria
for the true/false analysis in their respective sample sites to find an optimal generalization
method and tolerance. Thus, it will be more likely for them to predict curve geometry
more accurately in accordance with a generalization tolerance value suitable for the specific
objectives of their study. It is a practical and cost-effective approach that increases the
potential of using road geometric data as a decision variable in GIS-based road traffic
accident models. GIS-assisted tools, which automatically calculate the geometric parame-
ters of small radius curves, are a promising technique for transportation-related studies.
The automatic calculation of horizontal curve data using GIS tools has great advantages.
However, the GIS-based method has a limitation of not effectively detecting the types of
road curves. Data that can be used in the analysis of safe curve crossing speed estimates
and transportation times of emergency response vehicles in the GIS environment can be
produced on low radius roads where field work is difficult and dangerous. It can be added
to vehicle navigation systems as road information datasets.

In a follow-up study, curves that are potentially dangerous for the road network will
be identified. Then, the curve geometric information, which is considered as a variable, will
be analyzed by vehicle type, road surface, speed, and rollover and skidding. As a result,
by detecting horizontal curves that do not comply with the standards, it will be aimed
at revealing a cost-effective method for taking necessary precautions for emergency and
heavy vehicles.
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