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Abstract: The development of high nature value farmland (HNVf) can effectively improve the
problems of biodiversity reduction, non-point source pollution and carbon loss in intensive farmland.
To this end, we developed a set of general indicators based on Landsat 8 OLI imagery, including land
cover (LC), normalized difference vegetation index (NDVI), Shannon diversity (SH) and Simpson’s
index (SI). Combined with a Kohonen neural network (KNN), we assigned weights and developed
the first potential HNVf map of the Yellow River Delta in China. The results showed that the four
indicators were very effective for the expression of HNVf characteristics in the study area, and that
SH and SI, in particular, could reflect the potential characteristics of HNVf at the edge of intensive
farmland. LC, NDVI, SH and SI were weighted as 0.45, 0.25, 0.15 and 0.15, respectively. It was found
that the potential HNVf type 2 (i.e., low-intensity agriculture, and natural and structural elements
such as shrubs, woodlands and small rivers) in the study area was concentrated at the edges of
intensive farmland, the transition zones from farmland to rivers and the estuary wetland areas of
northern and eastern rivers. LC played a leading role in identifying HNVf. Based on six randomly
selected real-world verification data from Map World, it was found that the accuracy of the validation
set for HNVf type 2 was 83.33%, which exhibited the good development potential of HNVf in the
study area. This is the first potential HNVf type 2 map of the Yellow River Delta in China and
could provide a great deal of potential guidance for the development and protection of farmland
biodiversity and regional carbon sequestration.
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1. Introduction

High nature value farmland (HNVf) was proposed in the early 1990s as a new concept
for a low-intensity agricultural system centered on biodiversity conservation [1,2]. At
present, HNVf identification is widely carried out within the European Community (EC)
and three clear types of farmland have been formed [3,4]: HNVf type 1 is farmland with a
high proportion of semi-natural vegetation (i.e., shrubs, artificial linear forests, wetlands,
small rivers, ecological ditches, wasteland with herbaceous plants, etc.) [1]; HNVf type 2 is
farmland that contains natural and structural elements such as shrubs, woodlands, small
rivers, or is dominated by low-intensity agriculture [1,4]; and HNVf type 3 is farmland
that supports rare plant or animal populations [5]. The low-intensity properties of HNVf
are important for soil carbon sequestration, cropland landscape heterogeneity and a high
ecosystem carrying capacity.

Although HNVf has sustainable practical significance globally, current research on
HNVf identification is limited to the EC. This is because reporting the extent and distri-
bution of HNVf is mandatory for the European Union’s Rural Development Programme
(RDP) in all member states [6]. However, the most important bottleneck is that there is
not yet a complete set of quantitative reference indicators for the definition of HNVf. As a
result, reports on HNVf identification outside the EC have yet to emerge.

ISPRS Int. J. Geo-Inf. 2022, 11, 604. https://doi.org/10.3390/ijgi11120604 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11120604
https://doi.org/10.3390/ijgi11120604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi11120604
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11120604?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2022, 11, 604 2 of 18

Currently, the indicators for identifying HNVf mainly come from the CORINE Land
Cover (CLC) database and the Integrated Administration and Control System (IACS)
database, which are provided by the EC [7–9]. These databases contain land cover data
and high-precision farm information (farm type, livestock, crops, etc.). Based on these
databases, many scholars have developed terrain, soil quality and landscape indicators
that can accurately infer the location and type of HNVf. For example, a list of CLC classes
has been presented that could be used to identify HNVf [4]. Many scholars have also
used IACS and LPIS data to evaluate the identification of HNVf and the annual changes
in its range and distribution [10–12]. However, these databases have the shortcomings of
low sample coverage and high restricted access, making it difficult to popularize them for
use on a large scale. In addition, the high-resolution layer (HRL) small woody features
(SWF), a new CLMS product, provides information on similar structures, such as linear
hedges (https://land.copernicus.eu/, (accessed on 10 October 2022)). For example, the
high-spatial-resolution SWF grid-aggregation layers can identify meaningful small woody
features, especially in HNVf with obvious patches or linear features. However, these
indicators only provide partial regional data within the EC and are not helpful for HNVf
identification in other regions of the world.

