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Abstract: Timely mapping of flooded areas is critical to several emergency management tasks
including response and recovery activities. In fact, flood crisis maps embed key information for an
effective response to the natural disaster by delineating its spatial extent and impact. Crisis mapping
is usually carried out by leveraging data provided by satellite or airborne optical and radar sensors.
However, the processing of these kinds of data demands experienced visual interpretation in order
to achieve reliable results. Furthermore, the availability of in situ observations is crucial for the
production and validation of crisis maps. In this context, a frontier challenge consists in the use
of Volunteered Geographic Information (VGI) as a complementary in situ data source. This paper
proposes a procedure for flood mapping that integrates VGI and optical satellite imagery while
requiring limited user intervention. The procedure relies on the classification of multispectral images
by exploiting VGI for the semi-automatic selection of training samples. The workflow has been
tested with photographs and videos shared on social media (Twitter, Flickr, and YouTube) during two
flood events and classification consistency with reference products shows promising results (with
Overall Accuracy ranging from 87% to 93%). Considering the limitations of social media-sourced
photos, the use of QField is proposed as a dedicated application to collect metadata needed for the
image classification. The research results show that the integration of high-quality VGI data and
semi-automatic data processing can be beneficial for crisis map production and validation, supporting
crisis management with up-to-date maps.

Keywords: crisis map; flood detection; VGI; social media; optical satellite imagery; semi-automatic
processing; QField

1. Introduction
1.1. Background

Flood events yearly affect millions of people worldwide, with severe impacts on
human life, infrastructures, and economies [1]. Flood management requires timely and
reliable information on the spatial extent, impact, and evolution of the event. In this
context, the production of crisis maps is pivotal to an insightful understanding of the crisis
event [2]. In fact, crisis maps provide crucial information to crisis managers by outlining
the spatial extent of the affected area and its temporal evolution (delineation map) as well
as the impact of the crisis event in terms of damage grade (grading map) [3]. This type of
information is disseminated by dedicated research projects and operational services, such
as the Copernicus Emergency Management Service (EMS), which provide geo-information
in support to response, recovery, and disaster risk reduction activities [4,5].

Flood crisis mapping relies on data provided by a wide range of space and airborne
instruments as well as ground sensors, each one providing different spatial and radio-
metric resolution, timeliness, and performance [6,7]. Given the quick dynamics and the
adverse atmospheric conditions characterizing the occurrence of flood events, the choice
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of the platform and sensor to be employed for flood detection and mapping is crucial for
achieving a truthful and accurate result. In this framework, satellite and airborne Synthetic-
Aperture Radar (SAR) imagery is largely leveraged for rapid mapping, given the ability of
microwave signals to penetrate clouds and light rain and therefore acquire data regardless
of the illumination and atmospheric conditions [8]. Nonetheless, the double-bounce and
shadow effects due to the presence of buildings and the frequently inadequate spatial
resolution of radar sensors are responsible for their reduced performance in the detection
of flood water in highly urbanized areas [8,9]. In addition, most SAR image-processing
techniques, including visual interpretation, image histogram thresholding, classification,
and change detection algorithms, require expert knowledge in SAR imagery manipulation.
For all these reasons, post-processing of images based on visual interpretation is critical
for improving flood mapping accuracy [7], while it is difficult to achieve fully automatic
detection approaches.

Based on the above considerations, optical sensors, provided that cloud free images
are available, may be employed in conjunction with or in place of radar sensors to generate
flood delineation maps [10]. In addition, optical sensors are the main source of information
for the production of grading maps, since the visual interpretation of optical imagery is
crucial to perform damage grade estimation [2]. Furthermore, in case of rapidly vanishing
cloud cover over the flooded areas, optical multispectral imagery may be useful for map-
ping the inundation extent with a more straightforward processing workflow. In this case,
water detection is carried out by taking advantage of supervised classification algorithms
as well as water-relevant spectral indexes, namely the Normalized Difference Water Index
(NDWI), Red and Short-Wave Infra-Red (RSWIR), and Green and Short-Wave Infra-Red
(GSWIR) [11,12].

