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Abstract: The dynamic development of deep learning methods in recent years has prompted the
widespread application of these algorithms in the field of photogrammetry and remote sensing,
especially in the areas of image recognition, classification, and object detection. Still, one of the
biggest challenges in this field is the low availability of training datasets, especially regarding
applications of oblique aerial imagery and UAV data. The process of acquiring such databases is
labor-intensive. The solution to the problem of the unavailability of datasets and the need for manual
annotation is to automate the process of generating annotations for images. One such approach
is used in the following work. The proposed methodology for semi-automating the creation of
training datasets was applied to detect objects on nadir and oblique images acquired from UAV.
The methodology includes the following steps: (1) the generation of a dense 3D point cloud by two
different methods: UAV photogrammetry and TLS (terrestrial laser scanning); (2) data processing,
including clipping to objects and filtering of point clouds; (3) the projection of cloud points onto aerial
images; and (4) the generation of bounding boxes bounding the objects of interest. In addition, the
experiments performed are designed to test the accuracy and quality of the training datasets acquired
in the proposed way. The effect of the accuracy of the point cloud extracted from dense UAV image
matching on the resulting bounding boxes extracted by the proposed method was evaluated.

Keywords: training datasets; object detection; deep learning; point clouds; oblique imagery; UAV

1. Introduction

With the development of deep learning and the continuous increase in GPU perfor-
mance, convolutional neural networks (CNNs) have found wide applications in image
recognition and object detection [1–4]. These algorithms are still being developed, and
new deep learning models are being created. However, one problem that arises in this
area is the requirement of a large number of ground-truth annotations to train the deep
convolutional neural networks. Moreover, the process of acquiring such datasets is time-
consuming. The acquisition of traditional training datasets involves data gathering and
annotation. Although data are obtained all the time and new image data are provided
every day, whether by aircraft, drones, mobile platforms, or sensors mounted on satellites,
there are many reasons why these data may not be sufficient or helpful in training deep
learning models. Still, one of the biggest challenges is preprocessing and preparing the
acquired data so the model can be taught based on it.

The largest training databases for CNN consist of natural scenes. These are large datasets
made available for public use. ImageNet [5], PASCAL VOC 2012 [6], and MSCOCO [7] are
a few examples of learning datasets [8]. However, the limitation is that they can only
be applied to specific scenes or as an input to pretrain models. The challenge is also
that objects are mapped differently in aerial photographs compared with those in natural
ground scenes. The low diversity of object classes, variability of scale, orientation, and

ISPRS Int. J. Geo-Inf. 2022, 11, 565. https://doi.org/10.3390/ijgi11110565 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11110565
https://doi.org/10.3390/ijgi11110565
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-1830-9423
https://orcid.org/0000-0003-2103-1546
https://doi.org/10.3390/ijgi11110565
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11110565?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2022, 11, 565 2 of 27

shape of objects on the Earth’s surface are also limitations that make using these existing
and well-archived datasets impossible in specific tasks. As for photogrammetry and remote
sensing applications, manual annotation is usually unavoidable, which requires a lot of
time and labor.

However, with the rise of data-intensive deep learning methods, the number of
solutions and effective strategies for generating ground-truth data is increasing. One
methodology that is also worth mentioning here is that proposed by Laupheimer and
Haala, 2021 [9]. It involves transferring labels from the manually-annotated point clouds
to the mesh and from that place to the image space for the semantic scene analysis task.
This is one of the examples of methods and approaches that partially solve the problem of
dataset inaccessibility and manual work. Several other examples are briefly described in
Section 2 with a review of related works.

The following work also uses a process to semi-automate the creation of training
datasets for detection in nadir and oblique aerial images. For this purpose, orthophotomaps
and point clouds are used as a starting point for generating ground-truth bounding boxes
on images. A more detailed description of the methodology is described in Section 4.

Although such an approach does not eliminate manual work, it reduces the effort.
Creating a point shapefile layer and marking objects using an orthophotomap is much
less time-consuming than labeling all photos in a project and marking all bounding boxes
surrounding objects.

The main contribution in the following work, on the other hand, is the aspect of the
accuracy and quality of the training datasets acquired in this way. The research aims to
assess the influence of point cloud accuracy extracted from dense UAV imagery matching
on the resulting bounding boxes extracted using the proposed method.

The rest of this paper consists of the following parts. Section 2 reviews the availability
of training datasets and describes methods for automating the process of generating an-
notations for images. Section 3 describes the data used. Section 4 is a presentation of the
methodology adopted in this work. Section 5 contains the results and an assessment of the
accuracy. Finally, Section 6 is a summary of the work and includes conclusions.

