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Abstract: In China’s fourteenth five-year plan, urban regeneration has become one of the most
crucial strategies for activating the existing cities. Since creating vibrant urban spaces is a critical
component of urban regeneration, understanding the patterns of community vitality helps formulate
reactive regeneration policies and design interventions. However, the lack of local-scale measurement
criteria and data collection methods has posed significant constraints to assessing and rejuvenating
community vitality. Taking Suzhou Nanhuan New Village as a study area, our research involved
a comparative study approach to investigate the fundamental driving mechanism of urban vitality
with the support of a theoretical model (5D theory), multi-source data input, real-time photography
technologies, and statistical analysis tools (Analytic Hierarchy Process). The result shows at the
community level, the original ‘3d’ dimensions (‘Density’, ‘Diversity’, ‘Design’) remain key elements
for forming vibrant spatial quality and functionality, and density factors matter significantly. This
study intends to provide a new paradigm for small-scale community vitality assessment, verification,
and regeneration by combining urban morphology with people-oriented and environmental-oriented
perspectives. This research could support quantitative research on creating vibrant high-density com-
munities in the urban regeneration process and bring insights to academics and design practitioners.

Keywords: community vitality; 5D model; multi-source data; urban regeneration; AHP

1. Introduction
1.1. Community Vitality Enhancement: Regeneration Movement Orientation in China

In recent years, critical reflection on the rapid urbanisation of previous decades in
China has been gradually increasing. Responding to the low spatial quality and vitality
under unprecedented urbanisation, the 14th five-year national plan (2021–2025) first men-
tioned urban regeneration movement for reactivating the existing urban environment as an
essential goal to optimise urban fabric and promote high-quality spaces with the guidance
of people-oriented and harmonised living principles [1]. This new concept is highly associ-
ated with restoring the profitability and vitality of existing communities [2,3]. The urban
renewal intentions it contains include a range of plans for demolition and redevelopment,
partial renovation and full-scale transformation, and these latest guidelines align China
with the direction of sustainable development [4]. Academics and practitioners are empha-
sising how to measure and create vibrant urban spaces effectively [5]. The renovation of old
and dilapidated housing estates, which are the basic units of social space, is an important
step towards high-quality urbanisation [6].

Urban vitality, as has been highlighted in various theories and literature, plays a key
role in meeting people’s demands for high-quality living and promoting urbanisation
connotative development [7]. Jacobs (1961) defines a vibrant urban environment as an
assembly of urban design elements, including appropriate development density, land use
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and functional mix, aged buildings, small blocks, accessible streets, and a lack of border
vacuums. Lynch (1971) describes a “supportive urban environment” as a settlement sup-
ported by vital functions and capacities of human beings. Supported by the provision of
vibrant urban spaces, the well-being of people and the development of long-term, sustain-
able urban regeneration will facilitate a wide range of human activities, encourage social
contact and interaction, and foster a feeling of safety and community among residents [8,9].
Therefore, precisely identifying the status quo of community vitality is much needed in
formulating reactive and sustainable urban policies and designing interventions in the new
context of connotative growth.

Information and communication technology development brings about tremendous
available open-source geographic data, which has pushed the study of quantifying urban
vitality into an unprecedented era [10]. With the penetration of quantitative assessment
methods into urban design disciplines, spatial data mining and GIS (Geographical In-
formation System) analysis techniques are being successfully applied to explore various
planning elements related to vibrant urban places. Taking advantage of big data, Fan et al.
(2021) used hourly Baidu heat map (BHM) data as a reference to depict urban vitality
along the Yangtze River in Nanjing [11]. Wang et al. (2022) employed big data gathered
from street view imaging (SVI), points of interest (POI), and social media comments to
explore and discuss street space quality, providing a novel alternative for evaluating public
realms based on the interplay between street vitality, service facilities, and the physical
environment [9]. Guo, Chen, and Yang (2021) evaluated the street’s vitality by adopting
optimised K-means clustering to identify street dynamic vitality categories and assessing
the classification result based on vitality intensity and stability [12].

Urban vitality represents the quality of a place in terms of the interaction level be-
tween human activities and spatial entities [13]. Hui et al. (2021) define spatial vitality as
inclusiveness, aggregation density, and urban park spatial usage intensity [14]. Li et al.
(2021) described spatial vitality as the degree of satisfaction related to humans’ basic move-
ments while living, producing, and exploring their surroundings [15]. Vibrant cities are
an assembly of good forms, developed functions, and sufficient activities [16]. Therefore,
various qualitative methods have been proposed to evaluate different planning elements,
including urban morphology, population density, facility density, plot size, the degree of
mix use, and landscape quality [17–19]. Determinants such as attractiveness, diversity, and
accessibility have also been investigated, measured, and proved positively correlated with
urban vibrancy [13]. These previous studies have guided urban planning practice on a
city or regional scale. Nevertheless, there is limited evidence to determine whether these
pre-existing measurement metrics for spatial vitality are transferrable to neighbourhood
regeneration, partly due to the dilemma of land use, complex regeneration policy, and
property issues. Multi-disciplinary knowledge is required to assist in making adaptive
urban development strategies and design interventions.

1.2. New Urban Quantitative Analysis via Multi-Source Data and Wearable Equipment:
Measuring Community Vitality

A quantitative analytic framework is an excellent tool for assessing spatial or spa-
tiotemporal urban vitality to conduct the multi-criteria urban analysis of the status quo.
Inspired by theoretical research, academics have methodically and comprehensively exam-
ined various spatially explicit distribution features and the implicit driving mechanisms
of the built environment. In previous studies, scholars have classified the characteristics
of urban space into economic, cultural, and social dimensions and generated multi-factor
frameworks to synthesise urban dynamics as a weighed overlay result of economic, social,
and environmental indicators [20]. This paper summarises these frameworks into the
following two categories.

The first category of indicators focuses on allocating and developing infrastructure,
business, and service resources. Kunze and Hecht (2015) extracted small catering businesses’
geographic distributions and impact to estimate area-based urban vitality [21]. A JPL
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(Junctions, POI, Location-based Services) appraisal matrix has been proposed to assess
urban spaces from the aspects of traffic, function, and activity density [17].

The second category is more associated with urban morphological features. In recent
years, numerous studies have shown that human activity intensity, the physical built en-
vironment, and human-environment interaction profoundly impact urban vitality [22,23].
Cervero and Kockelman (1997) suggested the potential impacts of urban design on urban
vitality, including intersection density and mixed-use land [24]. Ye et al. (2018) used
regression models to explore how density and typology have influenced the spatial vitality
of Shenzhen [25]. Li et al. (2022) further classified spatial vitality into social, economic,
and cultural dimensions, and interpreted them with street-related data to determine how
the external environment has shaped the spatial vitality of Chengdu [8]. The “5D” theory
(Density, Diversity, Design, Destination accessibility, Distance to Transit) has more exten-
sive coverage as well as a more refined measurement that incorporates all the relevant
concepts of urban vitality [26,27]. Apart from typical morphological features, it focuses
on walking behavior that can represent community residents’ convenience, quality, and
health status in localised scenarios [28,29]. Vale & Pereira (2016) stressed the efficacy of
BE (built environment) factors under the ‘5D’ dimensions with medium-sized Portuguese
cities taken as study areas [30]. Ogra & Ndebele (2013) regarded ‘5D’ components as the
primary components that constitute citywide transit-oriented development (TOD) [31].