Despite the advantages of optical imagery processing, in situ observations remain es-
sential for collecting suitable training samples as well as validating the resulting delineation
map with ground truth. On-ground observations provide detailed data which could not be
retrieved from traditional data sources such as satellite and airborne sensors. However, the
collection of this kind of information may be time- and resource-demanding while possibly
not being adequate to achieve sufficient space-time coverage. In recent years, Volunteered
Geographic Information (VGI) has emerged in scientific applications for crisis mapping [13].
Social media, user-generated content, and crowdsourced georeferenced data have proved to
be valuable data sources for all the activities connected with crisis management—including
crisis mapping—as they provide space-time resolved information coming directly from the
affected areas with unequalled timeliness and availability. Nevertheless, problems related
to the large number of data, data quality, georeferencing, and bias toward severe events
raise questions about the reliability of this kind of information [14].

The integration of VGI with more traditional data sources for flood mapping has been
tackled in the literature. In [15] Landsat data, the Digital Terrain Model (DTM) and river
gauge data were used to derive a statistical model for flooded area probability. In this
study, the integration of VGI, including photos, videos, and Google news, into the model
significantly improved the result. The study presented in [16] proposed the use of accurate
LiDAR (Light Detection and Ranging) derived DEM together with VGI retrieved from the
social platform Flickr to estimate the inundation extent and depth. Similar approaches were
proposed in [17], with the integration of social media posts with DTM to obtain an estimate
of the water surface extent across the flooded area, in [18] with the use of water gauge
measurements, DTM, and tweets for producing a flood possibility map, and in [19] which
tested the integration of satellite imagery, Flickr posts, and topographic data to derive a
Bayesian statistical model of the flood extent.

More recently, several machine and deep learning techniques have been tested aiming
at extracting relevant information from social media platforms as well as integrating
heterogeneous data for the production of flood delineation maps. In [20] a pre-trained
convolutional neural network was employed to extract relevant images from Twitter with
the aim of generating a map of the estimated flood extent and severity. In [21] remote
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sensing data and the textual and spatial information extracted from Twitter posts were used
to construct a flooded area measurement proxy, exploiting a trained model. A deep neural
network approach was proposed in [22] to detect submerged stop signs in photos taken
from flooded roads, in order to estimate floodwater depth. In [23] insights were provided
into the use of Twitter posts and images as complementary data to remote sensing imagery,
using state-of-the-art deep learning methods to perform data fusion. This study proved
that social media posts may support the photointerpretation and processing of satellite
imagery, also providing additional information, including local emergency situations,
disaster impact, and damage reports.

1.2. Problem Definition

Taking into account the literature summarized in the previous Section, the purpose
of the present study is to investigate the use of optical multispectral satellite imagery and
VGI in order to produce flood delineation maps through a semi-automatic procedure. The
proposed workflow takes advantage of geo-located photographs collected by volunteers to
build floodwater training samples to be used for satellite imagery classification.

Training samples are selected by leveraging the technical parameters of the camera
lens used to take the photographs and few additional information specified by the volun-
teer (see Figure 1). Specifically, the parameters needed to define the Regions of Interest
(ROIs)—defining the training sample geometry—include the position of the point where
the photograph is taken, the camera orientation with respect to the North direction, some
technical parameters of the camera lens, and the minimum (dmin) and maximum (dmax)
distance of the flooded area from the user position.
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Figure 1. Definition of a single ROI for floodwater training sample construction starting from the
position where the photograph is taken, the view direction, the view angle, and flooding minimum
and maximum distance.

The technical parameters needed to calculate the view angle (α) according to Equation (1)
are the focal length ( f ) and the sensor horizontal dimension (l):

α = 2arctan
(

l
2 f

)
. (1)

The procedure was tested on two case studies, namely the Southern United Kingdom
(UK) flood event (February 2014) and the Hurricane Florence-induced flood on the United
States (US) East Coast (September 2018). The workflow for the ROI construction was tested
by exploiting photographs and videos shared on social media during the flood occurrence.
Experiments were run using posts extracted from Flickr, Twitter, and YouTube—three social
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media platforms dedicated to the sharing of photographs and videos. Since the posts were
not directly shared to contribute to the crisis mapping, a time-consuming pre-processing
step was carried out with the aim of extracting only relevant posts as well as retrieving
the missing geo-locations, orientation, and technical parameters of the camera lens. The
minimum and maximum distances of the flooding were defined with the support of a base
map in a Geographic Information System (GIS) environment.

This pre-processing stage may be significantly reduced provided that the photographs
are collected by volunteers following well-defined instructions. For this reason, in this
paper we propose a collaborative collection of training samples with the use of a dedicated
mobile app allowing for the straightforward collection and sharing of geo-referenced data.
Several mobile apps and software frameworks are available to perform data collection in
the field. In this study, the possible implementation of the crowdsourcing activity by means
of QField was investigated. QField is a user-friendly free and open-source application
designed to collect geospatial data on the field and easily communicate with QGIS.