2. Related Works

The spread of deep learning methods in Earth observation has resulted in the cre-
ation and availability of some datasets for training models on aerial and satellite images.
However, in the case of training datasets consisting of aerial photographs or satellite
scenes, their abundance is much smaller than, for example, the ImageNet. Moreover,
these collections are rather characterized by a low diversity of object categories. The most
frequent datasets include objects such as cars: TAS set [10], VEDAI [11], UCAS-AOD [12],
the 3K-DLR-Munich [13]; ships: RSOD [14], HRSC2016 [15]; and buildings: the SZTAKI-
INRIA dataset [16]. The two largest datasets for object detection in the Earth observation
domain are DOTA [17], which consists of 15 categories of objects and 2806 aerial images,
and DIOR [18], which contains 23,463 images and 192,472 instances, covering 20 object
classes. Nevertheless, even such multiclass, mentioned datasets among these dozen or so
classes/categories of objects may not contain those desired in a particular case. Sometimes
it happens that these objects are particular for specific applications.

However, their availability of oblique aerial images is still low regarding training
datasets for object detection. The potential that oblique photogrammetry brings is quite
significant. Firstly, it provides a data source with distinct advantages: multiple views from
different perspectives and significantly different image scales [19]. In addition, oblique
photogrammetry carries the possibility of obtaining information about the location of an
object in a terrain system and the use of the multitemporal feature [20].

The scientific community’s interest in using oblique aerial photographs has made the
advantages of this technique obvious. This is evidenced by the appearance of publications
and scientific studies on object detection [1,21].
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UAV photogrammetry is a cost-effective and flexible data acquisition approach that
provides a data source of nadir and oblique images [22]. Aerial and drone photogrammetry
also brings high-accuracy imagery of the same object several times in different photos due to
the side and forward overlap in a block of images. Moreover, the use of oblique images gives
the additional advantage that a given object is imaged from several directions at different
angles, which further increases the size and diversity of the dataset. Using data acquired
from UAVs and photogrammetric products such as point clouds or orthophotomaps enables
the detection of objects using algorithms based on deep learning frameworks [23]. Due
to the fast high-resolution data acquisition ability, a UAV-based system could be used in
many fields. Such solutions can be applied in the inventory and modeling of technical
and transport infrastructure objects. The interest in using deep learning algorithms for
object detection has grown in such industries as railroads, power generation, and road
construction [24–28]. Drone-based solutions are also applied to inspect solar panels [29].

The presented examples outline the potential of using UAV-acquired data to detect
objects of interest using deep learning methods. The review papers [30,31] summarize the
previous ones regarding the fundamentals of deep learning applied in UAV-based imagery.
Ramachandran and Sangaiah highlighted the mentioned problem with the availability of
the datasets in their work [30], and it was pointed out that it is essential for the progress of
research in this field to create a large benchmark dataset dedicated to the problem of object
detection by UAVs.

Similar to aerial and satellite imagery, publicly available training datasets for UAV
applications most often include classes such as cars [21,32–34]. Training datasets for
engineering infrastructure [35] or tree detection [36] are also starting to appear, but class
size and diversity are still disappointing.

Therefore, research teams spend a lot of time creating such datasets or using other
solutions such as fine-tuning-based approaches or other transfer learning methods. Alter-
native methods can also be used to speed up the manual process—weak supervision or
Semi-Supervised Learning (SSL) [37,38].

Another approach to tackle the lack of training data is to automate the process of
generating annotations for images. Such solutions are used in both image segmentation and
object detection. In their work, Ros et al., 2016 [39], proposed to generate synthetic images
with pixel-level annotations. A further proposition to solve this problem is using a LiDAR
point cloud or 3D reconstruction of the scene to lift the semantic instance labeling task from
2D into 3D [40]. The authors in [41] proposed the automatic generation of annotations
on images. The method consists of three steps: (1) manual labeling of one or two aerial
images; (2) transferring the pixel labels to multiple UAV images via the UAV point cloud;
(3) refining the generated annotations using a densely-coupled CRF model and naive Bayes
classifier. In their study, Zachar et al., 2022 [20], addressed the lack of training data for
the model and proposed a methodology where manual labor is replaced by the use of
existing resources for transferring references to new databases for training models for
detecting objects on oblique aerial images. Similar solutions with transferring references
and adopting deep learning-based algorithms in natural scene images to detect objects in
UAV images have already been proposed [42–45].

3. Dataset Description

For the experiments in the following work, photogrammetric data (aerial nadir and
oblique images) were acquired with a DJI Phantom 4 RTK drone with the camera FC6310R
(resolution: 5472 × 3648, focal length: 8.8 mm; pixel size: 2.41 µm), and products (point
clouds and orthophotomaps) were used. The study area over which the photogrammetric
data were acquired was a railroad section near Czestochowa, Poland (Herby). The data
were acquired in March 2021. Oblique and nadir aerial images were acquired in multivariate
photogrammetric missions. Different flight heights and forward and side overlaps of the
photos were tested. Data were processed in Pix4D Mapper software for a section of railroad
infrastructure in the test area.
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Data acquired in multiple variations were used to generate point clouds. The selection
of photogrammetric mission parameters was related to UAV data acquisition methodology
experiments with input data requirements for neural networks. Experiments on this topic
were not studied in the above publications. Nadir images were acquired at two heights
(54 m and 90 m), while oblique images were acquired at 40 m with a tilt of camera angle by
45◦. In addition, the variants differed in their forward and side overlap, which affects not
only the resulting point cloud but also the processing time and economic aspect.

