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Abstract: With the rapid development of web service technology, automatic land cover web service
composition has become one of the key challenges in solving complex geoprocessing tasks of land
cover. Service composition requires the creation of service chains based on semantic information
about the services and all the constraints that should be respected. Artificial intelligence (AI) planning
algorithms have recently significantly progressed in solving web service composition problems.
However, the current approaches lack effective constraints to guarantee the accuracy of automatic
land cover service composition. To address this challenge, the paper proposes a domain constraints-
driven automatic service composition approach for online land cover geoprocessing. First, a land
cover service ontology was built to semantically describe land cover tasks, data, and services, which
assist in constructing domain constraints. Then, a constraint-aware GraphPlan algorithm was
proposed, which constructs a service planning graph and searches services based on the domain
constraints for generating optimal web service composition solutions. In this paper, the above
method was integrated into a web prototype system and a case study for the online change detection
automatic geoprocessing was implemented to test the accuracy of the method. The experimental
results show that with this method, a land cover service chain can generate automatically by user
desire objective and domain constraints, and the service chain execution result is more accurate.

Keywords: land cover; automatic web service composition; GraphPlan; domain constraints; online
geoprocessing

1. Introduction

Efficient and reliable land cover information plays an essential role in environmental
monitoring [1–3], resource management [4], urban studies [5], ecological assessment [6,7],
and many other social-benefit areas. Traditionally, most land cover geoprocessing models
have been proposed with desktop software systems in an offline manner, which is time-
consuming and inefficient [8,9]. With the development of cloud computing and service
computing technologies, more and more land cover data and geoprocessing models have
been developed and published as web services over the web, and online geoprocessing has
become a hot spot for current research [10]. Online land cover geoprocessing efficiently
supports users to access data and computing resources from anywhere on the network
and offers advantages in real-time spatial analysis, data and service resource sharing, or
repetitive task automation [11].

In recent years, web service technology has been widely used in online land cover
geoprocessing [12,13]. It is an effective way to address complex land cover tasks by compos-
ing several atomic services according to service descriptions. In general, the existing web
service composition methods can be divided into two categories, i.e., manual service com-
position and automatic service composition [14]. During the manual service composition
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process, the user must specify the workflow and manually select and bind specific services
based on the matching relationship, which heavily relies on domain expert knowledge. In
contrast, automatic services composition methods support the automatic discovery, selec-
tion, and binding of composite services with little human intervention [15]. AI planning
has been an active area for automatic web service composition [16], and GraphPlan [17] is
one of the most commonly-used algorithms in this approach. GraphPlan constructs service
chains dynamically based on the semantic parameter matching relationships between
services and changes in QoS values [18–20].

Compared with common web services, land cover services have distinctive domain
characteristics of multi-sourcing data type and diversity geoprocessing services. First, the
data involved in land cover are often acquired from various sensors with different spatial,
temporal, spectral, and radiometric resolutions. Second, land cover geoprocessing services
often have specific constraint requirements on the data, which cannot handle all types
of remote sensing data. The coupling degree between the land cover services and their
input data is high, and the business logic is closely related. Although GraphPlan has been
successfully used in many computational domains, it has not been fully discussed in the
online land cover geoprocessing service composition. This is mainly because that complex
domain constraints information has not been considered, which is important to guarantee
the accuracy of service composition.

To address the above challenge, we propose a domain constraints-driven automatic
service composition approach for online land cover geoprocessing. First, a land cover
service ontology was proposed to describe the land cover tasks, data, and services and
assist in constructing land cover domain constraints. Second, a constraint-aware Graph-
Plan approach with service parameter constraints and logical process constraints was
proposed. In the forward search process of GraphPlan, services were filtered and pruned
by logical process constraints, which can accurately capture the true composition relation-
ships between atomic services and improve the accuracy of service composition. In the
GraphPlan backward search process, service parameter constraints were used to guide the
direction of the service search in order to find the optimal service composition solution.
Finally, the methods in this paper were integrated into a web system for online land cover
geoprocessing and proved their validity.

The paper is organized as follows. Section 2 explores the existing methods for au-
tomatic geoprocessing service composition. Section 3 describes our proposed method.
Section 4 designs an application case to illustrate the effectiveness and feasibility of the
proposed approach, and Section 5 focuses on the problems encountered during the im-
plementation of the service composition. The paper concludes with conclusions and
recommendations for future research.