The next Sections of this paper are structured as follows. In Section 2 the case studies
are presented, providing insights into the methods employed for the data processing and
the achieved results. In Section 3 the prototype implementation of the proposed procedure
with QField is described. Finally, in Section 4 the conclusions and future directions of this
work are reported.

2. Case Studies: Production of Delineation Maps for Two Flood Events
2.1. Study Areas Definition

As explained in Section 1.2, the procedure proposed in this work was tested on two
case studies, namely two past flood events induced by quite different meteorological and
atmospheric conditions.

The first case study focuses on the UK floods that occurred between December 2013
and February 2014. Floods were caused by a protracted sequence of Atlantic depressions
resulting in a series of intense storms, an extreme storm surge, and heavy and persistent
rainfall. As a result, January 2014 was the rainiest (January) month since 1766 [24]. The
most critical floodings were experienced in early February 2014 across Southern England,
especially along the River Severn (between Worcester and Gloucester) and the River
Thames (Oxfordshire, Berkshire, and Surrey). Severe and persistent flooding involved
the Somerset Levels (including the urban centre of Bridgwater), which lies entirely below
sea level [24].

The second case study regards the impact of Hurricane Florence on the US East
Coast in September 2018. Florence made landfall as Category 1 hurricane—according to
the Saffir–Simpson scale [25,26]—on 14 September at 11:15 Coordinated Universal Time
(UTC), inducing strong wind gusts as well as widespread flooding across the North and
South Carolinas owing to the consequent storm surge and intense rainfall [27]. Total
rainfall amounts reached a peak value of 913 mm in Elizabethtown (North Carolina) and
the storm surge height exceeded 3 m above ground level in the Wilmington area (North
Carolina) [27].

The choice of the study areas was essentially led by the availability of cloud-free
optical satellite imagery and relevant posts for the construction of training samples, as will
be discussed in the following. Accordingly, the former case study focused on the urban
areas of Bridgwater (Somerset, UK) and Worcester (Worcestershire, UK) (see Figure 2a),
whereas for the latter case study the cities of Lumberton and Wilmington (North Carolina,
US) were selected (see Figure 2b).

2.2. Dataset Description

The dataset used for flood mapping consists of a collection of social media posts, a
single cloud-free satellite acquisition for each study area, and reference flood maps to assess
classification quality as described in the following sub-Sections.
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2.2.1. Social Media Posts

Social media posts were extracted from the platforms Flickr (https://www.flickr.com/,
accessed on 1 October 2022), Twitter (https://twitter.com/, accessed on 1 October 2022),
and YouTube (https://www.youtube.com/, accessed on 1 October 2022) within the E2mC
(Evolution of Emergency Copernicus Service) project [28]. Data pre-processing was per-
formed in the frame of E2mC by applying semantic, space-time, and image-analysis
algorithms to extract useful information for crisis mapping. Specifically, missing post-
geo-locations were assigned with the CIME algorithm by analysing the post itself and its
content (including comments, hashtags, likes, and shares) [29]. Moreover, an automatic
relevance post filtering was performed aiming to discard duplicates and retain only images
with relevant content [30].

For the UK case study, the geo-localization was reconstructed for 513 of the initial
849 posts shared across the UK between 10 and 11 February 2014. However, only the posts
shared within the two study areas and containing relevant photographs for flood detection
with accurate geo-localization were considered, resulting in a total number of 13 Flickr
posts. The spatial distribution of the posts used to build the training samples for the UK case
study is reported in Figure 3. As explained in Section 2.2.2, the two study areas fall within
the same (Landsat-7) satellite image; therefore, all posts were used to classify a single image.
Similarly, for the US case study only a small number of posts could be employed. From the
initial dataset of 5304 posts distributed across the US, only 695 georeferenced posts were
labelled as relevant. Considering only the posts with reliable geo-localization shared within
the study areas, a total number of 11 Tweets shared between 14 and 17 September 2018 were
used for the area of Wilmington, and 13 frames—extracted from six YouTube videos shared
between 18 and 20 September 2018—for the area of Lumberton. The spatial distribution

https://www.flickr.com/
https://twitter.com/
https://www.youtube.com/
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of the relevant posts employed to create the training samples are represented in Figure 4
(Lumberton area) and Figure 5 (Wilmington area).
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Despite the initial number of social media data being quite large, only a limited number
of posts could be exploited for the reconstruction of the training samples, after filtering out
posts not relevant or without good geo-location. This limitation might affect the quality of
the obtained flood delineation maps. For this reason, in Section 3, the use of a dedicated
application to acquire VGI is suggested.
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2.2.2. Satellite Imagery