Due to different mission flight parameters (heights, coverages) and different parameter
settings in the software, products with other characteristics were obtained. Fourteen
scenarios for image acquisition and processing were prepared for the study area. The
variants also differed in the use of vertical and oblique photos and their combinations. Not
all variants used all acquired photos, and this was modified by excluding, for example,
every second row or every second photo. Table 1 shows all the variants’ summaries and
basic parameters. As a result, 14 different point cloud variants were obtained.

Table 1. The summary of each variant’s mission flight and processing parameters. The variants differ
in flight altitude and images’ overlap. The overlap between images varies according to the mission
plan, and also by managing the inputs to the data processing. All of these parameters affect average
ground sampling distance (GSD) and the number of images covering a given area. The last column
indicates the point cloud generation settings.

No.

Type of Images
Used (N—Nadir,
O—Oblique) and

Flight Altitude

Forward
Overlap

Side
Overlap

Average
Ground

Sampling
Distance

(GSD)

Number
of Photos

Image
Scale for

Dense
Image

Matching

1.
N: 54 m 90% 90% 1.50 cm 146

half

2. full

3. N: 54 m 90% 80% 1.50 cm 74 half

4. N: 54 m 90% 70% 1.50 cm 73 half

5. N: 54 m 90% 90% 1.50 cm 147 half

6.
N: 90 m 90% 90% 2.46 cm 151

half

7. full

8. N: 90 m 90% 80% 2.46 cm 100 half

9. O: 40 m 80% 90% 1.97 cm 92 half

10. N: 54 m
O: 40 m

N: 90%
O: 80%

N: 80%
O: 90% 1.50 cm 48 half

11. N: 54 m
O: 40 m

N: 90%
O: 80%

N: 80%
O: 90%

1.50 cm 87
half

12. full

13. N: 54 m
O: 40 m

N: 90%
O: 80%

N: 90%
O: 90%

1.50 cm 114
half

14. full

The resulting alignment accuracies are shown in the tables below (Tables 2 and 3).
The average RMS error ranges for control points from 0.2 cm to 3.6 cm, while for check
points, it ranges from 1.3 cm to 3.6 cm. The best accuracies were obtained for variant no. 3
(Flight Altitude: 54 m; OF: 90%; OS: 80%; GSD: 1.50 cm) comparing accuracies on control
points. Variant no. 1 (Flight Altitude: 54 m; OF: 90%; OS: 90%; GSD: 1.50 cm) showed the
best accuracy on check points. Bundle Block Adjustment Details are also indicated by the
average of the reprojection error in pixels (Table 4).



ISPRS Int. J. Geo-Inf. 2022, 11, 565 5 of 27

Table 2. Summary of accuracy on control points for variants developed in Pix4D software.

Variant (Number
Related to Table 2)

Control Points

RMS Error
—X (cm)

RMS Error
—Y (cm)

RMS Error
—Z (cm) RMSE (cm)

1. and 2. 0.7 0.2 0.4 0.48

3. 0.7 0.2 0.2 0.44

4. 0.8 0.8 0.4 0.69

5. 0.9 0.9 0.6 0.81

6. and 7. 0.7 1.0 0.6 0.79

8. 0.9 1.0 0.9 0.93

9. 1.4 0.3 0.7 0.94

10. 1.4 0.4 0.6 0.93

11. and 12. 0.8 0.5 0.3 0.57

13. and 14. 1.5 0.4 0.6 0.96

Table 3. Summary of accuracy on check points for variants developed in Pix4D software.

Variant (Number
Related to Table 2)

Check Points

RMS Error
—X (cm)

RMS Error
—Y (cm)

RMS Error
—Z (cm) RMSE (cm)

1. and 2. 1.5 1.7 2.1 1.78

3. 1.7 1.6 2.2 1.85

4. 2.3 1.5 2.0 1.96

5. 1.8 1.5 2.1 1.82

6. and 7. 2.1 1.9 3.5 2.60

8. 2.2 2.0 3.6 2.70

9. 3.3 1.3 2.9 2.65

10. 2.1 1.6 1.9 1.88

11. and 12. 2.5 1.5 2.8 2.33

13. and 14. 2.1 1.6 1.9 1.88

Table 4. Bundle Block Adjustment Details. The average of the reprojection error in pixels.

Variant (Number Related to
Table 2)

Average Ground Sampling
Distance (GSD)

Mean Reprojection Error
(Pixels)

1. and 2. 1.50 cm 0.132

3. 1.50 cm 0.186

4. 1.50 cm 0.127

5. 1.50 cm 0.129

6. and 7. 2.46 cm 0.193

8. 2.46 cm 0.184

9. 1.97 cm 0.133

10. 1.50 cm 0.125

11. and 12. 1.50 cm 0.178

13. and 14. 1.50 cm 0.125
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For the experiment’s performance, terrestrial laser scanning (TLS) point clouds were
used as the ground truth (the reference data to which the results would be compared).

An important aspect from a research perspective was that the data were acquired on
the same day because it was a railroad station reconstruction site. The dynamic changes that
can occur from day to day in such an environment could make it impossible to compare
results from data taken at different times. Then, changes in land cover—such as the
placement of a new building—would additionally need to be verified. In the case of the
experiments above, the data were confirmed in this regard, but it is a crucial point to keep
in mind.