2. Related Work
2.1. Automatic Geoprocessing Service Composition Method

In early studies of automatic geoprocessing service composition, service chains were
often composited by backlinking service input and output parameters [21–25]. However,
those approaches have a significant drawback. If two different services have the same input
and output parameters, it is not easy to distinguish between them. In recent years, many
researchers have highlighted the importance of semantic information about service in geo-
processing service composition, arguing that an essential task during service composition
is to discover services with appropriate functions [26–29]. The inputs and outputs between
neighboring services must not only match in terms of parameters but also in terms of their
syntax and semantics. Ontology has become a common tool for describing the semantic
information of geoprocessing services, and ontological approaches are currently the most
common methods for automatic geoprocessing service composition. In this direction, Li
et al. (2019) proposed the concept of a spatial operation ontology to classify spatial data
and services, and defined a series of spatial operations linking rules that automatically
generate executable workflows through recursive algorithms [30]; Ulutas et al. (2021)
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classified and represented different geospatial services through a defined geospatial service
ontology, using semantic web technologies to find and match services, applying them to the
automatic service composition for geographic siting [31]; Scheider et al. (2020) proposed a
core concept data type ontology [32] and discussed its importance in the automatic GIS
workflow construction [33].

More recent attempts have been made to automate the geoprocessing service composi-
tion using AI planning and program synthesis techniques. Farnaghi et al. (2018) explored
an approach for automatic geospatial service composition under the geoportal, where the
method uses an improved heuristic search algorithm to search for services and utilizes the
computing power of CSW services to solve large-scale service composition questions [34].
Kruiger et al. (2021) used the automated pipeline explorer [35] (APE) tool to automate
the synthesis of common geographic analysis task workflows through the concept of core
conceptual data type ontology [36]. Some efforts have also been made to automate geo-
processing service composition with deep learning techniques [37–39]. However, most of
the current research has focused on automatic service discovery and selection, while less
attention has been paid to the accuracy of the generated service chains and the compatibility
between adjacent services.

2.2. Constraints in Geoprocessing Service Composition

The constraints involved in service composition refer to the feature restrictions im-
posed on the service selection process to clarify the functionality of the service chain
and guarantee its correct invocation. Constraints are interpreted from different perspec-
tives in the study of service composition in computer science, such as QoS [40], context
heterogeneity [41], and customer requirements [42].

Semantic constraints are increasingly considered critical in intelligent geoprocessing
web service composition research. In this direction, Wiemann et al. (2018) utilize data
constraints and operational constraints to dynamically search and bind geoprocessing
services, facilitating spatial data analysis and decision-making in the environmental do-
main [43]. Xing et al. (2019) proposed an automatic service composition approach based on
the semantic matching of constraint rules [14]. Hou et al. (2021) proposed a new method
for parameter constraints of geoprocessing tools based on high-level and standard con-
straint language (SHACL), which ensures that sufficient semantic constraint information is
obtained during the synthesis workflow [44]. Although some constraint information has
been used in geoprocessing service composition, most approaches mainly focused on the
effects of service parameter constraints. Logical process constraints were less considered in
improving the efficiency and accuracy of service composition.

3. Methodology

The framework of the proposed method is shown in Figure 1, which mainly consists
of two steps. In the first step, a land cover service ontology was constructed to represent
the land cover service and domain constraints. In the second step, a constraint-aware
GraphPlan algorithm was proposed to compose the land cover services automatically for
generating an on-demand service chain.
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Figure 1. A methodology framework for the domain constraints-driven automatic land cover service
composition approach.

3.1. Concept Definition for Land Cover Service Composition

This section provides a clear definition of the key concepts in the automatic land cover
service composition.

Definition 1. The land cover service ontology is defined as a tuple O = <C, R>, where: C denotes
the concept of a class in ontology; R represents the hierarchical relationship between classes, which
can be expressed as C2 v C1 if a class is a subclass of another class.

Definition 2. The service parameter constraints represent a restricted relationship between the properties
and values of service ontology individuals. For simplicity, we describe the service parameter constraints
in the following form: Attr Operator Value, where: Attr represents a property of a service; Operator
represents a mathematical relational operator; Value represents a property value. The following is an
example of a complete service parameter constraint expression: “CoordinateSystem” = “WGS84”.

Definition 3. The logical process constraints is defined as a tuple C = <N, T, R>, where: N and T
represent the name and type of the constraint, and R represents the specific constraint rules that
SWRL describes.

Definition 4. A land cover web service is defined as a tuple w = <Des, In, Out, Att>, where: Des
denotes the description of the service; In and Out indicate the inputs and outputs of the service; Att
denotes the data property of the service.

Definition 5. A land cover service composition problem can be used with a tuple <Inreq, Outexp,
ω, O>, where: Inreq denotes the request data provided by the user; Outexp denotes the output data
expected by the user; ω is denoted as a finite set of services in a service chain, with services linked
sequentially, and a set of service chains can be denoted as ω = <{w1}, {w2, w3} . . . . . . {wn}>; O is
the land cover service ontology, and domain constraints are constructed based on ontology.