Satellite images were retrieved from the GloVis (Global Visualization Viewer) (https:
//glovis.usgs.gov/, accessed on 1 October 2022). Satellite missions and single acquisitions
were selected by considering social media data availability and cloud cover percentage.
Specifically, the acquisition date of satellite images should be as close as possible to that
of social media posts. Moreover, cloud coverage should be as limited as possible (<10%).
Given these restrictions, a single Landsat-7 image acquired on 16 February 2014 was used
for Bridgwater and Worcester (UK). Two Sentinel-2 images acquired on 18 September 2019
were selected for Wilmington and Lumberton (US). The datasets used to produce flood
delineation maps for each study area are summarized in Table 1.

Table 1. Datasets used to produce the flood delineation map for each study area.

Study Area
Social Media Posts Satellite Images

Number of
Posts Dates Satellite Acquisition Date

Bridgwater/
Worcester (UK) 1 13 (Flickr) 10–11 February

2014 Landsat-7 16 February 2014

Wilmington (US) 11 (Twitter) 14–17 September
2018 Sentinel-2 18 September 2018

Lumberton (US) 6 (YouTube) 18–20 September
2018 Sentinel-2 18 September 2018

1 A single satellite imagery and training set was used for the study areas of the UK.

2.2.3. Reference Flood Maps

Additional data were collected and used to check the quality of the final maps for
each case study. A thorough accuracy assessment of crisis maps should be carried out
with up-to-date data acquired on the field that can be considered a good approximation
of the ground truth. Social media-sourced photographs could have also been used for the
validation process. However, in this work the limited number of available relevant posts
was solely used to train the classifier and produce the delineation maps.

For this reason, reference datasets had to be collected to perform what can be con-
sidered a consistency assessment of the obtained flood maps with respect to reference

https://glovis.usgs.gov/
https://glovis.usgs.gov/
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products. A remark is in order: using reference datasets for the result assessment does not
strictly amount to an accuracy evaluation [31]. However, for the purposes of checking the
flood maps obtained by the proposed procedure, the reference datasets can be considered
a proxy of the ground truth, thereby allowing one to define accuracy measures from the
confusion matrix.

To guarantee a proper quality assessment, the reference map should meet two con-
ditions: (i) it should be as close as possible in time to the map being tested; (ii) it should
also contain more detailed and, possibly, more accurate information about the flood ex-
tent. Given these conditions, reference maps obtained from radar satellite imagery were
collected. The reference datasets are summarized in Table 2.

Table 2. Datasets used to inter-compare the resulting maps for each study area.

Study Area Provider Source Date

Bridgwater
(UK) UK Environment Agency Radar image 16 February 2014

Worcester
(UK) UK Environment Agency Radar image 11 February 2014

Wilmington (US) 1 - - -

Lumberton
(US) HASARD Sentinel-1 images

Pre-event:
7 September 2018

Post-event:
19 September 2018

1 Consistency was not evaluated for the flood map of Wilmington. Indeed, the social media posts available for
this study area did not allow us to reconstruct reliable training samples (which resulted in a misclassification of
the flooded areas). This issue will be further explained in the following Sections.

For the UK case studies, maps were extracted from the Historic Flood Map of the UK
Environment Agency [32]. For the study areas of Bridgwater and Worcester, radar images
refer to 16 and 11 February 2014, respectively.

For the US case studies, the map inter-comparison was performed only for the Lumber-
ton study area, for reasons which will be explained in Section 2.4. In this case, the reference
map was retrieved through the HASARD service of the European Space Agency (ESA) [33],
which provides flood maps by applying a change detection algorithm on radar image pairs.
For the case study, a pre-event radar image of 7 September 2018 and a post-event radar
image of 19 September 2018 were selected. Accordingly, the reference map shows the flood
extent of 19 September 2018.

2.3. Data Processing

With the datasets described in the previous Section, flood delineation maps were pro-
duced for each case study and study area. In the following sub-Sections, the methodology
exploited to build the training samples, to process and classify the satellite images, and to
assess the classification consistency with respect to the reference products will be presented.
The workflow is summarized in Figure 6.