The area for which TLS data was acquired was smaller than the area covered by the
UAV data. Therefore, the area for UAV data was also limited to the site for which TLS
data was acquired. As a result, this area had 20 traction poles and 15 railroad gates. These
objects were analyzed.

The terrestrial laser scanning (TLS) data collection was conducted using a Leica
RTC360 scanner. For the study area, 115 scans were taken using the medium settings,
corresponding to a point resolution of 6 mm at a distance of 10 m. The data were geo-
referenced into the PL-1992 terrain coordinate system using ground control points. For
this purpose, 13 points were measured by the RTK method, using the national reference
network (ASG-EUPOS) with a measurement accuracy of 0.03 m (horizontal) and 0.05 m
(vertical). Registration of the scans was performed using the Cloud-to-Cloud method in
Leica Cyclone REGISTER 360 software. The accuracy of the C2C fit for the bundles was
1 cm. The average error of matching the point clouds acquired from different scanner
locations to ground control points was < 10 cm. The accuracy values are shown in the
Table 5.

Table 5. The accuracy of TLS point clouds alignment.

Overall Quality Value

Bundle Error 0.010 m

Cloud-to-Cloud 0.010 m

An important aspect investigated in the present experiments is the accuracy of the
generated point clouds from DIM (dense image matching). The alignment accuracies are
presented above. However, in addition to the analysis of the alignment reports of the
images of each variant, the point cloud densities and the visual analysis to evaluate the
noise of the point clouds are also compared. A summary of the average point density per
m3 is shown in Table 6. The highest densities are indicated by the variants for which the
point cloud was generated on high settings.

Table 6. Comparison of point cloud densities per m3.

Variant (Number
Related to Table 2) GSD (cm) Image Scale for Dense Image

Matching
Average Density

(per m3)

1. 1.50 half image scale 1009.1

2. 1.50 full image scale 4289.32

3. 1.50 half image scale 879.69

4. 1.50 half image scale 902.52

5. 1.50 half image scale 1357.23

6. 2.46 half image scale 178.18

7. 2.46 full image scale 453.87

8. 2.46 half image scale 183.23

9. 1.97 half image scale 407.53
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Table 6. Cont.

Variant (Number
Related to Table 2) GSD (cm) Image Scale for Dense Image

Matching
Average Density

(per m3)

10. 1.50 half image scale 644.97

11. 1.50 half image scale 904.32

12. 1.50 full image scale 973.78

13. 1.50 half image scale 418.37

14. 1.50 full image scale 1533.09

By subjecting all variants to visual analysis, it can be seen that a more significant
number of elements were mapped into the point cloud for the variants generated on the
high setting. However, point clouds from these variants are noisier. This is particularly
evident for the traction poles. The following figures show examples of a gate (Figure 1) and
a traction pole (Figure 2) for all point cloud variants.
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When comparing even the most accurate point cloud variants from dense image
matching with terrestrial laser scanning data, it is apparent that some elements have
not mapped into the dense point cloud. Furthermore, as more details are mapped and
the density of the point cloud increases, noise increases. Such an effect is not desirable,
especially when the next step is to project the points into pixel coordinates of the image to
determine each object’s precise location (bounding box).
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Taking into account all indicated aspects, experiments were conducted. The aim
was to verify how the point cloud accuracy affects the resulting bounding boxes. As a
result of research, recommendations have been made based on which the parameters of a
photogrammetric mission flight should be used to automate the creation of high-accuracy
training datasets. In addition to the mission flight parameters, essential elements are the
data processing settings and parameters with which the point clouds should be generated
in such a way that they are sufficient for the specified purpose.

In the following part of the paper, we describe in detail the particular steps of the
research, the methodology adopted, and the results.

4. Methodology and Experimental Setup

The processing of UAV-acquired images produces various photogrammetric products,
such as point clouds and orthophotomaps. These products were used as source data as
part of the methodology to support the preparation of training datasets.

The first essential step was to process the image blocks; that is, to orient the data. The
results from this step were described in an earlier section, where the alignment accuracies
for each variant were also presented. As part of the data processing, point clouds and
orthophotomaps for all variants were created in Pix4D.

The next part was the preparation of files containing information on the location
of objects of interest. This step was necessary because of the need to have the terrain
coordinates of each object so that, based on them, the point clouds from dense image
matching could be clipped to the cloud fragments containing the object. Two different
approaches were used for gates and traction poles. Based on the orthophotomap taken
from one of the image variants, a point layer was created in ArcGIS Pro. The traction poles
were marked with points on the orthophotomap, which made it possible to capture the
information of the pole’s X, Y, and Z terrain coordinates (Figure 3a). As for the gates, it
was decided to create a polygon layer due to the different characteristics of the object. An
example of a vectorized gate can be seen in Figure 3b.

The resulting terrain coordinates of all the objects served as input information for
cutting the sections from the point cloud that contained points belonging to the object
(Figure 4). In the case of gates, the point clouds were cropped with a polygon, while for
traction poles, a buffer from a point with a radius of 5 m was used, so there was assurance
that all traction pole elements would be mapped including the booms.
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Figure 4. Examples of objects cut from a point cloud.