Although the preceding studies provide practical tools for quantifying the degree
and elements of spatial vitality from holistic dimensions, there are still problems with
providing robust evidence for community regeneration. Firstly, there is a lack of universal
measurement to synthesise spatial activity at different scales or across different geographic
boundaries, which has added more difficulty in precisely illustrating the differences in
the spatial distribution of human-environment interactions on the micro-scale. Secondly,
recent studies have only laid a technical foundation for measuring urban vitality with the
‘5D’ model in large-scale urban areas. The ways to tackle scaling-down issues, such as the
repeated pattern of BE within a single phase of property development, the lack of detailed
resolution (<30 m) satellite images, higher impurities, and poorer positioning accuracy in
the construction of local human activities, have also become significant research constraints.
Thirdly, a limited number of studies have focused on micro-scale measurement of spatial
elements that shape high-quality communities or provide implemental strategies to guide
community regeneration. Due to these difficulties, field observations, interviews, or other
participatory methods are mainly adopted for primary data acquisition in prevalent Chinese
community regeneration studies [14]. These difficulties have constrained the current
community regeneration within its narrow scope of building façade renewal, infrastructure
enhancement, or other similar “beautification” tactics, without the interference of data
insight. However, these “placebo” strategies have insufficient contributions to resolving
deep-rooted structural problems or improving the genuine living standards of local citizens.
To fill the gap between urban regeneration practices and urban vitality assessment, it is
essential and promising to conduct systematic and reactive local vitality evaluation at the
community level.

In recent years, diverse methods for tracking human activity in big data have received
widespread attention. With the development of sensor technologies, a substantial real-time
record of the relationships between human activities and the built environment has emerged
in recent research [32]. In other words, the time, the sequence of daily activities, and the
geographic location with specific features of land use and population density can be used
to infer spatial or spatiotemporal urban vitality. Some studies have utilised conventional
environmental sensors to record people’s activities and various ground space characteristics.
However, the expense and expertise required for deployment and maintenance of the
monitoring system make it more challenging to achieve the density level required for
refined community monitoring.

As opposed to traditional sensor techniques, street images have demonstrated superior
efficiency and geographic reach for gathering micro-scale street features and pedestrian
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volume associated with the ‘5D’ urban analysis assessment framework and community
vitality reflection [33]. Our work uses a mobility-based technique using wearable camera
picture collection equipment to gain refined community vitality based on image identifica-
tion and analysis software, while addressing flaws such as poor reliability owing to the
area coverage and update frequency. Timely-taken pictures can provide high-quality data
sources of precise scale, high validity, and fast and stable location updates for spatial vitality
identification and verification due to the small size, lightweight, and portability of wearable
cameras [8]. This provides the basis for perceiving more complex and three-dimensional
community environment information and comprehensively evaluating the community
vitality from the space-time perspective. However, the long collection period, high cost,
and rigid schedules for field observation in the construction of the human activity process
have made this approach hard to promote citywide, which could be seen as a significant
research challenge.

In summary, the urgent agenda for evidence-based urban vitality improvement and
Chinese community regeneration, data collection and mining technologies development,
as well as the prevalence of quantitative analytical methods, provide a new paradigm
for current urban scientific research. However, the existing analytical framework has not
only failed to provide universal measurements to synthesise spatial vitality, but has also
neglected to explore the application of research models at the community or local scale. This
research combines multi-source heterogeneous data to provide a fundamental evaluation
framework of urban vitality performance and its internal driving force based on the “5D”
theory (i.e., design, diversity, density, distance to transit, and destination accessibility). It
seeks to provide a comprehensive and systematic approach for measuring the connotation
of local-scale spatial vitality. According to our best knowledge of previous research, this
framework presents the following three innovations:

1. It is a novel paradigm for urban vitality study based on the deconstruction of conno-
tation and explicit explanation of driving mechanisms. The study seeks to broaden
the contemporary ‘5D’ theory assessment framework to guide small-scale community
vitality assessment. The measurement criteria selected for each dimension are elabo-
ratively tailored to local-scale planning components and purposefully moderated to
better manifest the spatial vitality to solve the “scaling-down” issues.

2. Tracking human activities and inferring vitality differences with timely site photogra-
phy is more accurate and efficient than traditional collection methods.

3. The proposed framework fully uses multi-source data and offers a multi-dimensional
methodology for examining urban vitality driving indicators. This research investi-
gates the underlying driving mechanism of urban vitality by combining the morpho-
logical and perceptual perspectives for shaping urban vitality efficiency.

Our framework enriches the theoretical framework, quantitative methodologies, and
assessment variables of urban vitality. It reveals the method for developing urban vitality
from the viewpoint of community regeneration. It offers multiple insights into enhancing
urban vibrancy and supporting the coordinated and sustainable development of a declining
Chinese high-density neighbourhood. As the global urbanisation forces continue to acceler-
ate, the gravitational centre of human dynamics continues to shift to East Asia, particularly
China [34]. Therefore, studies of urbanisation and its countermeasures require additional
Chinese experience. This research examines a resettlement community in Suzhou, China,
to verify the framework’s practical applicability. Based on our research on the driving
mechanism of spatial vitality, we summarise the techniques for boosting urban vitality in
terms of collaborative policymaking and urban design.

The remainder of this article is structured as follows. The following part describes the
evaluation framework’s conceptual framework, data requirements and methodology, the
case study area, and experimental configurations. In the subsequent sections, conclusions
are discussed, followed by an elaboration of case study results.
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2. Conceptual Framework

Community vitality is crucial to constructing vibrant urban environments and an
important element of sustainable urban regeneration that improves the quality of life
(QoL). However, rapid urbanisation in China has caused significant urban problems, such
as the proliferation of inactive urban and community spaces. Incorporating community
vitality into urban regeneration agendas demands reactive urban regeneration strategies
and appropriate design interventions to address new problems. Therefore, it is essential to
develop a precise and comprehensive community vitality assessment framework to max-
imise regeneration potentials, assist in policy formulation, and urban design, and improve
QoL to the most significant extent. The two primary components of vitality evaluation
in the present study area are qualitative studies based on questionnaires and interviews,
and quantitative studies based on urban data and network analysis. Although researchers
have begun applying multi-dimensional digital data to the urban analytics area, the con-
straints of conventional approaches continue to pose substantial challenges to accurately
measuring community and local vitality. With the iteration of new technologies, urban
vitality assessment studies have entered a prosperous period marked by an abundance of
open-source geospatial data. According to the above thoughts, this research proposes a
general analysis and evaluation methodology for measuring community vitality based on
the ‘5D’ model assessment with multi-source data.

As shown in Figure 1, our study examines two distinct categories of data. The first
type consists of built environment (BE) data, including point of interest (POI) data, land use,
building, and street network, which are the data source for evaluating the ‘5D’ planning
elements. The second category is composed of image data, which manifests the real-
time distribution pattern of local vitality. Three core steps constitute our research: the
urban vitality measurement, evaluation, and verification. The data collection method is
introduced in Section 3.1.

Part 1 shows the urban vitality driving factors designed for this framework. We formu-
late twelve evaluation indicators to measure urban spatial vitality separately from the ‘5d’
dimensions (Density, Diversity, Design, Destination accessibility, and Distance to transit).
The framework chooses evidence-based quantitative assessment to reflect the connotations
of each dimension. High-density neighbourhoods tend to accommodate more activities
within the same commuting radius. They are more concerned with the morphological
features of individual blocks, which the floor space index (FSI) measures, Ground Space
Index (GSI), and Spacemate [35,36]. Land use and functional (POI) diversity represents
the distribution of location-based activity and land use practices, and is an essential cata-
lyst for community vibrancy [13,21,37,38]. As the design dimension reflects pedestrians’
walking experiences and the aesthetic aspects of urban space, street connectivity, block size,
greenness index, and enclosure ratio are the four selected variables for the measurement of
mobility, attractiveness, and dynamics of urban spaces [39–42]. Closer distance to transit
increases residents’ willingness to travel [43], and high destination accessibility boost walk-
ing activity, urban mobility, and sustainability [30]. The calculation method of all the above
indicators is detailed in Section 3.2.1.
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Figure 1. Conceptual framework of community vitality evaluation.