In China, intensive farmland is being challenged by three key issues. The first issue
is the reduction in farmland biodiversity. At least 60% of China’s arable land (cultivable
non-agricultural land) is distributed in areas with a fragile ecological environment, which
are very difficult to develop [13]. Most farmers have a low awareness of biodiversity
conservation, and the over-exploitation of biological resources has led to its reduction and
disappearance. These problems can cause biological disasters, including crop diseases and
insect pests, and obviously also increase the ecological vulnerability of farmlands [14–16].

The second issue is the non-point source pollution of farmland. China has more
than 20 million hectares of contaminated land [17]. He et al. (2017) found numerous soil
pollution cases in China. This was mainly manifested in two aspects [18]: on the one
hand, agricultural chemical fertilizers were subjected to short-term heavy rainfall and then
overflow into water bodies, such as ditches, forming water bodies that were polluted with
nitrogen and phosphorus eutrophication; on the other hand, pesticides, herbicides and
some chemical fertilizers containing organophosphorus, organochlorine, microplastics and
heavy metals can also cause non-point source water pollution [19–22].

The third issue is farmland carbon loss. In China, traditional farmland faces the
challenge of carbon loss and human activities that lead to reductions in carbon storage
within soil ecosystems [23,24]. The direct impact of this is unreasonable land use, such
as deforestation, the drainage and agricultural use of natural wetlands, the conversion of
grassland into farmland and reductions in soil carbon sequestration capacity [25,26]. The
indirect impact is that human activities also change regional micro-climates. For example,
climate warming causes extreme weather events, such as storms and heavy precipitation,
which in turn cause carbon loss from farmland [27].

The development of HNVf is crucial to solving the above problems. In fact, much of
the farmland in China is characterized by HNVf (including abandoned farmland). Since
2000, China has carried out a series of ecological projects, such as the returning farmland to
lakes (RFL) campaign and the Grain for Green Program (GFGP). These measures to restore
ecological diversity are more stringent than HNVf [28–30]. However, there are currently no
standard HNVf indicators or datasets that are applicable to the Chinese region. Finding
quantitative indicators for high nature value (HNV) that are suitable for the characteristics
of Chinese farmland is very important for improving the above-mentioned problems of
farmland biodiversity decline, non-point source pollution and carbon loss.

The purpose of our study was to determine whether indicators were useful in identifying
potential characteristics of HNVf in China, such as land cover and landscape, which has never
been explored before. Given the importance of and urgency for developing HNVf in China
and the lack of regionally relevant datasets, in this study, we developed a set of minimally
generic indicators that could be used to identify potential HNVf in China. In fact, there is
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existing HNVf in the eastern part of the study area: the “Shandong Yellow River Delta National
Nature Reserve”, which was established in 1992 to protect the newborn wetland ecosystem
and rare and endangered birds (http://hhsjzzrbhq.dongying.gov.cn/, (accessed on 20 May
2022)). According to the definition of HNVf type 3 (i.e., farmland that supports rare plant or
animal populations), this nature reserve represents existing HNVf. However, we paid more
attention to potential HNVf type 2 because it has the greatest development potential and could
effectively improve the problems of reduced diversity, non-point source pollution and carbon
loss in traditional Chinese farmland. Therefore, this study aimed to (i) apply identification
indicators (i.e., land cover, normalized difference vegetation index, Shannon diversity, and
Simpson’s index) in the Yellow River Delta region, (ii) build a Kohonen neural network (KNN)
and develop high-resolution (30 m× 30 m) maps of potential HNVf type 2 and (iii) validate
and evaluate the accuracy of the developed HNVf result using real-life data from Map World.

2. Materials and Methods
2.1. Study Area

The study area was located in the Yellow River Delta, China (37◦40′ N–38◦70′ N,
118◦30′ E–119◦20′ E) (Figure 1), which is in the continental monsoon climate temperate
zone. According to public information from the Dongying statistical yearbook (http://www.
dongying.gov.cn, (accessed on 10 January 2022)), the average annual temperature is 14.5 ◦C, the
average annual precipitation is 628 mm and the annual average illumination is 2502.3 h. The ele-
vation of the study area was close to sea level. The parent material of the soil in the area is impact
loess. Intensive farmland is widely distributed along the river basin and the main crops include
wheat, rice and corn. In 2021, the Central Committee of the Communist Party of China and the
State Council issued the “Outline of Ecological Protection and High-Quality Development Plan
for the Yellow River Basin” (http://www.gov.cn/zhengce/202110/08/content_5641438.htm,
(accessed on 20 April 2022)), pointing out that it is necessary to restore the natural extension
trend of the Yellow River Delta coastline, strengthen the protection of biological species in salt
marshes, tidal flats and shallow estuarine wetlands, and explore the use of unconventional
water sources to replenish bird habitats. In particular, farmland in the Yellow River Delta
is facing challenges such as soil salinization and carbon loss. As a semi-natural agricultural
system involving low-density farming and diverse land cover types, HNVf plays a key role in
protecting regional biodiversity, restoring ecosystems and promoting sustainable agricultural
development. Semi-natural vegetation is widely distributed across the Yellow River due to
sedimentation in the Yellow River estuary and the serious salinization of the soil, so it is very
suitable for the growth of salt and alkali-tolerant plants. This area is also very suitable for the
development of HNVf, which plays an immeasurable positive role in promoting nitrogen and
carbon circulation and inhibiting non-point source pollution.
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2.2. Indicators
2.2.1. Land Cover Map