As can be seen in Figure 4., the cropped point clouds still contain elements that do
not belong to the objects of interest (including points belonging to the ground class). Thus,
ground filtering proved necessary for the bounding boxes surrounding the object to be
well represented. The Cloth Simulation Filter (CSF) method, used to extract ground points
in clouds and process LiDAR data, was decided upon. However, after testing (initially
in CloudCompare software) and verifying the results, it was found that for the purposes
of the above experiments, this method is also relevant for point clouds from dense image
matching, as shown in Figure 5. Therefore, the CSF filter [46] implementation provided on
GitHub (https://github.com/jianboqi/CSF, accessed on 1 November 2022) was used and
added as a component of our algorithm.

In addition to filtering out ground points, it was also necessary to filter out points that
were noise and did not belong to the object of interest. First, “isolated points” noise filtering
was applied using Open3D library functions. These methods examine the neighborhood in
the point cloud and reject outliers on this basis. Two methods were used:

• statistical outlier removal—removes points that are further away from their neighbors
compared to the point cloud average;

• radius outlier removal—removes points that have few neighbors in a given surround-
ing space.

https://github.com/jianboqi/CSF
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example of ground filtration for a point cloud with TLS, (d) the final segment of the point cloud
passed to the next stage of the algorithm.

An example of outlier filtering for gates is shown in Figure 6, where the red points
represent noise.
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Figure 6. An example of noise filtering for a gate, where the red points are noise and the gray points
are the object.

While the aforementioned filters worked well for gates, which generally had less noise,
manual filtering was necessary for traction poles, which turned out to be more complex
objects. An example of such a case is shown in Figure 4c, where objects that do not belong
to the object of interest (the cloud points on the right) have also been mapped in the cut-out
fragment of the point cloud (in the buffer of 5 m from the pole location point). It was
decided that, despite the initial filtering using Open3D library functions, all objects would
be verified for each variant, and unnecessary objects would be removed since no optimal
tool was found that would automatically remove such fragments of the cloud. Manual
verification and editing (filtering) were applied to both TLS point clouds and point clouds
from UAV image matching. After making sure that all the point clouds for the objects
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were correctly prepared, the final step occurred. This consisted of projecting the cloud
points onto the image, basically converting the terrain coordinates into pixel coordinates of
the images.

Based on the parameters of the camera’s internal and external orientation, as well
as information about the camera’s distortion model, it was possible to make a precise
transition between the coordinates in the field reference system (XYZ) and the pixel co-
ordinates of the image (uv). Using this information and performing calculations using
the files created as a result of the alignment in Pix4D, based on the mathematic model
explained on the developer’s website (https://support.pix4d.com/hc/en-us/articles/
202559089-How-are-the-Internal-and-External-Camera-Parameters-defined; accessed on
1 November 2022 https://support.pix4d.com/hc/en-us/articles/202977149-What-does-
the-Output-Params-Folder-contain, accessed on 1 November 2022), the result shown in
Figure 7 was obtained.
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Having the cloud points transformed into pixel coordinates of the photo, it was
possible to carry out the last part; that is, to calculate the coordinates of the bounding
box. These values were estimated based on the maximum and minimum values of the
projected points (umax, vmax, umin, and vmin). This is how the final result was created.
The bounding box surrounding the object was obtained by transferring the point cloud to
the images (Figure 8).

The methodology (Figure 9) thus developed involves using photogrammetric data and
products as source data for object annotation. Then all the steps described in this section
are carried out. The final result is numerous training datasets consisting of images and
information about the object’s position in the image by means of a bounding box saved in a
text file according to the requirements under ML detectors and models.

For example, the resulting training databases could be used to train detectors such as
YOLO or Fast R-CNN. On the other hand, an important issue is evaluating the accuracy
of the resulting bounding boxes. This part related to the evaluation of the results is
addressed in the next section, where the overlap between the reference (ground truth) and
the bounding box, which is the result obtained by transferring the point cloud to the images,
is examined.
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As mentioned earlier, the experiments were conducted on two objects of railroad
infrastructure—gates and traction poles. The following section shows sample results—
bounding boxes plotted on the images and bounding objects of interest. Visual inspection
of the results also formed part of the analyses.

Figure 10 shows examples of the results for the traction poles. The right side shows
results for point clouds from TLS, and the left side shows bounding boxes generated from
point clouds from dense image matching. A similar visual comparison was made for the
second object analyzed—gates (Figure 11).
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Figure 10. Example results for traction poles: (a) bounding boxes obtained from point cloud from
DIM, (b) ground-truth bounding boxes obtained from point cloud from TLS.