As seen in Part 2, we employ the Analytical Hierarchical Process (AHP) to accomplish
two goals. First, we use a hierarchical matrix to compare the ‘5d’ influencing factors in terms
of their contribution to community vitality. Second, we compute the composite impacts
of ‘5d’ variables on the distribution of community vitality (by block) by assigning weights
to each depending on their relevance to community regeneration. The community scale
requirements have been incorporated into the weight allocation process to improve the
efficiency and consistency of the weighing process. The quantitative calculation technique
of AHP is described in depth in Section 3.2.1.

Part 3 describes the actual measurement and verification technique for vitality. Our
methodology proposes a new perspective based on improved real-time data-gathering
technologies. Especially when environmental sensing, image crowd-gathering, and quanti-
tative recognition techniques are prevalent, the flexibility and precision of relevant devices
become increasingly crucial for effective data collection and analysis. We use the PSPNet
algorithm and Cityscape to process visual data collected from wearable cameras, and use
the volume of passengers and vehicle flow in the street images to reflect community vitality.
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In Part 4, by comparing it with the results calculated from the ‘5D’ theory assessment,
our research’s contribution to the quantitative community vitality assessment methodology
and real-life application is verified. The detailed procedure is discussed in Section 3.2.2.

3. Data and Methods
3.1. Data Source

According to our framework, multi-source data is the technical foundation of this
paper. Image data covering accessible areas collected from a 15-day site tour, and BE data
acquired from multi-source geospatial databases, are fused by individual urban blocks.
They are used to identify the distribution of urban vitality and the driving factor for
modelling and assessment. The composition, usage, source, and contents of these data are
displayed in Table 1.

Table 1. The input datasets used in this framework.

Item Usage Contents Source

Crowd-gathering Street
image data

Community vitality real
reflection and verification

The number of pedestrians and
vehicles, collected by fixed-interval

photography and processed by image
recognition software

Xiaotu S2 Sports Camera
during the 20-time site visits

Geospatial big data
The ‘5D’ driving

indicators measurement
and assessment

A detailed base map covering the
whole community, including the

information of:
Pedestrian-accessible road networks

Building footprints with height
Urban plot with an area

Fine-grained POI data, modified
according to real contextual conditions

Various navigation map
suppliers, including Open

Street Map, Google Satellite
Map, Baidu Map, Gaode Map,

etc.

The statistical unit for
data fusion Basic supporting data

The urban block is set as a basic unit for
‘5d’ driving factors measurement and

assessment. The boundaries are
determined based on satellite images

and government planning documents.

3D modeling using CAD and
Rhinoceros

Basic analysis tools Community vitality real
reflection and verification

A suitable size regular grid for
reflecting the real-life spatial

distribution of community vitality

Manually create fishnet using
ArcGIS

3.2. Methodology
3.2.1. Quantification Calculation of ‘5D’ Community Vitality Impact Factors
Precise GIS Spatial Vitality Analysis Based on ‘5D’ Theory Assessment Model

According to the conception of the ‘5D’ theory, several key indicators are selected from
the previous application of the ‘5D’ theory, and moderated to suit the community scale.
They are used to evaluate the two-dimensional ground value of urban ground BE features
and human–land interaction. The meaning and calculation of the indicators are illustrated
in Table 2.

In the first three formulas, F is the floor height, and L denotes a designated block’s
average number of floor layers. Ax and Bx represent the areas of the individual block
and the gross regions of all building footprints. The FSI shows the average density of 3d
built-up spaces or population density. GSI reflects the average density of 2d ground floor
spaces, described as ‘built potential’ [25]. According to Steadman (2014) and Ye, Li and Liu
(2018), higher vitality derives from higher FSI/GSI, and GSI tends to exert a greater impact
on urban vitality [44,45].

The mixing index of the Shannon entropy function represented in Equation (4) is
widely used to measure spatial diversity and functional richness based on the variety of site
types and the proportion of each type. LD refers to land use diversity. Pk is the proportion



ISPRS Int. J. Geo-Inf. 2022, 11, 626 8 of 26

of the site area of the type in k to the block area, while n is the number of land use types
in the block. A higher land use density for each block represents a better mix of facilities.
In Equation (5), LE refers to the land use evenness, LDk refers to the land use diversity
of the block, while LDmax is the maximum value of the land use diversity among all the
blocks. The closer the value is to 1, the more evenly distributed the block in the site. In
Equation (6), FD denotes functional density, Nk indicates the total number of POIs in the
block, and Ak denotes the area of the block. FD reflects the potential of a region to provide
different types of urban services, with the higher value representing the higher potential of
block functions. Jiang (2021), Dong and Zhang (2016) have proven that LD, LE, and FD
positively impact urban vitality. Nevertheless, the three indices contribute to urban vitality
to varying degrees [13,38].

Table 2. Quantification calculation method for community vitality impact factors designed in our
framework.

Decision
Objectives in
Scheme Level

Indicators in the First
Intermediate Layer Equation Number Data Source Description

Density

Ground space index
(GSI) GSI = Bx/Ax (1)

Building footprints
with height and
plot area data

Referred to the Spacematrix by
Berghauser Pont & Haupt (2005)Floor space index (FSI) Fx = F × L

FSI = Fx/Ax (2)

Spacemate / (3)

Diversity

Land use diversity
(LD)

LD =
−∑n

k=1 Pkln(Pk)
(4)

POI and plot area
data

Referred the Shannon entropy
method by Jiang (2021) and Dong,

Zhang (2016), and Kunze and
Hecht (2015)

Land use evenness
(LE) LE = LDk

LDmax
(5)

Function density (FD) FD= Nk
Ak

(6)

Design

Link connectivity (LC)

LC = Street
Connectivity

Index in
SDNAs

(7)
Pedestrian

accessible road
networks

LC evaluates:
street density

the ratio of minor streets to major
streets

Greenness index (GI) /

Street photos taken
at fixed points

The average values of the
proportion of greenness

area/enclosed areas from all
crowd-gathering photos are the

inputsEnclosure rate (ER) /

Block size (BS) / Plot area data Quantifying Jacobs’ (1961) theory

Position

Destination
accessibility (DA)

DA = Local
Integration

Index in
SDNAs

(8)
Pedestrian-

accessible route
networks

The calculation uses Space Syntax
with GIS SDNAs plug-in

Distance to transit
(DT) / Navigation map

data
The shortest distance between each

block reflects it to the bus stop

We use the ‘link connectivity index’ to access street connectivity with the Space
Syntax plug-in in ArcGIS. In Equation (7), higher link connectivity (LC) represents higher
community vitality. The sampling databases for the greenness index (GI) and enclosure
rate (ER) are built upon the graphic information taken regularly at 54 data points of 20-time
site visits for two consecutive weeks. The photos were divided into different combinations
of built-up areas, greenness areas, road areas, cars, and pedestrians by proportion. GI refers
to the proportion of green features in a photo, which is positively correlated with urban
vitality. Oliveira and Medeiros (2016) proposed using the ratio of building height to street
width, namely enclosure ratio, to delineate how built-up elements can influence pedestrian
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walking experience and suggest a comprehensive method to measure the effect of average
building setbacks, space between facades and street width simultaneously [42]. Therefore,
we use the road proportion divided by the building proportion to calculate ER, which is
negatively associated with urban vitality.