2.3.1. Reconstruction of the Training Samples

The reconstruction of the training samples was carried out by exploiting as VGI the
posts retrieved from social media. The parameters needed to define a single ROI were de-
duced a posteriori, since the posts were not explicitly shared to be used for this application.

Specifically, the user position was ascertained from the post geographic coordinates;
however it was further improved by identifying recognizable elements in the photographs
(e.g., a church, a restaurant, a crossroad) and using Google Street View to retrieve the corre-
sponding geo-location. The camera orientation was deduced using the same methodology.
The minimum and maximum distance of the flooded area from the user were computed in
QGIS with a visual interpretation of the satellite image. Finally, the camera lens technical
parameters used to compute the view angle amplitude were only available within the



ISPRS Int. J. Geo-Inf. 2022, 11, 611 9 of 20

EXIF file of the Flickr posts. For the Twitter and YouTube posts, the characteristics of
an iPhone 6—namely 4.15 mm for the focal length and 4.8 mm × 3.6 mm for the sensor
dimensions—were chosen to compute the view angle.
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Two examples of ROIs constructed starting from relevant posts are shown in Figure 7.
Posts are extracted from Flickr and YouTube and refer to the Worcester and Lumberton
case studies, respectively.
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Figure 7. Examples of posts retrieved from Flickr and YouTube and used to construct the training
samples. For the Flickr post, the metadata of the device used to take the picture is also shown.

2.3.2. Satellite Images Processing and Classification

In order to perform satellite image classification, a pre-processing stage needs to be
carried out to convert band pixels to their real reflectance values. Specific processing for
each satellite imagery was performed as described below.

Landsat-7: the Level 1GT product used in this study provides images with radiometric,
geometric, and precision corrections. The Level-1 image is presented in Digital Numbers
(DNs) units, which can be easily rescaled to Top of Atmosphere (ToA) reflectance. With
an atmospheric correction algorithm, surface reflectance values can be derived. Such pre-
processing was carried out through the Semi-Automatic Classification Plugin for QGIS [34].



ISPRS Int. J. Geo-Inf. 2022, 11, 611 10 of 20

A further correction was needed to fill data gaps in the Landsat-7 acquisition due to the scan
line corrector failure that occurred in June 2003 [35]. For this purpose, the Geospatial Data
Abstraction Library (GDAL) tool Fill nodata, available in QGIS, was exploited to fill missing
values through the interpolation of neighbouring pixel values [36]. This manipulation
might slightly affect the result reliability; however, no other optical and free image with the
characteristics reported in Section 2.2.2 was available for this case study.

Sentinel-2: the Level 1C imagery used in this study is ortho-corrected and with pixel
bands provided in ToA reflectance. The atmospheric correction needs to be performed to
derive surface reflectance values. As for Landsat-7, pre-processing was performed in QGIS
with the Semi-Automatic Classification Plugin.

With the pre-processed satellite images, the NDWI index was computed; it can be
used to effectively distinguish water bodies from vegetation and urban areas. NDWI is
defined as [37,38]:

NDWI =
ρG − ρNIR
ρG + ρNIR

, (2)

where ρG and ρNIR are the true reflectance values in the green and Near InfraRed (NIR)
bands, respectively. Band 2 of Landsat-7 and band 3 of Sentinel-2 were used to compute ρG,
band 4 of Landsat-7 and band 8 of Sentinel-2 for ρNIR.

A supervised, physically based classification was carried out using training areas
defined and digitized in QGIS with the information provided by social media posts. The
classifier adopted for this work was the Spectral Angle Mapper (SAM) algorithm, which
classifies each pixel based on the angular distance of its spectral signature with respect
to a reference spectral signature [39]. SAM was chosen for several reasons. Firstly, it is a
fast and relatively robust algorithm. It is not sensitive to illumination differences due to
topography effects and light conditions. Secondly, it can be easily exploited to perform
single-class classifications as in the case of this work, provided that a proper threshold
angular distance is defined. In this case, the best angular threshold was set case by case
by recursively comparing the classification result with the NDWI map and based on a
visual interpretation of the satellite image. SAM classification was carried out through the
Semi-Automatic Plugin in QGIS.

2.3.3. Classification Post-Processing

A two-step post-processing was performed to obtain the final flood delineation maps:
(i) a post-classification filtering was applied aiming at smoothing the noisy result pro-
vided by the classification algorithm; in particular, the classification sieve filter, available
within the Semi-Automatic Classification Plugin, was chosen for removing isolated pixels;
(ii) permanent water bodies in the areas of interest were removed from the classification
result in order to single out the flooded areas.