Land cover (LC) maps, as basic indicators to identify HNVf, play a crucial role in
identification accuracy. This is because land cover types are proxy indicators of farming
intensity [2,31]. In this study, we developed a land cover indicator with a resolution of
30 m, which was obtained using a Landsat 8 OLI image with a processing correction level
of L1TP (10 November 2020), and data from the United States Geological Survey (USGS)
server (https://earthexplorer.usgs.gov/, (accessed on 25 January 2022)). The OLI image
was calibrated using radiation correction (i.e., applying FLAASH settings) and atmospheric
correction (i.e., applying a FLAASH module) in ENVI 5.3 software (ESRI Inc., Redlands,
CA, USA). Then, in order to obtain the optimal land cover map, four models (i.e., K-
means, maximum likelihood, neural network, support vector machine) were selected for
supervised classification in ENVI 5.3 software. The LC types were classified into five classes
based on existing research [6]. The land cover map (30 m × 30 m) was finally obtained
(Figure 2), including the following five LC types: built-up area (1), intensive farmland
(2), woodland and grassland (3), water body (4) and semi-natural vegetation (5). Among
these land cover types, water bodies included artificial reservoirs, salt fields and foreshores,
while semi-natural vegetation mainly included shrubs, artificial linear forests, wetlands,
small rivers, ecological ditches, wasteland with herbaceous plants, etc.
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2.2.2. Vegetation Indicator

Vegetation cover is an essential element for HNVf mapping [32,33] that has been
applied at local scales [34]. We selected the normalized difference vegetation index (NDVI)
as a supplementary indicator to identify HNVf. Intensive farmland crops are harvested
in December in northern China, so most farmland is in a state of bare soil. At this time,
NDVI information mainly comes from woodland, bushes and wetland plants, effectively
avoiding confusion with the spectral information of crops. This indicator was calculated
based on the Landsat8 OLI image. The NDVI was obtained using the band calculation

https://earthexplorer.usgs.gov/
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(Equation (1)) [35] for the OLI image after atmospheric correction, with a resolution of 30 m
(Figure 3).

NDVI = (Band 5 − Band 4)/(Band 5 + Band 4) (1)
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2.2.3. Richness Indicator

Landscape indices express the socio-ecological dimension of systems; therefore, their
structures and compositions can be used to identify HNVf [31,36]. HNVf largely overlaps
with traditional agricultural landscapes, so landscape is also one of the essential charac-
teristics of HNVf. We selected the Shannon diversity (SH) and Simpson’s index (SI) as
indicators to characterize landscape heterogeneity, as they have been proven to be effective
in identifying HNVf information [37]. SH accurately expresses the measure of variability
(heterogeneity) in land cover within a small area and highlights the contribution formula
of rare objects to the overall information (Equation (2)) (Figure 4). SI can be used as a
comprehensive indicator to describe uniformity and richness, but is more inclined to the
expression of uniformity (Equation (3)) [38,39] (Figure 5). Our calculations of SH and SI
were implemented in Fragstats 4.2.1 software and we selected moving windows (neighbor-
hoods) with a square side length 100 m in the analysis parameters module. In order to stay
consistent with the value range of LC, the other indicators (i.e., NDVI, SH and SI) were
normalized from 1 to 5 using a grid calculator and were then divided into five grades (non
(1), low (2), moderate (3), high (4), and extremely high (5)) using the natural breakpoint
method in ArcGIS 10.6 software.