Destination accessibility (DA) and distance to transit are combined (DT) as one Deci-
sion Objective in Scheme Level: Position. We used the Local Integration Index in Spatial
Design Network Analysis (SDNAs) to study the DA of the Nanhuan New Village. To avoid
the boundary effect caused by the selecting area, the study selected rivers and highways as
a boundary, which have apparent blocking effects on pedestrian movement. A higher DA
results in higher local selectivity of the space unit within a certain travel radius, and the
higher the space vitality can be obtained. We measure the shortest walking distance from
the exit of each residential area to each bus stop to obtain the DT for each block. Areas with
less DT are considered to have higher vitality.

Weighed Evaluation and Composition of Community Vitality Based on Analytic Hierarchy
Process (AHP)

The Analytical Hierarchy Process (AHP) is a decision-making tool that helps to solve
complex problems through problem decomposition, criteria selection, pairwise/relative
comparison, and synthesis of the relative importance of rankings [46,47]. The analytical
hierarchy process has been widely used in assessing and interpreting urban regeneration
elements [48,49]. We use it to evaluate the ‘5d’ influencing factors in terms of their con-
tribution to community vitality and calculate the total vitality index of individual blocks.
Experts assess the elements of “5D” decision objectives and weight attribution results are
ranked in scheme level and in the first intermediate layer, as shown in the Appendix A.

Table 3 shows the 12 selected indicators that make up the “5d” decision objectives. To
make each factor comparable, the 12 types of data and their impacts (+/−) are remapped
to the interval of values between 0 and 1, and weighed based on the results from AHP (the
evaluation process refer to the Appendix A). “Density, Diversity, and Design” have been
considered more responsible for community vitality and thus obtained higher weights,
i.e., 0.4236, 0.2270, and 0.2270, respectively. Compared with the three significant factors,
position-related variables (‘Distance to transit’ and ‘Destination Accessibility’) have lower
weights (0.1223) due to the constrained scale of a community. The weights of the indicators
vary from 0.0236 to 0.2286. The following formula gives the Potential Vitality Index (PVI)
for the AHP approach. D is the number of possible factors from the “5d” dimensions, and
X is the weight of each factor.

Potential Vitality Index (PVI) = ∑9
i=1 Di × Xi.

Table 3. AHP assigned weight for urban vitality calculation.

Decision
Objectives in
Scheme Level

Weight in Scheme
Level

Indicators in the First
Intermediate Layer for Decision

Objectives

Weight in the
Intermediate Layer

Positive or
Negative

Correlation

Density 0.4236
Ground space index (GSI) 0.2286 +

Floor space index (FSI) 0.1258 +
Spacemate 0.0692 +

Diversity 0.2270
Land use diversity (LD) 0.0568 +
Land use evenness (LE) 0.1135 +
Function diversity (DF) 0.0568 +

Design 0.2270

Link connectivity (LC) 0.0929 +
Block size (BS) 0.0236 −

Greenness index (GI) 0.0731 +
Enclosure rate (ER) 0.0375 −

Position 0.1223
Destination accessibility (DA) 0.0815 +

Distance to transit (DT) 0.0408 −
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3.2.2. Reflection and Verification of Community Vitality Based on the Wearable Camera

Our mobility-based approach to estimating local vitality is based on visual data
collection through the wearable camera and data procession via PSPNet (Pyramid Scene
Parsing Network) [50]. The spatially explicit characteristics of urban vitality are extracted
and compared with the ‘5D’ assessment results by the following three components:

(1) Two volunteers, equipped with wearable cameras, were invited to carry out 20-time
experiments for two consecutive weeks (once during the daytime, once in the evening).
The sampling database is built on street images taken regularly at 54 designated points
within the site boundary.

(2) The continuous timing photos are put into the PSPNet to calculate the ratio of vehicles
and pedestrians in each image. The time-space differences of this ratio reflect the
distribution of local spatial vitality.

(3) These outcomes can be compared with the vitality distribution acquired from the
‘5d’ assessment framework to validate the effectiveness of our proposed methodol-
ogy, especially a static approach using geospatial data and mobility-based methods
employing street view photos.

In this study, the real-time distribution of local spatial vitality is reflected by the
time-space differences of the streetscape features that the pedestrians can directly perceive,
specifically by extracting the proportion of people and vehicles using PSPNet [50]. The
pyramid pooling module and the pyramid scene parsing network are efficient machine-
learning approaches for scene parsing and semantic segmentation. This method has
obtained pixel-level prediction performance on several datasets, such as Cityscapes [50].
As shown in Figure 2, five types of ground items (built-up area, green space, road area, car
and pedestrian) were extracted from each street view picture for each ground item using a
pre-trained Cityscapes model. Then, we use the composite ratio of pixels of pedestrians
and automobiles to the total number of pixels in the picture to represent the vitality of a
community, since pedestrian and vehicular traffic tend to be associated with a geographical
concentration of human activities. Lastly, we measure the average composite ratios of all
sampling points in 20-time walking experiments to obtain the time-space distribution of
community vitality in all possible environmental conditions.

Figure 2. The image procession approach based on PSPNet and Cityscapes.

4. Case Study and Experimental Design
4.1. Case Study Area and Experimental Data

In response to the double pressure of land resource scarcity and economic develop-
ment, Chinese urban regeneration has embraced the high-rise, high-density residential
development pattern [51]. A ‘3H’ community refers to a densely populated community
with a high Floor Area Ratio (FAR, indicating the intensity of plot use), high building height,
and high occupancy rate. In current years, ‘3H’ development has led to excessive residential
land use, which is a source of traffic congestion, environmental quality deterioration, a lack
of green open space, and severe air pollution [52].

We selected Nanhuan New Village as our study area, which is a typical ‘3H’ com-
munity (Table 4). This area is located in the southern part of Gusu District, Suzhou City,
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Jiangsu Province, China. Suzhou functions as the hinterland of the Taihu Lake Economic
Development Zone and has a strategic position in the Yangtze River Delta City Cluster.
Moreover, Gusu District is a historic core and a highly urbanised area, where the embodi-
ment of urban vitality and the formation mechanism of urban regeneration can be fully
reflected.

Table 4. Basic information of ‘3H’ Nanhuan New Village.

Indicators Nanhuan New Village

Total land area 21.54 ha
Gross Floor Area (GFA) 555,375.76 m2

Residential area and percentage 391,425 m2

Floor Area Ratio (FAR) 2.58
Building density 26.8%
Greenness rate 25.6%

Residential units 4852
Parking lots 2526

The geographical location, natural and administrative boundaries, and the built-up
elements of the study area are shown in Figure 3. The west and north of the community
are surrounded by water. The eastern boundary is adjacent to Nanyuan South Road,
and Nanhuan Highway demarcates the Southern boundary. The site is composed of the
1970s-built old neighbourhood in the west, a kindergarten, a primary school, a middle
school in the middle, and newly built (post-2010) high-rise, high-density residential blocks
that dominate the rest of the area. The southeastern outer ring of residential blocks is
surrounded by retail streets and has a large shopping mall. According to the urban vitality
evaluation framework demonstrated in Section 2, street image data and multi-source
geospatial big data were obtained as research data. Their specific descriptions are detailed
in Table 5.

Figure 3. The geographic location of the study area, area boundaries, and contextual information.
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Table 5. A detailed description of the data source used in our empirical research.

Item Source Quantity Time

Street image data Field observations with Xiaotu S2 Sports Camera 3029 photos 1–15 August 2021

Building footprints with
height

Urban blocks and building
plots profile

Google Satellite Map, the world’s largest spatial
information supply

(* Modified after field observations)
Accessed from: https://maps.google.com/, accessed

on 1 August 2021.