2.3.4. Classification Quality Assessment

The quality assessment with respect to the reference products was carried out accord-
ing to the procedure described in the following. A regular squared grid was generated
across the region of interest and a random point location within each grid cell was selected.
In order to best represent the “floodwater” class—which typically covers a limited portion
of the study area (i.e., <10%)—in the quality assessment workflow, a finer nested grid was
built in the areas with major floodwater coverage. The comparison between the result-
ing flood map and the reference map was performed for the pixels corresponding to the
selected point locations. This sampling procedure guarantees systematic coverage of the
whole study area as well as statistical validity to the analysis.

Common statistical measures were calculated from the confusion matrix, including
Overall Accuracy (OA), User Accuracy (UA), and Producer Accuracy (PA).
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2.4. Results

The obtained flood delineation maps and the reference flood maps for the UK case
studies are shown in Figures 8 and 9, while those obtained for the US case studies are
reported in Figures 10 and 11. Table 3 summarizes the OA for each flood map as well as
the UA and PA for the two classes “flooded” and “non-flooded”.
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Table 3. Overall Accuracy (OA), User Accuracy (UA), and Producer Accuracy (PA) of the flood
delineation maps for each study area.

Study Area OA [%]
UA [%] PA [%]

Flooded Non-Flooded Flooded Non-Flooded

Bridgwater (UK) 93.6 83.1 97.6 93.0 93.7
Worcester (UK) 86.8 71.1 98.5 97.2 82.0

Wilmington (US)
1 - - - - -

Lumberton (US) 93.1 69.3 95.9 66.9 96.3
1 Accuracy was not evaluated for the flood map of Wilmington.

Delineation maps for the areas of Bridgwater and Worcester were obtained from the
classification of a single Landsat-7 image by setting an optimal value of 16◦ for the angular
threshold of the SAM algorithm. Therefore, flood maps for the UK case study refer to the
same date, namely 16 February 2014.

The best results in terms of consistency were achieved for the Bridgwater study area
(see Figure 8). Specifically, OA resulted ~93%, and high values of UA and PA (i.e., higher
than 93%) were obtained for both classes, with the exception of the class “flooded” UA
which resulted ~83%. The good outcomes registered for this study area can be mostly
attributed to the contemporaneity of the two satellite images used to compute the flood
delineation map and the reference map. Moreover, the flooded area largely covers the
countryside, which makes flood detection easier for the classification algorithm. The
slightly lower values registered for the study area of Worcester (see Figure 9)—with an OA
of 87%—can be attributed to two main reasons.

Firstly, the classification algorithm exhibited worse performance in distinguishing the
urban area from floodwater; this may be due to the poor spectral separability of the two
classes, which suggested the use of an ancillary built-up dataset to discard the misclassified
pixels and improve classification consistency. Secondly, the reference map provided by
the UK Environment Agency refers to 11 February 2014, i.e., five days before the date of
acquisition of the Landsat-7 image. Despite these shortcomings, satisfactory consistency
values were obtained (higher than 82% except for the “flooded” class UA which equals
71%). A possible improvement in the classification consistency might be achieved by
exploiting a reference map contemporary to the resulting map; however, no such data were
available. The maps used to evaluate the result consistency for the UK case studies can be
considered a good reference, since they were obtained from the processing of SAR imagery
along with ancillary datasets and accurate post-processing activities.

For the US case studies, a reliable flood delineation map was obtained only for the
Lumberton study area (see Figure 10) by applying the SAM classification algorithm with an
angular threshold of 15◦. The high value of OA, which was ~93%, is primarily due to the
very limited extension of the flooded areas across the area of interest (~1%), which resulted
in very high performance for the “non-flooded” class despite the relatively low values of
UA and PA for the “flooded” class (69% and 67%, respectively). However, the HASARD
map considered as a reference was obtained by a fully automatic classification algorithm
without any quality check and post-processing. Furthermore, the visual interpretation
of the Sentinel-2 image pointed out a questionable performance of the HASARD change
detection algorithm for this case study. This suggests the limited accuracy of the reference
map to be the primary reason for the low values of the classification consistency.