A land cover service composition problem is simply mapped to a Graphplan problem.
The planning goal corresponds to the user’s desired output goal, and the plan corresponds
to a set of executable land cover service chains [45]. The process of Graphplan to find
the shortest planning path can also be mapped to find the optimal service chain in the
composition problem.
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3.2. Land Cover Service Ontology and Domain Constraint Representation

Fully automatic service composition methods still need to be implemented, partly
because of the lack of all the semantic information concerning the service composition [31].
Ontology is the formal modeling of knowledge, which defines the hierarchical classification
of concepts and their interrelationships and facilitates the sharing and reusing of knowledge.
Semantic description of web services through ontology models enables computers to
understand the inputs and outputs of services and facilitates correct semantic links between
web services [27].

According to the domain characteristics of land cover service, we developed a land
cover service ontology (LCSOnt) to describe the data, land cover service, and the relation-
ships between services in a unified way, which is the central basis of the whole work. The
ontology consists of four parts (Figure 2), i.e., task ontology, data ontology, service ontology,
and service chain ontology.
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Figure 2. An ontology called LCSOnt describes land cover knowledge and facilitates the connection
of land cover processes.

The task ontology describes the concepts within the task or reasoning behavior and the
relationship between concepts, including task process, task constraints, and task property.
The service ontology is defined for the description of the web services. In this study,
the land cover services are divided into three categories: data service, catalogue service,
and processing service, each of which contains the respective property information, such
as input parameter, output parameter, type, etc. Among them, service parameters are
represented using data ontology. The service chain ontology describes the workflow for
solving complex task situations. It does not define subclasses and contains only some
data properties, including the service chain description, service chain publisher, service
collection of the service chain, and the relationship between services, etc. Data ontology
is intended to describe the type of data, as well as the input and output of processing
service and service chain, which can be divided into two main categories: spatial data
and non-spatial data. Spatial data formats are the foundation of spatial data. Considering
the complex and diverse parameters of the land cover service and that most of them are
spatial data, we summarize all possible formats of its spatial data parameters. Spatial
data is classified into vector and raster data, and the “format” data property describes
their specific data format. In vector data, the possible data formats include KML/KMZ,
WTK, WTB, GML, ShapeFile, DXF/DWG, GPX, GeoJSON, etc. In raster data, the possible
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data formats include TIFF, GeoTIFF, NITF, Grid, JPEG, GRASS Raster, DEM, IMG, HDF,
etc. In addition, an “algorithm-data” service relationship between the land cover service
and the imagery data used is described using the data property of the ontology. The land
cover service relationship is a functional and non-functional constraint association between
services that help the automatic construction of processing workflows, which has already
been proposed in our previous work [46].

In order to automate the composition of land cover services, the main challenge is to
find appropriate semantic descriptions for domain constraints. In this paper, domain con-
straints include service parameter constraints and logical process constraints, and different
domain constraints are represented in different ways. Service parameter constraints are
represented by the data property of the service ontology individual, and logical process
constraints are expressed using semantic web rule language (SWRL) based on the con-
cept of LCSOnt. SWRL is an authoritative rule markup language proposed by the W3C
that extends the expressiveness of OWL data through rule editing of elements defined in
the ontology [47]. SWRL is intended to add additional information about relationships
rather than acting as a programming language. The task of service chain generation can-
not be satisfied by monotonic reasoning through SWRL rules alone. Therefore, we use
OWLAPI [48], SWRLAPI [49], and SQWRL [50] for reasoning and querying land cover
domain knowledge.

3.3. Constraint-Aware GraphPlan Algorithm

This section provides an outline of our planned constraint-aware GraphPlan approach.
The service composition using the GraphPlan approach typically consists of the following
two phases, i.e., forward search and backward search. During the forward search of
GraphPlan, the land cover semantic service planning graph is generated based on the logic
process constraints. Then, the backward search process uses the improved A* algorithm to
generate land cover on-demand service chains by searching related web services.

3.3.1. Constructing the Land Cover Semantic Service Planning Graph

The service planning graph is a directed acyclic hierarchical graph containing two
levels, parameter level P and service level A (Figure 3). The first level of the service
planning graph is the parameter level P0, whose nodes are composed of user request input
parameters. The second level is service level A1, where the input parameters for each
service node contain the first-level parameters. The third layer is the parameter layer,
which contains all the parameters of the P0 layer and all the output parameters of the
A1 layer, and so on, alternating between P and A. The final layer is the parameter layer,
consisting of the output parameters expected by the user.
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A forward search algorithm (Algorithm 1) is used to construct the service planning
graph. In this step, logical process constraints are used along with the service parameter
relationship to boost the service planning graph’s semantic information and reduce redun-
dancy in the service planning graph. The algorithm accepts as input the user request input
parameter Inreq, the user desired output parameter Outexp, the service ontology O, and the
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logical process constraints C, and the semantic service planning graph SG is given as output.
The algorithm starts with the parameter level P0 containing Inreq, and the service level is
empty. In the next step, the algorithm checks whether Inreq requires data pre-processing,
and if so, adds the pre-processing services that satisfy the inference results of the logical
process constraint rules to the service level A1 (Algorithm 1, lines 3–10). Next, lines 12 to
18 of the algorithm recursively analyze the accessibility of each service that can be added to
the next service level, see whether its parameters match the services in the previous service
level, and satisfies the logical process constraint rules inference result, then adds the filtered
services and their parameters to the new service level and parameter level. The graph SG is
iteratively expanded until the planning graph reaches a point where the parameter layer
contains all the output parameters needed by the user and the logical process constraint
rules inference result is satisfied, or the planning graph reaches a fixed point level, the
graph construction algorithm then stops.