97 polygons Accessed on
August 2021

Pedestrian-accessible road
networks

Baidu Map and Gaode Map, China’s most extensively
used map service platform

(* Modified after field observations) Accessed from:
https://map.baidu.com/, accessed on 1 August 2021.

1479 lines

Fine-grained POI data

Open Street Map, the world’s leading free wiki world
map (Modified after field observations)

Accessed from: https://www.openstreetmap.org/,
accessed on 1 August 2021.

68 points

* For user activity type inference needs, the original categories of POI are merged into 24 categories. They are
rental services, lottery, photography, laundry, stationery, pedicure, real-estate agency, office, repairing, food retails,
fashion, gym, travel agency, advertisement agency, food wholesales, tobacco and wine, education, restaurant,
bank, convenience store, flower shop, appliance shop, baby caring and vacant outlet.

The picture in Figure 3a shows the location of Suzhou city, and Figure 3b shows the
distribution of resettlement communities in Suzhou city. The 3D model shows the building
footprints, road networks, and neighbourhood blocks in our study area at a finer scale.

4.2. Experimental Settings

To facilitate the efficiency of visual data collection and programming process, and
to verify the distribution of community vitality more effectively, we used street images
collected from accessible areas as an alternative proxy of overall spatial vitality. We divided
the study area into 17 urban blocks as basic spatial analysis units and design two routes
along with 54 navigation points (Figure 4). The two routes encompass all the plots and
paths accessible to pedestrians as a valid and comprehensive picture of space activities. The
54 points were set in a continuous sequence with explicit starting and ending positions to
help us better match all the street images with their geographic coordinates. Dashed lines
indicate the areas with comparable spatial vitality distribution to the designated route 1.

Then, we asked two volunteers to walk along the routes with a wearable camera to
capture street images for 15 consecutive days. They were asked to maintain a pedestrian
average walking speed (4–5 km/h) and the time threshold of a single stay ∆t = 2 h. Since
the route spreads throughout Nanhuan New Village, the data collected during the stay can
be used to explain the vitality distribution of the entire community. In this study, we chose
the Xiaotu S2 Sports Camera for its outstanding portability and stability that fully fulfil
our experiment’s required flexibility and preciseness. We set the scenario for the Xiaotu S2
Sports Camera to take a photo every 10 s, indicating that it has a relatively high temporal
resolution and quick reflection for tracking the participants’ surrounding environmental
features, such as green features, cars, and people. The records of their travels were divided
into routes and points.

Our experiment was conducted from 1 August to 15 August 2021. Specifically, each
participant was instructed to wear a camera to capture the front view during the daytime
over two consecutive weeks, from 8:00–10:00 and 18:00–20:00. Before the walking session,
the volunteers would ensure that the front lens was sturdy, facing forward, unobstructed,
and fully charged. During the experiment, participants were responsible for ensuring that
their wearable cameras were functioning properly unless they were engaged in an activity
or event unsuitable for exposure. Meanwhile, the volunteers’ privacy concerns were taken
into consideration. They were allowed to remove the camera at any moment for privacy
concerns and could delete the images containing private information. After each day of

https://maps.google.com/
https://map.baidu.com/
https://www.openstreetmap.org/
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walking observation, volunteers were asked to remove the wearable cameras and export
the images to our mobile hard drives.

Figure 4. Image data collection routes and the 54 navigation points.

5. Results
5.1. Quantitative Results of Vitality

The quantitative results of the 12 indicators affecting vitality in the 5D model are
shown in Figure 5. For comparison purposes, the evaluation results were classified into ten
levels using the natural breakpoint classification method.

1. The graphs (density1-density3) show that both GSI and FSI are generally more sig-
nificant in the residential areas than in the public and commercial land areas, with
the FSI and Spacemate values in the central high-rise significantly higher than in the
older mid-rise residential areas.

2. In terms of diversity (diversity1-diversity3), the spatial distribution of LD and LE is
similar, with high indicators for high-rise residential areas with commercial areas in
the centre and low indicators for older mid-rise single residential areas. The southern
neighbourhood near the South Circular Road has a higher DF value due to the variety
and density of POI points. This reflects the complete diversity in the central and
southern parts of the neighbourhood.

3. Regarding design (design1-design3), the LC has a more prominent spatial differen-
tiation related to the entrances and exits of each plot. The residential areas to the
northwest and the residential areas to the southeast are areas of high LC concentration,
while the other regions are lower. The distribution of BS values is similar to that of
density, again with the residential areas having greater values than the public and
commercial land areas. The GI gradually increases from west to east, indicating that
the high-rise residential and commercial areas to the east are better landscaped. The
ER is highest in the east and smallest in the central neighbourhoods with squares.
This reflects the lower degree of enclosure of the public areas.

4. Regarding position (position1 & 2), the school areas have the highest DA values,
followed by the commercial areas, reflecting their higher accessibility. The distribution
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of DT shows that the residential areas are all at shorter distances from public transport
stations, reflecting the accessibility of the neighbourhood.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 15 of 27 
 

 

 
Figure 5. Visual estimation results of the 12 indicators affecting vitality in the 5D model. 

We employed the AHP to compare the ‘5d’ influencing factors in terms of their 
weight on community vitality and compute the composite impacts of ‘5d’’ variables on 
the potential distribution of community vitality. The first column (A-Q) represents the 17 
blocks in Nanhuan New Village based on the street cut-out. The second to 13th columns 
(GSI-DT) represents the quantified results of the 12 indicators in the 5D model for each 
block, calculated from Table 2. The last column (PVI) indicates the potential vitality of 
each block based on the 12 indicators quantified using the AHP method. As described in 
Table 3, the weights of density, diversity, design, and position are 0.4236, 0.2270, 0.2270, 
and 0.1223, respectively, so the final vitality was obtained by multiplying each quantita-
tive indicator by its corresponding weight and adding them together (PVI = ∑ 𝐷 × 𝑋 ). 
The data in Figure 5 are derived from Table 6 and visualised on the map using GIS.  

Table 6. AHP evaluation results for Potential Vitality Index (PVI). 

Block * GSI  FSI Space-
mate 

LD LE DF LC BS GI ER DA DT PVI 

A 0.035 0.099 0.046 0.005 0.007 0.013 0.032 0.027 0.085 0.023 0.051 0.032 0.45960 
B 0.023 0.064 0.0461 0.008 0.048 0.097 0.037 0.025 0.079 0.010 0.048 0.032 0.52355 
C 0.024 0.067 0.0461 0 0 0 0.028 0.025 0.088 0.004 0.081 0 0.36621 
D 0.024 0.079 0.0461 0 0 0 0.026 0.026 0.092 0.003 0.081 0 0.38027 
E 0.031 0.087 0.0461 0 0 0 0.035 0.023 0.077 0.010 0.072 0 0.38546 
F 0.054 0.184 0.0692 0.018 0 0 0.066 0.025 0.074 0.003 0.044 0 0.54262 

Figure 5. Visual estimation results of the 12 indicators affecting vitality in the 5D model.

We employed the AHP to compare the ‘5d’ influencing factors in terms of their
weight on community vitality and compute the composite impacts of ‘5d’ variables on
the potential distribution of community vitality. The first column (A-Q) represents the 17
blocks in Nanhuan New Village based on the street cut-out. The second to 13th columns
(GSI-DT) represents the quantified results of the 12 indicators in the 5D model for each
block, calculated from Table 2. The last column (PVI) indicates the potential vitality of each
block based on the 12 indicators quantified using the AHP method. As described in Table 3,
the weights of density, diversity, design, and position are 0.4236, 0.2270, 0.2270, and 0.1223,
respectively, so the final vitality was obtained by multiplying each quantitative indicator
by its corresponding weight and adding them together (PVI = ∑9

i=1 Di × Xi). The data in
Figure 5 are derived from Table 6 and visualised on the map using GIS.
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Table 6. AHP evaluation results for Potential Vitality Index (PVI).