SH = −
s

∑
i=1

pi ln pi (2)

SI =
S

∑
I=1

P2
i (3)

where s is the total number of land cover types within the study area and pi is the proportion
of the i-th land cover type within the total area. When SH is equal to 0, it indicates that
there is a single land cover type within the region [39].
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In addition, in order to make the other factors consistent with LC, we normalized
NDVI, SH and SI levels from 1 to 5. Each indicator was divided into five levels, and the
higher the level, the higher the recognition potential for HNVf. The percentage of LC,
NDVI, SH and SI pixels in each of the five levels was calculated. The pixel ratios of NDVI,
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SH and SI in the five levels of LC (i.e., built-up areas, intensive farmland, woodland and
grassland, water bodies, and semi-natural vegetation) were also calculated. Furthermore,
the pixels of the different indicators at the five levels were calculated from the HNVf map
and the response relationships between HNVf and LC, NDVI, SH and SI were obtained
with statistical analysis.

2.2.4. Weight Determination Method

Kohonen neural networks (KNNs) are a self-organizing neural feature mapping model
that were first proposed in 1980 and are based on the research results from physiology
and brain science [40–43]. Nerve cells in the human brain are arranged in an orderly
way within a two-dimensional space and there is lateral interaction between nerve cells in
adjacent areas, which leads to the emergence of inter-cell competition. KNNs simulate these
characteristics and the working mechanism, classifying data based on a clustering analysis
algorithm [44–46]. In this study, we paid more attention to the importance contribution of
the four indicators in the clustering process. Then, the importance contribution of each
indicator was set as its weight, which was very effective for constructing the weights of the
identification indicators.

The steps of our KNN algorithm were as follows: (1) input the sample data into
the neural network and calculate the distance between the input node and the output
node; (2) obtain the winning neuron through a competition among the neurons in the
competition layer; (3) adjust the weights of the input data and repeatedly train the network
according to the above process until all samples have corresponding winning neurons and
the competition is over; (4) correlate all data according to the final weights and divide
them into different categories. In this study, a KNN was used to calculate the weights of
identification indicators to avoid the subjectivity of prior knowledge weighting and we
introduced a competition mechanism that could effectively improve the clustering accuracy.
The KNN model was developed using SPSS modeler 18.0 software (IBM Inc., Armonk,
NY, USA). Random points were generated within the study area, and the gradients of the
random points were set as 500, 1000, 2000, 4000, 6000, 8000 and 10,000. The corresponding
values of the LC, NDVI, SH and SI pixels were extracted using these random points, and
then the Kohonen model was constructed with four clusters.

2.2.5. Validation of HNVf Identification Results

So far, not many studies have verified or analyzed HNVf identification results, which
is due to the lack of real verification data. Therefore, it is difficult to obtain high-resolution
real-life images of HNVf recognition patches on a regional scale. Using real maps (such
as from Google Maps) has been proven to be very effective for verifying HNVf maps [7].
In this study, real-life data from Map World (https://www.tianditu.gov.cn/, (accessed on
11 September 2022)) and field surveys were used for validation purposes. Map World is a
comprehensive geographic information service website that was built by the National Ad-
ministration of Surveying, Mapping and Geoinformation, which provides 2.5 m resolution
satellite remote sensing images nationwide. We randomly selected six verification areas
within our HNVf map, compared the real map to the selected HNVf patches, and verified
whether the HNVf identification result was accurate.

3. Results
3.1. Supervised Classification of Land Cover Types

Compared to other models, the SVM had the highest classification accuracy (94.77%)
and Kappa coefficient (0.9027) (Table 1) and exhibited powerful performance for identi-
fication of land cover types. Furthermore, the classification accuracy for each LC type is
shown in Table 2. Water body and intensive farmland had the lower commission (1.11%
and 1.72%) and the highest user accuracy (98.89% and 98.28%) in comparison with other
land cover types.

https://www.tianditu.gov.cn/


ISPRS Int. J. Geo-Inf. 2022, 11, 604 8 of 18

Table 1. Classification accuracy of land cover types with different models.

Classification Method Overall Accuracy (Kappa Coefficient)

Maximum likelihood 82.49% (0.7987)
Neural network 87.26% (0.8495)
Support vector machine 94.77% (0.9027)
K-means 71.19% (0.5724)

Table 2. Accuracy evaluation of each land cover type in SVM model.