Algorithm 1. Forward Search

Input: InReq, OutExp, O: Service Ontology, C: Logic Process Constraints
Output: SG: Semantic Service Planning Graph

1: A = ∅; P= {InReq}; SG = {A, P};
2: S = GetOntService(O);
3: if InReq is statisfied C then
4: for each w in S do:
5: if w is statisfied C then
6: A = A∪{w};
7: P = P∪{w.Out};
8: end if
9: end for

10: end if
11: repeat
12: for each w in S do:
13: if w.In ⊆ P and w is statisfied C then
14: A = A∪{w};
15: P = P∪{w.Out};
16: end if
17: end for
18: SG = SG∪{A, P};
19: until OutExp⊆ P ∧ G is statisfied C.process ∨ Fixedpoint(SG);

Figure 4 shows a simple diagrammatic representation of the service planning graph
construction method. The algorithm in this section searches and filters services according
to the inference results of logical process constraint rules under the premise of service pa-
rameter matching, grasps the real connection relationship between services, and optimizes
the service search space. The generated service planning graph provides a unique search
area where services from two adjacent service levels are also adjacent in the land cover
service chain.
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3.3.2. Service Composition Based on an Improved A* Algorithm

To find the optimal service composition solution in the service planning graph within
the shortest time, we used the improved A* algorithm to reverse search the land cover
service planning graph generated in the previous section. The basic idea of the A* algorithm
is to determine an evaluation function and continuously search in the direction of the target
point depending on the evaluation function from the starting point, while recording the
points determined by each search until the target point is searched. Finally, return from
the target point to the starting position to obtain the minimum cost path. The standard
expression of the A* algorithm is f(n) = g(n) + h(n), where f(n) is the evaluation function
of the current point, and g(n) and h(n) are the cost function and the heuristic function,
respectively. In path planning, g(n) and h(n) usually refer to the physical distance between
two points. This paper treats service composition as a pathfinding problem in a graph.
Certain concepts of the A* algorithm must be redefined to adapt to the composition of land
cover services with complex service parameter constraints.

The calculation of the function f(n) is redefined. The functions g(n) and h(n) are
calculated as follows:

g(n) =
1

1 + e−(# node.step in servicechain)
(1)

In Equation (1), g(n) is used to evaluate the cost from the starting point to the current
point, expressed in terms of the number of services in the service chain, whose value maps
between 0 and 1—using the Sigmoid function. The fewer services used, the better, provided
the accuracy of the service chain generation results is guaranteed;

h(n) =
# Number of mismatched service parameter constraints

# Total number of service parameter constraints
(2)

In Equation (2), h(n) is represented as the degree of matching of the service parameter
constraints between the current node and the target node. Table 1 describes examples of
service parameter constraints and their matching meaning, where a parameter constraint
matches between services if the forward service output parameter satisfies the backward
service input parameter requirements. h(n) is calculated as the ratio between the number of
unmatched service parameter constraints in the two service nodes and the total number of
defined service parameter constraints. Its output value ranges between 0 to 1. To ensure the
accuracy of the service composition result, the service node that best matches the service
parameter constraints of the current service node must be selected, leading the search
direction to the target service node.

Table 1. Examples of service parameter constraints and their matching meaning.

Constraint Content Data Type Matching Meaning

spatial resolution
band

Numeric w1.output.sr = w2.input.sr
Int w1.output.band = w2.input.band

scale String w1.output.scale = w2.input.scale
coordinate reference system String w1.output.crs = w2.input.crs
projection reference system String w1.output.proj = w2.input.proj

data format String w1.output.format = w2.input.format
data category String w1. dataSource = w2. dataSource

data size Double w1.output.size ≤ w2.input.size

Secondly, the path search strategy has been improved. In path planning, only one
node is searched in the neighboring nodes. In contrast, in service composition, the number
of nodes searched in adjacent nodes depends on the input parameter of the previous service
node. The previous service node contains several input images, it searches for several
service nodes in the next service level, and these service nodes then continue to search
in parallel.