For the Wilmington case study, flooding was mainly caused by the hurricane-induced
extreme storm surge. The posts used to select the training samples were collected between
14 and 17 September 2018 while the Sentinel-2 image was acquired on 18 September 2018,
i.e., when the storm surge-induced flooding was over. Accordingly, the selected training
samples were not representative of the floodwater within the Sentinel-2 image and a
misclassified delineation map was obtained. The obtained flood delineation map and the
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permanent waterbodies are represented in Figure 11. For these reasons, the quality check
was not carried out for this study area.

3. Proposal of a Collaborative Collection of Training Samples with QField

The results described in the previous Section show that the use of social mediasourced
VGI could be effective for the selection of training samples that are needed for satellite
imagery classification. However, there are numerous limitations to consider that could com-
promise an effective application of such methodology for crisis mapping purposes. Among
other limitations, it is worth mentioning that the use of data derived from social media re-
quires a time- and resource-demanding pre-processing stage that can be incompatible with
the timeliness requirements of crisis mapping. Pre-processing activities include data quality
control, georeferencing, and recovery of missing geo-metadata. In addition, in recent years
more and more obstacles have been placed on the use of these kinds of data in research
projects [40]. For these reasons, the generation of customized in situ data for this type of
study would provide several benefits. Currently, there are accessible tools, both commercial
and free software, for capturing data in the field using custom forms. In this way, in many
cases it will not be necessary to develop custom tools from scratch. In fact, some of the
available mobile applications enable the user to capture different types of spatial data,
to upload different base maps, and to work collaboratively, with or without an Internet
connection. Applications such as Survey 123, Mapit Spatial, QField, MerginMaps, Open
Data Kit (ODK), Locus GIS, and Geopaparazzi, among others, are specifically designed to
be easily employed by users without a solid GIS knowledge or experience. These types of
applications have already been exploited in, e.g., archaeological studies [41,42], manage-
ment of heritage assets and infrastructure [43–45], cataloguing of agricultural spaces [46],
and environmental issues [47,48]. Examples of their use in studies on natural risks, such
as landslides [49,50], earthquakes [51] and floods [52,53], were presented in the literature
as well.

Among the mentioned tools, those belonging to the same QGIS ecosystem (namely,
QField and MerginMaps) are more convenient for the purposes of the present study, since
QGIS is proposed as a software application dedicated to the semi-automatic processing and
classification of satellite imagery. QField and MerginMaps offer similar features, yet have
minor differences. Specifically, QField is in principle a more mature application (about
500,000 downloads in the Google Play market, compared to 50,000-plus for MerginMaps).
On the other hand, MerginMaps already has a version for iOS devices, while the iOS version
of QField is still under development. After carrying out a requirements analysis, QField [54]
was considered adequate in this case since it encompasses the highest priority needs of the
proposed methodology and is currently better known by the GIS user community.

Specifically, QField meets most of the project requirements, as listed below.

• It allows offline data collection. Users may work in variable conditions and their
contribution can be exploited even with poor Internet connection, which is often
the case during emergency situations. In fact, it supports server data storage either
through an open hosted service or installation on a cloud service (QField Cloud). In
addition, the dedicated QFieldSync Plugin is designed to work on the same project on
desktop (QGIS desktop) and on the field (QField application), allowing for an easy
synchronization, access, and analysis of the collected data.

• It is a Free and Open Source Software (FOSS), which enables users to carry out custom
developments, if necessary. The community of developers provides an extensive
documentation with clear, simple and free guidelines for users with different levels of
GIS knowledge.

• It can be executed on different mobile platforms. It currently works on Android, but
the iOS version is being tested. Collaborators are not required to master all the tool
capabilities; they simply need to install the application, register on the web platform,
and access it to fill out a short web form.
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• It enables spatial data visualization. Users should be able to check via a map if the
location service is working properly, and they can exploit the services to acquire the
metadata needed for the satellite image processing.

• It allows users to capture geographic features (points, lines, and polygons) associated
with photographs. QField relies on the Open Camera app for this purpose, since this
application enables the registration of all the available geographic metadata in the
EXIF metadata of the photographs, including the address of the camera when taking
the photograph, which is essential for the proposed methodology.

• Finally, it allows users to work in a multi-user environment.

A prototype QGIS-QField project is shown in Figures 12 and 13. To guarantee an easy
implementation of the proposed workflow, the prototype project should have the following
two components and characteristics. Firstly, a user-friendly satellite image as a background
map. Secondly, a single GeoPackage point layer with a properly designed attribute table
dedicated to data collection and storage. Field properties and constraints should be defined
and set in the Attribute form, in order to avoid typos and the insertion of inconsistent values.
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in the Cloud.
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Figure 13. Screenshot of the QField project, showing how the map is used to help the user check their
position and the collected data, and how the metadata are acquired in the process.