Accuracy
Evaluation

Intensive
Farmland

Woodland and
Grassland Built-Up Areas Semi-Natural

Vegetation Water Body Overall Accuracy
(Kappa Coefficient)

Commission 1.72 17.75 8.69 12.74 1.11
94.77%
(0.9027)

Omission 5.48 5.88 13.56 6.79 4.48
Producer
accuracy 94.52 94.12 86.44 93.21 95.52
User accuracy 98.28 82.25 91.31 87.26 98.89

3.2. Statistical Analysis

The percentage of LC, SH and SI pixels in levels 1 and 2 was more than 60%
(Figure 6a), which indicated that the classification could effectively eliminate non-HNVf
pixels (i.e., built-up areas and intensive farmland). However, NDVI pixels were distributed
above level 3, and the low-level vegetation images were very small. The pixel distributions
of SI and SH were similar and the pixel proportion of SI in levels 4 and 5 was higher
than that of the other factors (35.59%). In addition, the spatial correlation analysis of the
four factors (Figure 6b) showed that LC was negatively correlated with NDVI (−0.77), SH
(−0.67) and SI (−0.65). The positive correlation between SI and SH was high (0.89), and the
correlation between NDVI and SH (0.046) and NDVI and SI (0.039) was low.
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Figure 6. The classification results from the identification indicators: (a) the percentage of pixels in
LC, NDVI, SH and SI at the five levels; (b) the spatial correlation of the four factors; (c) the percentage
of pixels in NDVI, SH and SI at the five levels of LC (i.e., built-up areas (L1), intensive farmland (L2),
woodland and grassland (L3), water bodies (L4) and semi-natural vegetation (L5)).



ISPRS Int. J. Geo-Inf. 2022, 11, 604 9 of 18

On the whole, from L1 to L5 of the LC types, the proportions of the other factors
gradually decreased, which was due to the scarcer distribution of semi-natural vegetation
(L5) and small rivers (L4) (Figure 6c). Among them, SH and SI accounted for the highest
proportion in intensive farmland areas (L1), especially in level 4 (SHlc4 and SIlc4) pixels of
intensive farmland (L1) areas, where they accounted for 85.45% and 76.58% respectively,
and the fifth level (SHlc5 and SIlc5) pixels accounted for 76.88% and 71.03%, respectively.

3.3. Weight Calculation

Figure 7a shows the changes in each indicator’s weight under the different point
gradients. For example, the four-colored band widths became thinner from left to right
(i.e., the importance contribution value decreased) in P500. The four bands of the same
color in Figure 7a correspond to the LC, NDVI, SH and SI indicators. In other words, the
total importance of the four indicators in the KNN modelling results for P500 was 1 and the
importance contributions of LC, NDVI, SH and SI were 0.43, 0.29, 0.14 and 0.15, respectively.
When the number of random points was more than 4000, the weights of LC, NDVI, SH
and SI became stable. The importance contributions of LC and NDVI fluctuated around
0.45 and 0.25, respectively. The weight of LC was set as 0.45, which was similar to the
weight distribution results in other studies. For example, semi-natural habitat cover was
used as a direct indicator of HNVf and was set to the maximum weight (0.45) [4,47]. NDVI
could reflect certain characteristics well, such as hedgerows, grass slopes and tree lines,
within field boundaries, with a weight of 0.25. SH and SI were related to the high level of
semi-natural habitat and species diversity, and were as important as the characteristics of
field boundaries, with a weight of 0.15.
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3.4. HNVf Map

According to the weights of the indicators, a HNVf identification map with five
levels was obtained using weighted superposition. White and light green represented
non-agricultural areas (i.e., built-up areas) and intensive farmland areas, respectively, and
any green area (above level 3) can be considered to have the possibility of being HNVf. It
can be seen that with an increase in level, semi-natural habitat land cover also increased
(Figure 7b). SH and SI showed a downward trend from grade 3 to 5, and the scores of
these two indicators were highest in grade 3 (59.80% and 48.77%, respectively). NDVI
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accounted for the highest proportion of pixels in grade 4 (56.44%), while land cover was
the highest in grade 5 (53.48%), indicating that semi-natural vegetation LC played a key
characterization role for HNVf mapping. Based on the identified HNVf results (Figure 8),
farmland in grades 3 and 4 within the study area was mainly distributed in the edges and
transition zones of intensive farmland, and farmland in grade 5 was distributed around the
estuaries of rivers in the north and east.
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Figure 8. The spatial distribution of HNVf type 2 in the study area.