The resulting bounding boxes obtained in this way can constitute a training dataset.
Thus, the input to the network will be an image or a fragment of a photo containing the
object of interest, and a file, for example, a text file containing information about the object’s
position in the pixel coordinate system. If a photo involves more than one object, all
objects should be included in the file containing bounding box information to complete
the collection. An important point to emphasize here is that by marking an object on an
orthophotomap at one time, it is possible to obtain numerous training datasets as a given
object may be visible in up to a dozen images. This depends on the parameters of the flight
mission. This is described more extensively in the next section, including the number of
bounding boxes obtained on all the images of a variant. The presented methodology was
used to conduct experiments, the results of which are described in the next section.
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5. Results

An important issue in evaluating the accuracy of deep learning models is the quality
and accuracy of the training dataset. As is well known, the accuracy of an object detection
model depends on the quality and number of training samples, input images, model
parameters, and the required accuracy threshold. Therefore, the accuracy, correctness, and
completeness of the bounding boxes for training the model are crucial when automating
the training dataset generation process.

When interpreting the deep learning model results for object detection, the accuracy is
evaluated using different metrics. One of them is the Intersection over Union (IoU) factor.
This is a metric used as a threshold for determining whether a predicted result is a true
positive or a false positive. This coefficient determines the overlap between the predicted
bounding box around the object and the ground-truth bounding box. In this way, IoU can
be used as a metric to evaluate the accuracy of an object detector on a particular dataset by
comparing the results from the model to the reference data.

As previously mentioned, the main contribution of this paper is to analyze the impact
of the accuracy of point clouds extracted from the nadir and oblique image matching on the
resulting bounding boxes extracted automatically. Thus, in order to be able to evaluate the
influence of the accuracy of point clouds extracted from image matching on the resulting
bounding boxes, in addition to the visual assessment, the metric Intersection over Union
was used (Figure 12).

This metric is used for the accuracy assessment of object detectors on a given set of
data. Each detector, which provides bounding boxes as an output from the model, can be
evaluated with the IoU metric. To apply this metric, it is necessary to have:

• ground-truth bounding boxes (labeled bounding boxes from the test dataset, which
specify the location of the object on a pixel coordinate system of the image);

• predicted bounding boxes (output bounding boxes from the model). Based on these
values, it is possible to evaluate the overlap between the reference (ground truth) and
the bounding box, which is the result obtained from projecting cloud points onto
images. IoU is therefore measured as the area of intersection of the ground-truth
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bounding box with the output bounding box divided by the area of the combination
of the two.
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In the numerator, there is the area of intersection of the predicted bounding box
and ground-truth bounding box, and the denominator is the total area of the predicted
bounding box and ground-truth bounding box. Dividing the area of overlap by the area of
union yields the final result—Intersection over Union. The IoU value ranges from 0 (no
overlap) to 1 (the boxes are identical).

Due to the fact that no object detector was used in the above experiments, the ground-
truth bounding boxes were treated as a reference (obtained based on point clouds from the
terrestrial laser scanning), while the resulting bounding boxes (obtained based on point
clouds from dense image matching) were treated as “predicted”. Both ground-truth and
the resulting bounding boxes were obtained using a semi-automation script, as described
in the section above.

As a result, all 14 variants were compared with ground-truth bounding boxes gener-
ated from TLS.

5.1. Gates

The first evaluated objects were traction gates. The experiment results are presented
in Table 7, where the accuracies for all variants are summarized. The best results were
obtained for the variant marked no. 5, for which the IoU value was 92.42%. The results
obtained for the rest of the variants also showed relatively high accuracies.

The lowest IoU value was obtained for the variant marked no. 14—77.06%. A regular-
ity that can be observed from the results is that for the variants for which the point cloud
was generated with the “high” settings, lower values were obtained than for the variants
with the default settings. After analyzing the experiment results, it can be concluded that
the higher noise, which was obtained for the dense point clouds generated with “high point
density” settings, significantly influenced the results.

Based on the results, there is a possibility to indicate a mission flight variant, for
which resulting bounding boxes demonstrated the highest accuracies relative to references.
Furthermore, the threshold that is used to distinguish a valid result can be defined (more
precisely, what is (or is not) a “good” match). In that case, the threshold metric is the IoU
value. Changing the score threshold allows the false positive and true positive rates to be
distinguished to create a high-quality training dataset. By doing so, it is possible to discard
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erroneous results and highlight those that possibly need manual correction before being
passed to the model. More about the threshold value is described in Section 5.3.

Table 7. Accuracies of the resulting bounding boxes for the gates for fourteen point cloud variants.
The table values are the average IoU (Intersection over Union) multiplied by 100%, which is the
evaluation metric.

No.

Type of Images
Used (N—Nadir,
O—Oblique) and

Flight Altitude

Image Scale
for Dense

Image
Matching

Forward
Overlap

Side
Overlap

Average Ground
Sampling

Distance (GSD)