Algorithm 2 is the pseudo-code for the backward search algorithm (Algorithm 2). As
shown in the table, the algorithm accepts as input the service planning graph G, the input
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Inreq and the composition targetOutexp. It attempts to find the land cover service queue
SrvSet that meets the user’s requirements. The algorithm contains an openSet, a closeSet,
and a currentSet, where the openSet holds the list of nodes to explore, the closeSet holds
the generated list of nodes, and the currentSet stores the current node set. When openSet is
not empty, the algorithm selects the same number of service nodes in openSet to add to the
currentSet based on the number of input images of the previous service node (Algorithm 2,
line 3). The current service nodes are removed from the openSet and added to the closeSet
(Algorithm 2, lines 8–10). The neighbor nodes of the service nodes in the currentSet are
added to the openSet, and their values f, g, and h are calculated afterward (Algorithm 2,
lines 11–19). Until the openSet contains Inreq or the openSet is empty, put Inreq into the
closeSet and the algorithm terminates (Algorithm 2, lines 4–7).

Algorithm 2. Backward Search

Input: G: Planning Graph, InReq, OutExp
Output: SrvSet: Service Set

1: openSet = {OutExp}; closeSet = ∅; SrvSet = ∅; currentSet = {OutExp};
2: while openSet 6= ∅ do

3: currentSet = openSet.getMinCostSevices();
4: if openSet.contain(InReq)
5: SrvSet.add(InReq);
6: return SrvSet;
7: end if
8: openSet.remove(currentSet);

9: closeSet.add(currentSet);
10: SrvSet.add(currentSet);
11: for each next in G.getNeibors(currentSet) do:
12: if next in closeSet then
13: continue;
14: end if
15: if next not in openSet then
16: openSet.add(next);
17: next.calValue();
18: end if
19: end for
20: end while

Figure 5 shows a simplified implementation of the backward search algorithm graphi-
cally, and one can see that the algorithm tends to select low-cost nodes to achieve the target.
The improved A* algorithm can find the optimal service composition solution by guiding
the search direction through the service parameter constraints. For the final output of the
algorithm, the service queue must also be arranged in reverse order to form a service chain,
which is returned as the final result of the land cover task.
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4. Evaluation and Implementation
4.1. Evaluation of the Proposed Method

The performance of the constraint-aware GraphPlan algorithm was evaluated in this
section. Since the number of available land cover services in the web space is limited
and most of the service description information is incomplete, a land cover web service
simulator was developed to generate land cover service. The land cover service generated
by the simulator contains all the semantic information needed for service composition.
We run experiments on a computer with the following configuration: (1) CPU: Intel(R)
Core(TM) i7-4720HQ 2.60GHz RAM: 8.00GB DDR3L-1600. (2) Operating System: Win-
dows 10 Professional 64-bit. Additionally, four land cover service data sets with the
number of services 100, 200, 400, and 800 were simulated to evaluate two phases of the
GraphPlan algorithm.

The results of our evaluation of this algorithm are presented in Figure 6. The first
experiment was conducted using the traditional planning graph construction algorithm
compared to the planning graph construction algorithm proposed in this paper (Figure 6a).
In this figure, the horizontal axis represents the various data sets, while the vertical axis
represents the number of services in the service planning graph. The results show that the
algorithm which generates service planning graphs through logical process constraints re-
duces the redundancy of the graph. The more the number of services, the more pronounced
the effect is. This can improve the efficiency of subsequent service recommendations,
discovery, and composition. The second experiment shows the execution time results for
the overall algorithm and the forward search algorithm with different data sets (Figure 6b).
The test procedure was run 30 times for each data set, taking into account the unnecessary
effects of the operating system and virtual software background processing, and the aver-
age of the algorithm execution times was evaluated. Results show that as the number of
services increases, the service execution consumption time grows smoothly.
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The focus of the algorithm in this paper is to improve the generation capability and
generation quality of the land cover service chain under domain constraints. Therefore, our
evaluation experiments only verified the non-redundancy of the constructed service plan-
ning graph and algorithm time complexity, with no comparison with other geoprocessing
service composition methods to verify its efficiency.

4.2. Implementation in a Web-Based System

To prove the effectiveness of the approach in this paper, we developed a prototype
system and integrated the LCSOnt and the constraint-aware GraphPlan algorithm into the
service composition system module. The system platform is based on the B/S model and
service-oriented architecture (SOA). The publication and execution of land cover services
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are provided by GeoServer and 52◦ North, while SWRLAPI provides the querying and
reasoning of ontology.

A change detection problem was chosen as a system case study. A simple scenario was
considered: if a user is an engineer who is not in the land cover change detection domain
and has no knowledge or experience in this domain. He has two periods of image data
and expects to obtain data on land cover change areas online. We chose two different study
areas and used different resolution spectral images to validate the approach (Figure 7).
The area study details are shown in Table 2. Study area A uses Landsat 8 image data. The
Landsat 8 images were acquired in Dezhou City, Shandong Province, which has a different
coordinate system. Study area B uses Sentinel-2 image data. The Sentinel-2 images were
acquired in Liaocheng City, Shandong Province, which has a different radiation resolution.
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Figure 7. (a) The Landsat 8 image acquired in 2013 in Dezhou City, Shandong Province, China.
(b) The Landsat 8 image acquired in 2018 in Dezhou City, Shandong Province, China. (c) The Sentinel-
2 image acquired in 2016 in Liaocheng City, Shandong Province, China. (d) The Sentinel-2 image
acquired in 2021 in Liaocheng City, Shandong Province, China.