In the remote sensing image in Figure 9, the dark green area contains HNVf elements,
such as trees, shrubs, grassland and small rivers, while the light brown area mainly includes
intensive farmland, bare land, and the Yellow River. Among these verification regions, the
proportion of HNVf elements in the five regions was high (more than 70%) (Figure 9a,b,d–f),
indicating that these regions had great potential for HNVf. The proportion of HNVf elements
in Figure 9c was relatively low (about 50%). Very low proportions of HNVf elements (less
than 20%) did not exist in any of the verification regions and they all had grade 4 or 5 HNVf
characteristics. On the whole, the accuracy of the validation set conforming to the HNVf
type 2 was 83.33%.

In the validation areas, most of the was distributed along farmland edges (Figure 9c–e),
which could be identified as transitional landscapes between forests and farmland. These
landscapes included linear forests, grasslands, rivers and some intensive farmland, and
had obvious high-intensity HNVf type 2 characteristics. In Figure 9a,b, these areas were
identified as having a high proportion of natural vegetation landscapes, which included
forests, shrubs, grasslands and rivers. Only sporadic fields were distributed among these
exceptionally HNV areas, which exhibited an obvious potential for HNVf. The dominant
HNVf area within the study area was type 2 (i.e., at the edge of intensive farmland) and the
transitional landscape between forests and small rivers was distributed around almost all
cities in the region. The validation accuracy of the real Map World data was high, which
showed that the study area had great potential for HNVf. In addition, one region had a
low number of HNVf characteristics and was significantly affected by intensive farmland
(Figure 9c), and one region (Figure 9f) did not contain any intensive farmland, all of which
belonged to high potential HNVf. However, this region belongs to the Yellow River Delta
Nature Reserve (i.e., HNVf type 3), which was confused with HNVf type 2 in this study.
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natural vegetation; (c1–2, d1–2 and e1–2) potential HNVf area in farmland edges; (f1–2) extremely
high HNVf area.

In addition, we conducted a field survey based on potential HNVf patches (Figure 10).
Figure 10a shows that the high potential HNVf feature regions did contain linear forests,
shrubs, grasslands and other HNVf feature elements. These HNVf patches exhibited
significant differences with intensive farmland (Figure 10b). Field research is a reliable
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verification method, but it requires high human and financial costs, so it is recommended
as a supplementary way to accurately identify HNVf patches based on verification results
of real-life data from high-resolution remote sensing images.
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4. Discussion
4.1. Potential Effect of Identification Indicators

Results of the SVM were similar with other studies for the classification of land cover
types [48,49]. The possible reason for the high accuracy of water body identification was the
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small area ratio for this land cover type in the study region, and there were fewer confusion
patches of wetland waters in the dry season. Moreover, the reduced vegetation cover
in winter may be a cause of the low identification accuracy of woodland and grassland.
This is because many plants in northern China are withered in the winter, resulting in
insufficient vegetation information. However, this is why vegetation information regarding
HNVf for some land covers, such as woodland and shrubs, can be well preserved. In short,
the classification accuracy of the SVM model for the land cover map could satisfactorily
identify HNVf features.

The results of pixel distributions of all indicators indicated that SH and SI were very
effective for the expression of potential HNVf characteristics at intensive farmland edge
and transition zones. The proportion of NDVI (NDVIlc1–NDVIlc5) in the woodland and
grassland (L3) LC was very high, which further demonstrated that the HNVf feature
information from trees and shrubs was very detailed when using NDVI during the winter.
The proportion of NDVI, SH and SI in the woodland and grassland, water bodies and semi-
natural vegetation (i.e., L3, L4, and L5) LC types were low because the number of patches
of these three LC types was small, meaning the number of pixels extracted from the other
factors was also small. On the whole, these indicators were effective for the representation
of farmland edges and transition zones and had great potential for identifying HNVf type
2 in the study area.

4.2. Distribution of HNVf

We found that most of the nature reserves overlapped with high-intensity HNVf
(Figure 9f). That is, there was some confusion between the HNVf type 2 identified in this
study and the nature reserves (HNVf type 3). This was due to a large part of the nature
reserve being defined as non-cultivated land (i.e., large areas of natural forest, wetlands
and habitats for rare species). However, it also provided a new idea for identifying HNVf
type 3 regions. At present, there is no special research to identify HNVf type 3, which
mostly comprises rare animal and plant habitats, and it is necessary to accurately identify
these areas in combination with the remarkable living habits of the animals and plants.
However, these living habits were difficult to quantify. Based on the identification results
for HNVf type 2, it could be possible to accurately identify the habitat range of rare animals
and plants using feature extraction and feature quantification. For example, many studies
have added biological, environmental, and agricultural data to HNVf maps, which could
be regarded as “the definition of HNVf” [31,50,51].