Block * GSI FSI Spacemate LD LE DF LC BS GI ER DA DT PVI

A 0.035 0.099 0.046 0.005 0.007 0.013 0.032 0.027 0.085 0.023 0.051 0.032 0.45960
B 0.023 0.064 0.0461 0.008 0.048 0.097 0.037 0.025 0.079 0.010 0.048 0.032 0.52355
C 0.024 0.067 0.0461 0 0 0 0.028 0.025 0.088 0.004 0.081 0 0.36621
D 0.024 0.079 0.0461 0 0 0 0.026 0.026 0.092 0.003 0.081 0 0.38027
E 0.031 0.087 0.0461 0 0 0 0.035 0.023 0.077 0.010 0.072 0 0.38546
F 0.054 0.184 0.0692 0.018 0 0 0.066 0.025 0.074 0.003 0.044 0 0.54262
G 0.032 0.155 0.0692 0.002 0.029 0.059 0.043 0.023 0.083 0.006 0.056 0 0.56120
H 0.042 0.178 0.0692 0.002 0 0 0.051 0.022 0.082 0.005 0.067 0 0.52155
I 0.124 0.087 0.0231 0.014 0.056 0.113 0.047 0.025 0.080 0.019 0.062 0.021 0.67764
J 0.113 0.105 0.0231 0.027 0.050 0.099 0.037 0.029 0.081 0.013 0.058 0.021 0.66175
K 0.104 0.087 0.0231 0.024 0.047 0.095 0.040 0.029 0.084 0.013 0.065 0.021 0.63720
L 0.039 0.164 0.0692 0.056 0 0 0.073 0.028 0.074 0.003 0.063 0 0.57206
M 0.042 0.178 0.0692 0.052 0 0 0.060 0.027 0.077 0.004 0.049 0 0.56288
N 0.025 0.055 0.0461 0.001 0.022 0.045 0.053 0.031 0.029 0.006 0.077 0.040 0.43520
O 0.125 0.076 0.0231 0.017 0.043 0.086 0.048 0.034 0.086 0.008 0.061 0.024 0.63610
P 0.068 0.228 0.0692 0.015 0 0 0.057 0.037 0.085 0.023 0.057 0 0.64284
Q 0.038 0.161 0.0692 0.035 0.028 0.055 0.050 0.030 0.078 0.019 0.053 0 0.62036

* GSI: Ground space index, FSI: Floor space index, LD: Land use diversity, LE: Land use evenness, DF: Func-
tion diversity, LC: Link connectivity, BS: Block size, GI: Greenness index, ER: Enclosure rate, DA: Destination
accessibility, DT: Distance to transit, PVI: Potential Vitality Index.

According to the results of the PVI in Table 6, the distribution of the Vitality Index
across the blocks in Nanhuan New Village is shown in Figure 6. The community vibrancy in
Nanhuan New Village is highest in the central high-rise mixed commercial and residential
area, decreasing in order of radioactivity towards the periphery. The high-rise strip blocks
(I, J, K, O) with double-story street retail carry the highest community vitality values. These
blocks are centrally located on Nanhuan Street, with highly connected streets and easy
access to local amenities. Not only do the super-high residential buildings accommodate
a large population, but the user-friendly retail also brings a diversity of site mix and
functions. This is closely followed by the neighbourhood-type commercial use areas (P, Q)
to the east, which has higher GSIs, denser POI densities, and smaller block sizes, despite
their seemingly distant location from the residential areas to the west. However, not all
neighbourhood-type commercial building plots have the same vitality level. F, L, and M
along the South Ring Elevated Wa, on the other hand, have low densities, lack diversity,
and low levels of vitality due to the massive closure of a large number of shops (Figure 7).
The areas with lower vitality levels are concentrated in the westside school districts (C,
D, E) and the old Nanhuan community (A, B, N). The former has less social or economic
activity and a higher level of enclosure due to land use. For the latter, the old Nanhuan
community occupies a larger land area and is designed as a single-function, medium to
high-rise residential area. It is also somewhat removed from the main centres of economic
and social activity in the centre and east and is, therefore, a low-vitality area.
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Figure 6. Distribution map of potential vitality in Nanhuan New Village.
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5.2. Urban Vitality Based on Sensory and Visual Data Traced by Portable Camera

Armed with portable sensors and wearable cameras, the research team conducted
20 field conditions collection sessions in Nanhuan New Village in both the morning and
the afternoon. One of the direct contributions to urban vitality was the observation of
pedestrian range and flow. The research team aggregated the information collected and
used GIS to map the distribution of pedestrian flows at different times of the day, as shown
in Figure 8. The proximity principle was applied to compare the vitality values of the area
covered by the route with those of the surrounding communities to determine and visualise
overall distribution, including some inaccessible areas.

Figure 8 shows that the range and volume of pedestrian flows observed during the
day are higher than in the afternoon, suggesting that crowd activity is more active in the
morning than in the afternoon in Nanhuan New Village. Areas of significant difference
are mainly located along the roads of the school and in the commercial areas along the
streets in the high-rise residential areas to the southeast of the community. This relates
to residents’ morning habits of picking up children and grocery shopping. Throughout
the day, the junction with the square in the centre of the community and the shopping
area to the east has the highest flow of people. This reflects the high level of vitality of
the central high-rise residential area and the eastern commercial area as the most active
areas of social and economic activity. Central Square is a local activity hub with a high
crowding level. This functional open space allows people to organise activities such as
shopping, dancing, fitness and chatting. In addition to the squares, pedestrians are also
present in each neighbourhood’s green spaces and entrances. People prefer the former for
recreational activities, such as resting, and have to enter and leave the community through



ISPRS Int. J. Geo-Inf. 2022, 11, 626 17 of 26

the latter. In summary, the degree to which people congregate is significantly influenced by
the type of activities the place can serve locally. More specifically, an area’s land use and
diversity represent this capacity, and we argue that diversity contributes significantly to
the measurement of urban vitality when using the 5D model.

Figure 8. Distribution map of pedestrian flows.

6. Discussion
6.1. How Can the ‘5d’ Model Guide Small-And-Medium Scale Community Vitality Assessment?

Combing the vitality distribution results from the ‘5d’ model assessment (Figure) and
previous literature in Section 1, we can summarise the following conclusions. By comparing
all the driving factors, ‘Density’ has the most noticeable positive impact (especially the GSI
and FSI indicators, which are 0.2286 and 0.1258, respectively). In contrast, block size has no
significant driving impact on urban vitality in Nanhuan New Village (as shown in Table 7,
BS has been given to only 0.0236 of weight and therefore shows a minimal impact). The
most vibrant blocks are those of larger block sizes, and the smallest-sized school districts
obtain a relatively low PVI. Some blocks (A & I; Q & E) have similar size but have disparate
vitality values. Additionally, although the weight given to ‘Diversity’ and ‘Design’ is
similar, the former demonstrates a greater association with urban vitality than the latter.
These results, in general, coincided with the ‘3d’ assessment model, as higher levels of
population density and built potentials, functional diversity and mix-use, and high-quality
urban design are prerequisites for stimulating superior vitality performance [22,44,53,54].
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Table 7. Comparison between theoretical and realistic scenarios of ‘5d’ indicators on urban vitality.