LCSOnt was built using the open-source software Protégé. Figure 8 shows the main
classes and properties of the ontology in Protégé. The left part shows the relationship
between the classes and their subclasses, the middle part shows a visualization of the class
relationships, and the right part shows the object properties between the classes.
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Table 2. A description of user demand and information on images from different study areas.

User Demand Study Area Data Category Description

Input

A

Landsat-8
Remote sensing image data, with a spatial resolution of 2 m,

acquisition time of 21 May 2013, and pixels of 372 × 372,
coordinate system WGS84.

Landsat-8
Remote sensing image data, with a spatial resolution of 2 m, an

acquisition time of 26 August 2018, and pixels of 372 × 372,
coordinate system CGCS2000

B

Sentinel-2
Remote sensing image data, with a spatial resolution of 10 m,

radiation resolution 12 bits, an acquisition time of 16 May 2016,
and pixels of 1225 × 890, coordinate system WGS84

Sentinel-2
Remote sensing image data, with a spatial resolution of 10 m,
radiation resolution 8 bits, an acquisition time of 26 October

2021, and pixels of 1225 × 890, coordinate system WGS84
Expected Output Change area Land cover change data
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Change detection knowledge was represented as logical process constraints using
SWRL and stored in the LCSOnt ontology. Change detection is a complex task requiring
different workflows for different tasks, and a change detection algorithm that detects multi-
ple features works better than detecting a single feature change detection algorithm [51–55].
The multi-feature change detection task workflow is generally divided into the following
four steps: (1) image pre-processing, (2) multi-feature fusion change detection algorithm,
(3) threshold selection, and (4) post-processing. Based on this knowledge, the logical pro-
cess constraints of change detection were defined. Table 3 shows the formal representation
of the SWRL rules for logical process constraints. In logical process constraint rules, the
pretreatment constraint rules aim to check whether the image needs pre-processing services
such as radiation calibration, atmospheric correction, cropping, coordinate conversion, and
format conversion; the logical constraint rules are a constraint for service selection, limiting
the connection relationships between services.
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Table 3. A detailed list of defining logical process constraint rules.

SWRL Type Name SWRL Definition

Pretreatment Constraint
Rules AC_Rule

ServiceChain(?sc) ˆ Service(?s) ˆ label(?s, “AtmosphericCorrection”) ˆ hasInput(?sc,
?in1) ˆ radiometricResolution(?in1, ?rr1) ˆ hasInput(?sc, ?in2) ˆ

radiometricResolution(?in2, ?rr2) ˆ notEqual (?rr1, ?rr2) -> hasPreService(?sc, ?s)

Trans_Rule
ServiceChain(?sc) ˆ Service(?s) ˆ label(?s, “CoorTrans”) ˆ hasInput(?sc, ?in1) ˆ

coordinateSystem(?in1, ?c1) ˆ hasInput(?sc, ?in2) ˆ coordinateSystem(?in2, ?c2) ˆ
notEqual(?c1, ?c2) -> hasPreService(?sc, ?s)

Clip_Rule
ServiceChain(?sc) ˆ Service(?s) ˆ label(?s, “Tailoring”) ˆ hasInput(?sc, ?in1) ˆ

hasInput(?sc, ?in2) ˆ extent(?in1, ?e1) ˆ extent(?in2, ?e2) ˆ notEqual(?e1, ?e2) ->
hasPreService(?sc, ?s)

Logical Constraint
Rules

CD_Rule
ServiceChain(?sc) ˆ hasPreService(?ps) ˆ Service(?s) ˆ type(?s,

“ChangeDetectionService”) ˆ output(?ps, out) ˆ input(?s, in) ˆ equal(?in, ?out) ˆ
label(?s, ?la) ˆ need(?sc, ?nd) ˆ equal(?nd, ?la) -> hasCDService(?sc, ?s)

Fusion_Rule ServiceChain(?sc) ˆ Service(?s) ˆ label(?s, “fusion”) -> hasFusionService(?sc, ?s)

TS_Rule
ServiceChain(?sc) ˆ hasFusionService(?fs) ˆ Service(?s) ˆ type(?s,

“ThresholdSelection”) ˆ output(?fs, out) ˆ input(?s, in) ˆ equal(?in, ?out) ->
hasTSService(?sc, ?s)

PP_Rule ServiceChain(?sc) ˆ hasTSService(?ts) ˆ Service(?s) ˆ type(?s, “PostProcessing”) ˆ
output(?ts, out) ˆ input(?s, in) ˆ equal(?in, ?out) -> hasPPService(?sc, ?s)

Based on the constraint rules defined above, the service level in the change detection
service planning graph was divided into five levels: pre-processing service level, change
detection service level, fusion service level, threshold selection service level, and post-
processing service level. The improved A* algorithm searches layer by layer based on the
service parameter constraints in this planning graph. If a service level is empty, it skips that
level and continues searching, finally finding the optimal service composition solution.