Number of
Instances of
Objects in
the Images

IoU

1. N: 54 m half 90% 90% 1.50 cm 505 92.09%

2. N: 54 m full 90% 90% 1.50 cm 512 87.58%

3. N: 54 m half 90% 80% 1.50 cm 348 91.49%

4. N: 54 m half 90% 70% 1.50 cm 490 92.03%

5. N: 54 m half 90% 90% 1.50 cm 1150 92.42%

6. N: 90 m half 90% 90% 2.46 cm 476 91.44%

7. N: 90 m full 90% 90% 2.46 cm 486 83.31%

8. N: 90 m half 90% 80% 2.46 cm 312 88.49%

9. O: 40 m half 80% 90% 1.97 cm 2797 87.39%

10. N: 54 m
O: 40 m half N: 90%

O: 80%
N: 80%
O: 90% 1.50 cm 2015 88.73%

11. N: 54 m
O: 40 m half N: 90%

O: 80%
N: 80%
O: 90% 1.50 cm 2026 86.52%

12. N: 54 m
O: 40 m full N: 90%

O: 80%
N: 80%
O: 90% 1.50 cm 1802 80.83%

13. N: 54 m
O: 40 m half N: 90%

O: 80%
N: 90%
O: 90% 1.50 cm 385 79.37%

14. N: 54 m
O: 40 m full N: 90%

O: 80%
N: 90%
O: 90% 1.50 cm 391 77.06%

Thus, it can be stated that high point cloud density settings gave slightly worse results.
Moreover, such a point cloud requires up to four times more processing time and RAM
than optimal density.

Below are examples of the results obtained as a result of the experiments carried
out—applied to the images’ bounding boxes that surround the objects. Examples of correct
results with high IoU values (Figure 13) and worse results (Figure 14) that would require
possible manual improvement before inclusion in the training of the model are shown.
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Figure 14. An example of a training dataset for gates with IoU = 0.73; (a) the bounding box generated
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5.2. Traction Poles

As for the results for the second object, they differ from those obtained for the gates.
The traction poles turned out to be more complex objects that mapped less well to the point
clouds than the gates. As for the gates, the accuracies for traction poles are summarized in
the Table 8.

Table 8. Accuracies of the resulting bounding boxes for the traction poles for fourteen point cloud
variants. The table values are the average IoU (Intersection over Union) multiplied by 100%, which is
the evaluation metric.

No.

Type of Images
Used (N—Nadir,
O—Oblique) and

Flight Altitude

Image Scale
for Dense

Image
Matching

Forward
Overlap

Side
Overlap

Average Ground
Sampling Distance

(GSD)

Number of
Instances of
Objects in
the Images

IoU

1. N: 54 m half 90% 90% 1.50 cm 611 69.72%

2. N: 54 m full 90% 90% 1.50 cm 613 68.83%

3. N: 54 m half 90% 80% 1.50 cm 413 70.43%

4. N: 54 m half 90% 70% 1.50 cm 552 73.15%

5. N: 54 m half 90% 90% 1.50 cm 1360 76.99%

6. N: 90 m half 90% 90% 2.46 cm 626 68.64%

7. N: 90 m full 90% 90% 2.46 cm 627 69.05%

8. N: 90 m half 90% 80% 2.46 cm 414 69.33%

9. O: 40 m half 80% 90% 1.97 cm 3930 87.54%

10. N: 54 m
O: 40 m half N: 90%

O: 80%
N: 80%
O: 90% 1.50 cm 2687 81.79%

11. N: 54 m
O: 40 m half N: 90%

O: 80%
N: 80%
O: 90% 1.50 cm 2711 78.22%

12. N: 54 m
O: 40 m full N: 90%

O: 80%
N: 80%
O: 90% 1.50 cm 2488 84.96%

13. N: 54 m
O: 40 m half N: 90%

O: 80%
N: 90%
O: 90% 1.50 cm 486 73.38%

14. N: 54 m
O: 40 m full N: 90%

O: 80%
N: 90%
O: 90% 1.50 cm 483 79.29%
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The best results were obtained for variant marked no. 9, for which the IoU value was
87.54%. For the rest of the variants, the results showed accuracies of 0.75. The lowest IoU
value was obtained for variant marked no. 6—68.64%. The rule that was noticed in the
case of the experiments for gates, that for point clouds generated on high settings, worse
values were obtained, did not occur in the case of traction poles. Here, higher accuracies
were obtained for three out of four variants on high settings.

Analyzing the accuracy results for the traction poles, it can also be noticed that for
variants where in addition to the nadir photos the oblique images were used, much better
results were obtained. Thus, based on these results, it can be concluded that for more
complex objects extending above the terrain, such as traction poles, it is appropriate to
include oblique photos when generating point clouds.

A similar summary to that for gates was presented for traction poles. The correct result
had an IoU of 0.94, where the differences in bounding boxes are almost invisible to the eye
(Figure 15). An example where part of the traction pole was probably not mapped to the
point cloud from the dense image matching resulted in an IoU of only 0.48 (Figure 16).
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5.3. General Considerations

For both types of analysed objects, no correlation or significant effect of forward and
side overlaps and other mission flight parameters (such as flight altitude) were observed.

As stated before, IoU values are usually expressed in percentages; the most used
threshold values are 50% and 75% [47]. However, such values are used as detection evalu-
ation metrics to quantify the performance of detection algorithms in different areas and
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fields. Thus, the question arises about what threshold to apply to the above method-
ology. Obviously, the training dataset obtained should automatically be as accurate as
possible. Therefore, to define an IoU threshold for individual objects, a more precise
evaluation would have to be carried out, aiming to indicate from which value the result
should still be manually checked and corrected. Such a study could be an extension of the
above experiments.