Dimension Indicator Theoretical
Correlation

Real-Life
Correlation AHP Weight AHP Weight by

Dimension

Density
Ground space index (GSI) + + 0.2286

0.4236Floor space index (FSI) + + 0.1258
Spacemate + + 0.0692

Diversity
Land use diversity (LD) + + 0.0568

0.2270Land use evenness (LE) + + 0.1135
Function density (DF) + + 0.0568

Design

Link connectivity index (LC) + + 0.0929

0.2270
Block size (BS) − Irrelevant 0.0236

Green index (GI) + + 0.0731
Enclosure rate (ER) − + 0.0375

Position
Destination accessibility (DA) + + 0.0815

0.1223Distance to transit (DT) + + 0.0408

The difference between this article and that of Li et al. (2022) is that their research
did not consider the weight for each ‘5d’ indicator, and they listed both position factors
(‘Destination accessibility’ and ‘Distance to transit’) as the two most important factors
driving urban vitality [8]. However, at the community level, the original ‘3d’ dimensions
(‘Density’, ‘Diversity’, ‘Design’) remain key elements for forming vibrant spatial quality
and functionality, while the position factors have relatively lower effects. This indicates
that despite the great importance of mobility factors in transport planning (e.g., TOD),
community regeneration should focus more on improving the internal environment and
the morphological features of living space. This echoes the research conclusions on urban
design factors of spatial vitality [22]. The most significant difference between this article
and previous research outcomes is the enclosure rate. According to Oliveira and Medeiros
(2016), a low enclosure rate can bring about a better walking experience, whilst in the
study area, mixed-use and high-density urban areas are located next to the streets enclosed
by high-rise blocks, which might have offset the negative impact of enclosure rate on
community vitality [42].

Previously, the ‘5D’ model has only been used to measure vitality performance across
large-scale urban areas. At the same time, this paper fills the gap between community
regeneration practices and urban vitality assessment by proposing a refined ‘5d’ model.
Based on a deep reflection of previous studies, the measurement criteria, analysis, and
weighting process are selected and moderated to conduct systematic and reactive local
vitality evaluation at the neighbourhood level.

6.2. How Can Real-Time Street Image Support Accurate and Efficient Data Collection?

Supported by new technologies and data, this study is a valuable attempt to combine
human-scale elements with urban-scale analysis and effectively extend the analysis tech-
niques for community vitality. Compared to traditional vitality assessments that rely on
GIS overlay analysis, this study provides a more comprehensive and systematic approach
based on a human perspective. Due to a lack of appropriate tools and data, previous vi-
brancy studies and practices have often been conducted from a top-down perspective with
a flat analysis, making it challenging to incorporate relevant elements of the human scale.
Nanhuan New Village, as a case study in this research, has the characteristics of a small-
scale and complex habitat. This study is based on the human and environment-oriented
perspective to address this characteristic. The wearable camera was used to measure the
real-time spatial quality of the street, pedestrian, and vehicular information, compensating
for the shortcomings of traditional quantitative analysis in terms of small scale and accuracy.
Content capture of street photos taken by wearable cameras enabled greenery visibility
and pedestrian numbers to be obtained more accurately. Meanwhile, the combination of
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street-based data analysis and spatial design network analysis (sDNA) software allowed
for accurately measuring street network accessibility.

In summary, wearable devices can be used in conjunction with the collection and
use of urban streetscapes to address the shortcomings of quantitative urban research that
ignores the personality and characteristics of the city itself. This multi-source analysis of
urban data can be used to study issues at the city scale and community level with a focus
on the human dimension. This is particularly suitable for research applications at the micro
and medium scales. With the use of photographic location information as the starting
point, and software visualisation technology as the support, the research process is spatially
recorded. The image elements are managed orderly, offering the possibility of in-depth and
accurate analysis using the 5D concept to measure the quality of the built environment.

Using wearable cameras to collect street images helps tackle issues such as homo-
geneous BE patterns within a single phase of property development, the lack of high-
resolution satellite images, higher impurities, and poorer positioning accuracy in the
construction of local human activities. Therefore, our research proposes an effective way to
overcome significant research constraints in urban data analysis, which is more accurate
and efficient than traditional data collection and processing methods.

6.3. How Can We Verify the Assessment Results from Both Morphological and People-Oriented
and Environment-Oriented Perspectives?

The ‘5d’ assessment results and the actual distribution of urban vitality have apparent
spatial heterogeneity. By comparing Figures 6 and 8, we can obtain two explicit conclusions.
First, the diversity level calculated from both methods is highly overlapped in the retail
streets (Tonghe Street, central Nanhuan Street) and the eastern periphery of the Huilin
Centre shopping mall. Central Health Square and Tonghe Street intersection shows the
most significant crowd gathering and the highest PVI. The street shops provide diverse
places for lingering, consumption, and community gathering, and the large shopping mall
also stimulates high urban vitality.

Unlike Tonghe Street, the intersection of two neighbourhood streets (Yiqiao Lane and
Xiaoyuan Street) shows disparate vitality levels in the two methods. The reason could be
that the place is located at the only entrance of Nanhuan New Village. Another difference is
the informal entrance of the community, located between blocks F and L (Figure 6), on the
western segment of the South Ring Express Way of the study area. These entrances directly
bring about large flows of pedestrians and cars. Their volume concerns employment and
industrial links between the community and the city. Thus, such inconsistency is not caused
by evaluation units or problematic processing data approaches and does not impair the
reliability of the proposed assessment model.

Overall, the modelling and assessment process results precisely reflect real-life commu-
nity vitality. Therefore, this comparative study combines the shaping effect of morphologi-
cal features and people and environment-oriented perspectives to offer a new methodology
for community-level vitality assessment. It successfully proves the validity of the ‘5d’
model and multi-source big data’s validity in effectively examining urban vitality and its
driving indicators.

7. Conclusions

The development of information collection technologies has changed the way scholars’
study urban science. Wearable devices, such as cameras and sensors, for example, provide
practical tools for the human-centred perspective of urban identity mapping and new
exploration in the context of digital urban renewal. Meanwhile, spatial network analysis
tools such as GIS and sDNA are gradually developing and maturing, and scholars in urban
research are gradually applying multi-source urban data.
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As envisaged by Ewing and Cervero (2001), the quantification of urban vitality can
be reflected in terms of density, diversity, design, destination accessibility, and transporta-
tion distance [26]. This study effectively integrates classical 5D theory with urban data
and weighting algorithms in depth to propose a spatial vitality measure for high-density
resettlement communities with a general practical application. Through data from field
works and calculations, this study shows how the level of vitality changes in the small
scale high-density residential community selected as a case study. In detail Tonghe Street,
central Nanhuan Street, and the eastern periphery of Huilin Centre have very high levels of
vitality, which is also verified by the crowd gathering and activities measured in Nanhuan
New Village. This higher vitality is due to the morphological features of living space.

Based on these findings, our study proposes some suggestions for measures to improve
the vitality of such small-scale, high-density communities. The methodology and findings
can be extended to other regions or cities with similar characteristics and can be used to
develop urban vitality shaping strategies.

8. Limitations and Future Research

Our study has some limitations that will be addressed in future research. First, for the
experimental design, it is still debatable how to replace the camera and walking observation
with new techniques able to mitigate the influences caused by path route, angle of the lens,
timing, and other factors to increase feasibility and validity.

Second, even if the real-time investigation was intensive and multiplied over 15 days
and the number of images were enough for the kind of analysis processed, the timeframe
of two weeks may be extended in future projects to collect more image data. It has to be
added that when measuring the data related to the Nanhuan New Village, the data did
not fully cover the whole study area due to traffic control, land use regulations or other
area-based constraints.