In the system, the service composition module consists of three steps: data preparation,
dynamic generation of service chains, and visualization of service chain execution. The data
preparation step requires uploading the input image data and then filling in the necessary
relevant information about the remote sensing image and the expected data product type.
After the information is completed, the system can generate a land cover change detection
service chain automatically. Finally, execute the service chain and visualize its results.

Uploading the study area A image data into the system, the generated service chain
and its execution result are shown in Figure 9. The left part of the figure shows a visualiza-
tion of the change detection service chain generated by the algorithm. It can be seen that
the algorithm selects the coordinate transformation processing service (Trans) for image
pre-processing, fuses the Sandwich Angle Cosine (SAM) and Euclidean Distance (ED)
services, i.e., fuses the two features of spectral magnitude and spectral shape. Finally, the
EM service is used for threshold selection, and the Sleve service for post-processing. The
right part of the figure shows the service chain execution result. The resulting image is
published as a data service using GeoServer and the user can export and download the
resulting image. After exporting the result, it was found that the result was accurate and
met the user’s desired objective.

After uploading the study area B image data into the system and filling in the relevant
information, the generated service chain and the service chain execution result are shown
in Figure 10. The left part of the figure shows a visualization of the change detection
service chain generated by the algorithm. It can be seen that the service chain uses the
Flaash service for image pre-processing compared to the service chain generated by study
area A. The reason is that the two Sentinel-2 images have the same coordinate system but
different radiometric resolutions. According to the logical process constraint rules, the
spatial operation Flaash was selected for atmospheric correction pre-processing. The right
part of the figure shows the service chain execution result. After exporting the result, it was
also found that the result was accurate and met the user’s desired objective.



ISPRS Int. J. Geo-Inf. 2022, 11, 629 14 of 18

ISPRS Int. J. Geo-Inf. 2022, 11, 629 14 of 19 
 

 

Fusion_Rule ServiceChain(?sc) ^ Service(?s) ^ label(?s, “fusion”) -> hasFusion-
Service(?sc, ?s) 

TS_Rule 
ServiceChain(?sc) ^ hasFusionService(?fs) ^ Service(?s) ^ type(?s, 

“ThresholdSelection”) ^ output(?fs, out) ^ input(?s, in) ^ 
equal(?in, ?out) -> hasTSService(?sc, ?s) 

PP_Rule 
ServiceChain(?sc) ^ hasTSService(?ts) ^ Service(?s) ^ type(?s, 

“PostProcessing”) ^ output(?ts, out) ^ input(?s, in) ^ equal(?in, 
?out) -> hasPPService(?sc, ?s) 

Based on the constraint rules defined above, the service level in the change detection 
service planning graph was divided into five levels: pre-processing service level, change 
detection service level, fusion service level, threshold selection service level, and post-
processing service level. The improved A* algorithm searches layer by layer based on the 
service parameter constraints in this planning graph. If a service level is empty, it skips 
that level and continues searching, finally finding the optimal service composition solu-
tion. 

In the system, the service composition module consists of three steps: data prepara-
tion, dynamic generation of service chains, and visualization of service chain execution. 
The data preparation step requires uploading the input image data and then filling in the 
necessary relevant information about the remote sensing image and the expected data 
product type. After the information is completed, the system can generate a land cover 
change detection service chain automatically. Finally, execute the service chain and visu-
alize its results. 

Uploading the study area A image data into the system, the generated service chain 
and its execution result are shown in Figure 9. The left part of the figure shows a visuali-
zation of the change detection service chain generated by the algorithm. It can be seen that 
the algorithm selects the coordinate transformation processing service (Trans) for image 
pre-processing, fuses the Sandwich Angle Cosine (SAM) and Euclidean Distance (ED) ser-
vices, i.e., fuses the two features of spectral magnitude and spectral shape. Finally, the EM 
service is used for threshold selection, and the Sleve service for post-processing. The right 
part of the figure shows the service chain execution result. The resulting image is pub-
lished as a data service using GeoServer and the user can export and download the result-
ing image. After exporting the result, it was found that the result was accurate and met 
the user’s desired objective. 

 
Figure 9. Diagram of the service chain and the service chain execution result for study area A. 