Specifically, the following fields should be included and properly defined in the layer
Attribute form (see Figure 12):

• fid (integer type), which is a unique value identifying a single user contribution;
• date and time of acquisition (datetime type), which is a crucial piece of information

whenever data are collected by several volunteers in different days and time hours;
• photograph relative path (string type), which is automatically identified by the app as

soon as the photograph is taken with OpenCamera;
• maximum distance of the flooded area (real type), which must be entered by the user.

QField provides a simple measuring tool to support the operator in defining the
maximum distance of the flooding, once he has recognised his position on the flooding
extent on the basemap. The distance value is displayed onto the interface (see Figure 13);
accordingly, the user is supposed to insert that value in the attribute table.

Furthermore, pictures are supposed to be taken exploiting the Open Camera application—
as recommended in the QField documentation—while the geo-localization service must
be enabled. In fact, despite the possibility to use the default camera app, Open Camera
provides several geo-metadata—including user position and compass direction—which
are directly stored in the photograph EXIF header.

4. Discussion and Conclusions

In this paper, a procedure integrating VGI and optical satellite imagery for the produc-
tion of flood crisis maps was presented. The proposed workflow relies on the application
of a supervised classification algorithm applied to multispectral imagery, exploiting VGI as
a valuable in situ data source for the selection of suitable floodwater training samples. VGI
data are meant to be collected through a collaborative crowdsourcing activity by volunteers
equipped with a dedicated mobile application. Specifically, the information needed to de-
fine the geometry of a single floodwater training sample consists of a photograph and a set
of metadata including the user position, the camera orientation, some technical parameters
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of the specific camera lens, and the minimum and maximum distance of the operator from
the flooding. The distance values must be specified by the user, while all other parameters
may be automatically retrieved by exploiting the functionalities of the mobile device where
the application is installed. The classified image is then post-processed with ancillary
datasets according to a standard and well-defined workflow in order to obtain the final
flood delineation map.

Owing to the impossibility of setting up and carrying out a collaborative crowd-
sourcing activity within a real flood event in the frame of the present work, the proposed
procedure was tested using a particular type of VGI, namely photographs and video frames
that were spontaneously shared on Flickr, Twitter, and YouTube during two past flood
events (namely the 2014 UK flood event and the 2018 Hurricane Florence-induced US flood
event). The parameters needed to select training samples were reconstructed a posteriori,
by means of support tools such as Google Street View and based on the photograph content
visual interpretation. Results in terms of delineation map quality assessment based on
reference products point out a good performance of the procedure in the detection of the
floodwater extent. However, the use of pictures spontaneously posted on social media
required a relevant pre-processing filtering phase, which was very time-consuming and
largely reduced the amount of usable information; this process can be incompatible with
the timeliness requirements of crisis mapping.

On the other hand, the proposed use of a dedicated application, and the involvement
of operators who purposely collect data for crisis mapping, with clear guidelines, can
significantly reduce the pre-processing phase. For this reason, the use of the well-known
QField mobile application for the collection of training samples was investigated. QField
turned out to be a valuable tool, thanks to the possibility to customize the attributes to be
acquired, and to share the project in the Cloud and with QGIS desktop application. In this
work, the QField application has been considered at prototype level, without intervening in
the source code. A valuable improvement of the procedure will be represented by a further
customization, improving its user friendliness and contributing to guiding and reducing
the user intervention—for example, implementing the automatic entry of the values of the
maximum distance.

Regarding the practical implementation of the proposed data collection for emergency
mapping support, it will be relevant to plan how to involve possible contributors, who
could be present in the area of interest as residents or as emergency responders, obviously
warning them that for no reasons related to the data collection they must put themselves in
danger or interfere with the emergency response operations.

The proposed methodology foresees the use of optical satellite imagery in order to
perform image classification with the VGI collected data with a semi-automated approach.
It is relevant to underline that the building of the training sample is not the only application
of the acquired VGI data. With the same technique they can be used to build test samples
for crisis map validation. Provided that the number of collected data is large enough, they
could be split into two subsets to be used either for training or for testing the delineation
map production. In case of unavailability of optical images, VGI data can be used to
support the photointerpretation and thresholding phase of the SAR image processing or
they can be used as test data for the flood delineation map.
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