Third, streetscape photographs cannot obtain spatial information within the private
spaces of the community. In addition, the AHP weights used in the current study were
based on the experience of a team of experts. The analysis of the sampling indicators
was based on the objective environment and lack the subjective perceptions of the resi-
dents. Therefore, there may be discrepancies between the relevant results and the public
experience.

Future research can further integrate various data and algorithms to carry out more
accurate measurements for spatial vitality to improve accuracy and applicability. This
could include”

(1) Considering the influence of social and economic factors such as building age, history
and culture, and housing price on spatial vitality, and exploring the heterogeneity and
locality of different spaces to bring non-built environment influence spatial vitality.

(2) Conducting a more in-depth study of the categories of people and activities to which
the space is applicable. People of different places and ages often have different levels
of preference for gathering and dispersal. At the same time, the behavior of residents’
special activities to modify the site’s original function, such as temporary plazas and
informal entrances and exits, can also have a notable impact on community vitality.

(3) Incorporating consideration of public feedback. Future relevant quantitative analysis
should try to collect residents’ perceptions and evaluations of these indicators and
adjust the weighting of each element for correction.
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Appendix A. AHP Analysis Experts Results and Weight Attribution Process

Tables A1–A5 present the results of the AHP scores of the five experts we asked in
the relevant fields, including the “middle level elements. The experts were asked to make
a pairwise comparison of the elements, based on their own judgement on a scale of 17
from absolute importance (registered as 9) to absolute disadvantage (1/9). The results were
recorded in numerical form in the Yaahp software, and when all the results were entered
into the software, the software calculated the results based on the scoring. Tables A8–A11
show the consistency test produced during the AHP analysis.

Table A1. Expert 1.

Density Diversity Design Position

Density 3 3 2
Diversity 2 1
Design 2
Position

Density FSI GSI Spacemate Diversity Land Use
Diversity

Land Use
Evenness

Function
Density

FSI 1/3 2 Land Use Diversity 1/2 1
GSI 3 Land Use Evenness 2
Spacemate Function Density

Design Link connectivity
index

Average
Block Size

Green
Index

Enclosure
Rate Position Destination

accessibility
Distance
to Transit

Link
Connectivity
Index

3 3 3 Destination
Accessibility 2

Average Block
Size 1/3 1/3 Distance to

Transit

Green Index 1/2
Enclosure Rate



ISPRS Int. J. Geo-Inf. 2022, 11, 626 22 of 26

Table A2. Expert 2.

Density Diversity Design Position

Density 2 2 3
Diversity 1 2
Design 2
Position

Density FSI GSI Spacemate Diversity Land Use
Diversity

Land Use
Evenness

Function
Density

FSI 1/2 2 Land Use Diversity 1/3 2
GSI 3 Land Use Evenness 3
Spacemate Function Density

Design
Link con-
nectivity
index

Average
Block
Size

Green
Index

Enclosure
Rate Position

Destination
accessibil-
ity

Distance
to
Transit

Link Connectivity Index 3 2 3 Destination
Accessibility 3

Average Block Size 1/2 1/3 Distance to
Transit

Green Index 2
Enclosure Rate

Table A3. Expert 3.

Density Diversity Design Position

Density 4 4 3
Diversity 2 3
Design 2
Position

Density FSI GSI Spacemate Diversity Land Use
Diversity

Land Use
Evenness

Function
Density

FSI 1/2 3 Land Use Diversity 1/2 2
GSI 3 Land Use Evenness 2
Spacemate Function Density

Design
Link con-
nectivity
index

Average
Block Size

Green
Index

Enclosure
Rate Position Destination

accessibility
Distance
to Transit

Link Connectivity Index 4 2 3 Destination
Accessibility 2

Average Block Size 1/2 1/3 Distance to
Transit

Green Index 3
Enclosure Rate
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Table A4. Expert 4.

Density Diversity Design Position

Density 2 3 2
Diversity 2 4
Design 2
Position

Density FSI GSI Spacemate Diversity Land Use
Diversity

Land Use
Evenness

Function
Density

FSI 1/3 3 Land Use Diversity 1/2 3
GSI 4 Land Use Evenness 3
Spacemate Function Density

Design
Link con-
nectivity
index

Average
Block Size

Green
Index

Enclosu-re
Rate Position Destination

accessibility
Distance
to Transit

Link Connectivity
Index 2 2 2 Destination

Accessibility 3

Average Block Size 1/2 1/3 Distance to
Transit

Green Index 2
Enclosure Rate

Table A5. Expert 5.

Density Diversity Design Position

Density 3 2 2
Diversity 1 2
Design 2
Position

Density FSI GSI Spacemate Diversity Land Use
Diversity

Land Use
Evenness

Function
Density

FSI 1/2 3 Land Use Diversity 1/3 2
GSI 4 Land Use Evenness 3
Spacemate Function Density

Design
Link con-
nectivity
index

Average
Block Size

Green
Index

Enclosure
Rate Position Destination

accessibility
Distance
to Transit

Link Connectivity
Index 3 2 2 Destination

Accessibility 2

Average Block Size 1/3 1/2 Distance to
Transit

Green Index 3
Enclosure Rate
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Table A6. Ranking weight of elements to decision objectives in scheme level.

Alternative Weight

GSI 0.2286
Land Use Evenness 0.1348

FSI 0.1258
Link Connectivity Index 0.1010
Destination Accessibility 0.0917

Space Mate 0.0692
Green Index 0.0586

Land Use Diversity 0.0566
Enclosure Rate 0.0430

Function Density 0.0357
Distance to Transit 0.0306
Average Block Size 0.0244

Table A7. Ranking weight of elements in the first intermediate layer for decision objectives.

Elements Weight Attributes

Density 0.4236
Design 0.2270

Diversity 0.2270
Position 0.1223

Table A8. 5D consistency ratio: 0.0039; Weight of “5D”: 1.0000; λ max: 4.0104.

5d Density Diversity Design Position Wi

Density 1.0000 2.0000 2.0000 3.0000 0.4236
Diversity 0.5000 1.0000 1.0000 2.0000 0.2270
Design 0.5000 1.0000 1.0000 2.0000 0.2270

Position 0.3333 0.5000 0.5000 1.0000 0.1223

Table A9. Density Consistency ratio: 0.0088; Weight of “5D”: 0.4236; λ max: 3.0092.

Density FSI GSI Space Mate Wi

FSI 1.0000 0.5000 2.0000 0.2970
GSI 2.0000 1.0000 3.0000 0.5396

Space mate 0.5000 0.3333 1.0000 0.1634

Table A10. Diversity Consistency ratio: 0.0516; Weight of “5D”: 0.2270; λ max: 3.0536.

Diversity Land Use
Diversity

Land Use
Evenness

Function
Density Wi

Land Use Diversity 1.0000 0.3333 2.0000 0.2493
Land Use Evenness 3.0000 1.0000 3.0000 0.5936

Function Density 0.5000 0.3333 1.0000 0.1571

Table A11. Design Consistency ratio: 0.0618; Weight of “5D”: 0.2270; λ max: 4.1649.

Design Link Connectivity
Index

Average
Block Size

Green
Index

Enclosure
Rate Wi

Link Connectivity Index 1.0000 3.0000 2.0000 3.0000 0.4448
Average Block Size 0.3333 1.0000 0.5000 0.3333 0.1076

Green Index 0.5000 2.0000 1.0000 2.0000 0.2581
Enclosure Rate 0.3333 3.0000 0.5000 1.0000 0.1896
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Table A12. Position Consistency ratio: 0.0000; Weight of “5D”: 0.1223; λ max: 2.0000.

Position Destination Accessibility Distance to Transit Wi

Destination
Accessibility 1.0000 3.0000 0.7500

Distance to Transit 0.3333 1.0000 0.2500
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