The selected identification indicators for HNVf in this study were basically consistent
with those in previous studies, and many scholars had introduced many innovative indica-
tors to identify the characteristics suitable for their own countries or research areas. Our
selected indicators reflected the principle of easy access and strong representativeness, in
order to make up for the gap in HNVf research in China. Much research has focused on the
identification of HNVf type 2 because it is more difficult to identify accurately. Actually,
HNVf type 2 is more of a “transition” between HNVf type 1 and HNVf type 3. HNVf
type 1 comprises semi-natural vegetation that is easy to identify, and many scholars have
used semi-natural vegetation as an important basis for HNVf identification [6,7]. In fact,
semi-natural vegetation is also one of the main features of HNVf and is an important
indicator of whether patches have the potential of HNVf type 1. However, HNVf type 3 is
difficult to quantify [52]. For example, due to the lack of indicators that correspond to HNVf
type 3, the elements of HNV type 3 (such as breeding areas for geese and swans) have
been added to HNVf maps in combination with NPWS priority agricultural environment
areas (priority areas are based on the species and habitats in agricultural areas that have
high natural protection value, which are beyond designated special protection areas) so
as to obtain optimal estimations for the range and distribution of HNVf [6]. In fact, this
overlapping phenomenon between different types of HNVf can be modeled using higher
resolution data to distinguish HNVf type 2 and HNVf type 3.
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4.3. Uncertainty of HNVf Identification

The uncertainty of multiple indicators is a key reason for confusion in HNVf maps,
so the uncertainty caused by indicators should be considered in the interpretation of
results. In this study, although the verification accuracy of the identification result was
high, it is worth noting that there could still be some unidentified HNVf regions in the
non-HNVf areas. Conversely, there could be some unidentified non-HNVf regions in the
HNVf areas. This identification method was based on multi-source indicators, so there was
inevitably some uncertainty related to the HNVf map, especially in terms of the scale effects
of the indicators. For the same region, the spatial resolution of the indices significantly
affected the feature responses of HNVf elements. This has also been reflected in some
other studies [6,53], so the uncertainty of HNVf maps may come from the availability
of input indicators with different spatial resolutions [31]. If the spatial resolution of the
indicator is improved, then the identification accuracy may be improved; for example, if
the discrimination of semi-natural vegetation is improved, then the identification accuracy
for hedgerows and woodland could be higher. In addition, improved spatial resolutions
for habitat mapping (e.g., high-resolution remote sensing) are highly likely to affect the
HNVf output accuracy [6]. However, high-spatial-resolution indicators are currently very
difficult to obtain. There has been no research into the identification of HNVf using
different spatial resolutions, and we hope to discuss this in detail in subsequent studies.
Moreover, the practicability and effectiveness of high-spatial-resolution indicators that
can accurately distinguish between HNVf type 2 and HNVf type 3 need to be evaluated.
Some characteristics of rare animal habitats in HNVf type 3 areas may be identified using
ultra-high-resolution images from an unstaffed aerial vehicle (UAV).

Spatial resolution significantly affected the uncertainty of HNVf identification results.
The uncertainty of identification results caused by the low spatial resolution of land cover
has become a widespread consensus [31]. Most methods are based on land cover products,
and the resolution of these products is often too low to fully determine the finer landscape
features that may contribute to overall biodiversity [37]. At present, land cover maps with
resolutions from 1 km to 100 m are used to identify HNVf (Table 3). It has been found that
the higher the spatial resolution of a land cover map, the more accurate the identification
results. For example, the third type of HNVf can be better identified using 100 m resolution
images of farmland (non-irrigation arable crops) [54]. Single pixel coverage areas of HNVf
that are identified by low resolution indices are large, so the expression of HNVf type
2 in transition zones is not effective. The possibility of mixing pixels from intensive
farmland is higher. Although the recognition accuracy of high-resolution indices may be
improved, it is difficult to obtain high-resolution verification images. UAV aerial images
may be an effective verification method. In addition, this study proposes a set of minimum
common indicators for identifying high-potential HNVf in plain areas. In order to achieve
accurate identification of HNVf in different regions, the terrain, soil, climate, biological
species and other elements need to be considered. For example, in central and western
China, topographic relief and differences of climatic conditions caused by vegetation cover
will significantly affect the distribution of HNVf, and the impact of these factors should
be considered.