The overall conclusion is that it can be seen that the influence of mission flight type,
including image acquisition parameters and processing parameters, is significant to the
quality of point clouds.

An important achievement is the size of the training dataset. A summary of the in-
stances of objects in the images for all variants can be seen in the above tables (Tables 7 and 8).
A total of 35 objects (20 traction poles and 15 gates) were vectorized, and the final count of
the set of instances in the photos for some variants was even about three thousand. Thus, in
general, it is possible to use the methodology to automate the creation of training datasets
as much as possible.

Figures 17 and 18 show cases for the whole high-resolution images with ground-truth
annotations and the resulting bounding boxes obtained from the process.
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Figure 18. An example of comparing bounding boxes for traction poles obtained using automatic
generation from ground-truth for the entire image. From the top, IoU values: 0.9748, 0.9116, 0.9675,
0.7411, 0.8496.

6. Conclusions

Annotating the ground-truth data and gathering the training datasets have a crucial
relevance for training models, supervised object detectors, and deep learning approaches.
This is tedious, time-consuming, and labor-intensive work, resulting in a lack of ground-
truth datasets. The necessity to train models with a vast amount of independent annotated
data (usually on the order of tens of thousands) is still an open problem that limits the use
of the potential CNN carry. This is noticeable in many applications, and also for datasets to
train models to detect objects in UAV images.

Exploiting the potential of available deep learning methods for object detection is the
reason for developing the topic of automating the acquisition of training datasets. Thus,
the need to apply the proposed approach is apparent, and the above work highlights the
utility of automating this process as much as possible.

Adopting the strategy proposed in this paper makes data labeling easier. The method
makes it possible to create bounding boxes based on points indicating only the location of
the object, and thanks to the fact that it is common in photogrammetry to use overlaps in a
block of images, the object transfer is performed on a few or a dozen images representing
the object. Although the described approach does not exclude manual annotation at the
beginning of the process, it significantly reduces time. Moreover, there is nothing to
prevent the locations of existing objects from being used from already created databases,
which would overcome manual work. Open tools for manual annotation exist and are
quite widespread (for example, LabelMe), but preparing training datasets in this way is
very time-consuming.

The above method, or others described in Chapter 1 using semi-automation processes,
can help overcome the problem of acquiring training datasets. This process minimizes the
manual effort involved in generating ground truth and significantly supports and promotes
the training of deep learning algorithms.
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An important point to highlight is the number of training datasets created using the
above methodology. Using both vertical and oblique images, we obtain a dataset that
maps the same area and the same objects but from different perspectives. Therefore, by
vectorizing the object once on the orthophotomap, we obtain a collection consisting of a
larger number of images using the more significant methodology described above. For
example, for twenty traction poles for the variant numbered 9, for which the highest
accuracies were obtained, a total of 3930 instances were obtained in the images.

This approach, of course, could also be applied using an orthophotomap cut into
smaller tiles instead of images. However, the size of such a collection would be much
smaller than if all the images in the block were taken since each object would be imaged
only once. However, it is worth keeping in mind that with few changes in the code, this
method, after some adaptations, can also be applied for orthophotomaps, the use of which
has many advantages.

A particularly important issue in the context of the automatic creation of training
datasets is the accuracy of the input data. This approach should pay attention to the
accuracy of the point clouds included in the process, as it affects the resulting bounding
boxes, essentially the prepared training dataset.

However, it has been shown that even with the use of slightly noisy point clouds, it is
possible to achieve a reasonably accurate set, possibly requiring few manual corrections.
Thus, it can be concluded that this method can be used analogously to the labeling methods
mentioned above, where automatic data annotation is performed first, and then verification
and possible improvement are performed later. The lowest accuracies obtained on the test
dataset were about 70%, and for some variants, over 90%.

Based on the experiments, it can be said that the proposed approach is optimal in
terms of performance and processing speed. It provides a semi-automated way to achieve
consistent labels for all images in a block, reducing the effort of manually labeling each
object in the photos. This is accomplished by starting with labeling the objects once on the
orthophotos and then proceeding by clipping the point cloud to a fragment of the object of
interest and projecting the points belonging to the object onto the pixel coordinates of the
photo; the finished result is a bounding box surrounding the object. It is worth pointing
out again that the step related to the manual marking of the location of objects using an
orthophotomap is one of the options. We can start from terrain points, but extracted, for
example, from a database of topographic objects or using BIM data. Manual labeling of
bounding boxes on thousands or hundreds of thousands of images is much more time-
consuming. In addition, point clouds from image matching or orthophotos are products
often generated in the production process, which marks this strategy’s potential. Naturally,
the proposed methodology can also be adapted to other types of data (not only from
UAV). The approach could also use point clouds from dense matching of aerial images, or
point clouds acquired from laser scanning from different ceilings (both aerial and ground).
Admittedly, the methods used are not a discovery but simple calculations, but the added
value here is the ordering of strategy and accuracy analysis experiments.

In summarizing, based on the above results, it can be concluded that it is reasonable
to use the developed methodology to semi-automate the process of creating datasets for
training deep learning models for object detection in nadir and oblique images acquired
from UAVs.
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