Specifically, we believe that HNVf results from the same region that are identified
using different spatial resolution indicators may demonstrate a spatial drift characteristic.
HNVf results identified using indicators with different resolutions in the same region may
move within superposition space (i.e., demonstrate a drift phenomenon). In other words,
assuming that the distribution of HNVf within the same region is highly homogenous,
the differences between HNVf results identified using high-resolution and low-resolution
indicators would be relatively small. The distribution of HNVf in high-resolution and
low-resolution results can be approximately regarded as inclusion superposition. On the
contrary, if the heterogeneity is very high, the difference between HNVf results identi-
fied using high-resolution and low-resolution indicators would increase sharply. Then,
the identification results for HNVf from high-resolution indicators may appear in the
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non-agricultural regions of identification results from low-resolution indicators, or the
HNVf results identified using low-resolution indicators may appear in the non-agricultural
region of the identification result with the high-resolution indicator. This could lead to
remarkable spatial drift characteristics. Therefore, exploring the scale effect of different
spatial-resolution indicators within the same region could help to develop more accurate
HNVf maps.

Table 3. Spatial resolution of land cover maps for HNVf identification.

Study Area Resolution Land Cover Types HNVf Identification Result Reference

Ireland 2 km × 2 km Beach, water, pasture,
arable land, shrubs

The most comprehensive method for
identifying HNVf. [6]

Italy 50 m × 50 m

Urban areas, arable land,
permanent crops, pastures and
heterogeneous agricultural areas,
forests, semi-natural areas,
wetlands and water bodies

Compared to traditional land cover
maps, agricultural statistics improved
the identification results for HNVf.

[7]

Estonia 1 k m × 1 km Inland plots, coastline intersection
or contact plots, urban areas

The distribution of exceptional HNV,
median HNV and relatively low
nature value in 1 km squares
was identified.

[51]

Italy 100 m × 100 m Farmland, non-irrigation
arable crops

A potential method to better identify
HNVf type 3. [54]

Wales 1 km × 1 km
Grassland, arable and
horticultural land, coniferous
woodland, urban areas

HNVf type 1 was identified using
semi-natural vegetation. [55]

French 1 km × 1 km Semi-natural elements, urban
areas, agricultural areas

Indicators from the HNV, HANPP
framework and IC/ha were
complementary to each other.

[56]

This is the first HNVf map of the Yellow River Delta in China to identify the possible
distribution of HNVf based on objective indicators. However, in order to achieve an
accurate identification of HNVf in different regions of China, the terrain, soil, climate,
biological species and other indicators need to be further considered. For example, in
central and western China, topographic relief and climatic conditions caused by vegetation
cover could significantly affect the distribution of HNVf, so the impact of these factors
should be considered. We believe that when identifying HNVf in other regions of China,
considering indicators for the regional characteristics on the basis of the indicators used in
this study could help to identify HNVf more accurately. Although there are some confusions
between HNVf type 2 and HNVf type 3 on our map, it could still provide a great deal of
potential guidance for the development and protection of farmland biodiversity and carbon
sequestration in regional HNVf areas in China. In future research, we aim to further explore
the scale effects of indicators and quantify the spatial drift characteristics of HNVf maps
based on multi-source indicators at different scales to achieve more accurate evaluations.

5. Conclusions

In this paper, we developed LC, NDVI, SH and SI indicators to identify the first
potential HNVf type 2 map of the Yellow River Delta, China. The characteristics of HNVf
type 2 in the study area were concentrated around intensive farmland and transition zones
to rivers. These indicators demonstrated immeasurable potential for identifying HNVf
type 2 in the study area; in particular, SH and SI were very effective for the expression of
potential HNVf characteristics at the edges and transition zones of intensive farmland. In
addition, using Map World images effectively verified our HNVf map. Furthermore, the
spatial resolution of the identification indicators significantly affected the spatial responses
of HNVf characteristics. In the future, spatial changes in the identification indicators under
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different spatial resolutions should be compared to overcome the spatial drift phenomenon
of HNVf maps.
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