After uploading the study area B image data into the system and filling in the rele-
vant information, the generated service chain and the service chain execution result are 
shown in Figure 10. The left part of the figure shows a visualization of the change detec-
tion service chain generated by the algorithm. It can be seen that the service chain uses the 

Figure 9. Diagram of the service chain and the service chain execution result for study area A.

ISPRS Int. J. Geo-Inf. 2022, 11, 629 15 of 19 
 

 

Flaash service for image pre-processing compared to the service chain generated by study 
area A. The reason is that the two Sentinel-2 images have the same coordinate system but 
different radiometric resolutions. According to the logical process constraint rules, the 
spatial operation Flaash was selected for atmospheric correction pre-processing. The right 
part of the figure shows the service chain execution result. After exporting the result, it 
was also found that the result was accurate and met the user’s desired objective. 

 
Figure 10. Diagram of the service chain and the service chain execution result for study area B. 

In order to evaluate the generation ability of the change detection chain and the gen-
eration quality of the algorithm, a comparative experiment was also conducted based on 
study area A. The experiment was carried out between the constraint-aware GraphPlan 
algorithm and the traditional GraphPlan algorithm. Figure 11 shows the results of the 
service chains generated by these two methods. As can be seen that the service chain gen-
erated by the former approach incorporates two features (Figure 11a). In contrast, the ser-
vice chain generated by the latter method detects only one single feature, and there is no 
coordinate conversion process (Figure 11b). In addition, we sent the service chains gener-
ated by these two different methods to the execution engine, and only the service chain in 
Figure 11a was successfully executed. The service chain in Figure 11b failed to execute 
because of a mismatch in the service parameter constraints between the CVAPS service 
and the EM service. 

 
Figure 11. Two generated change detection service chains. (a) A service chain based on the con-
straint-aware GraphPlan algorithm; (b) A service chain bases on the traditional GraphPlan algo-
rithm. 

Figure 10. Diagram of the service chain and the service chain execution result for study area B.

In order to evaluate the generation ability of the change detection chain and the
generation quality of the algorithm, a comparative experiment was also conducted based
on study area A. The experiment was carried out between the constraint-aware GraphPlan
algorithm and the traditional GraphPlan algorithm. Figure 11 shows the results of the
service chains generated by these two methods. As can be seen that the service chain
generated by the former approach incorporates two features (Figure 11a). In contrast, the
service chain generated by the latter method detects only one single feature, and there
is no coordinate conversion process (Figure 11b). In addition, we sent the service chains
generated by these two different methods to the execution engine, and only the service
chain in Figure 11a was successfully executed. The service chain in Figure 11b failed to
execute because of a mismatch in the service parameter constraints between the CVAPS
service and the EM service.

The reasons for these results are as follows. First, the service planning graphs con-
structed by both are different. The traditional GraphPlan algorithm does not consider
the influence of expert knowledge on service planning graph construction. The service
planning graph based on the traditional method contains only three service levels. There is
no correct connection between service levels, leading to wrong service chain results from
the backward search. Second, the constraint-aware GraphPlan algorithm considers expert
knowledge to ensure the correct logical relationship between service levels. Additionally,
the constraint-aware GraphPlan algorithm uses an improved A* algorithm in the backward
search process to search for services based on service parameter constraints, which ensures
compatibility among adjacent services in the service chain.
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5. Discussion

LCSOnt provides a unified semantic description for land cover tasks, data, and ser-
vices. The constraint-aware GraphPlan algorithm restricts the service composition search
space by logical process constraints when constructing a service planning graph, which
results in the service planning graph with real composition relationships. The backward
search process uses the improved A* algorithm, which guides the path search direction
through service parameter constraints and finally produces the optimal service composition
scheme. Despite the advantages of the method described above, some critical issues must
be improved.

Since there is no ready-made service composition ontology for the land cover domain,
we have constructed an ontology to serve the land cover service composition. One of the
essential elements of the land cover service composition is to capture sufficient semantic
constraint information in this ontology. However, the completeness of the LCSOnt concept
requires further experimentation. Which concepts are missing, which concepts are relevant
for the constraint information, and is the ontology applicable to all land cover tasks? To
address this weakness, we plan to develop and test LCSOnt in more diverse and complex
land cover task scenarios, continuing to refine the concepts, relationships, and semantic
constraint information of the ontology.

The attribute description information of land cover services published in the web
space is usually incomplete, and there is no uniform standard for their semantic description.
This means that in the approach of this paper, the semantic information of the land cover
task, data, and service needs to be labeled manually by uniform terminology. Adding
semantic information to the land cover service using ontology is tedious. In the future, we
plan to introduce semantic matching techniques to measure similar land cover concepts.
Users do not need to know the terminology of the land cover domain, and the algorithm
understands the task objective in just one sentence.

Moreover, the algorithm does not use semantic matching techniques to measure similar
concepts defined by different terms. In the future, we plan to introduce semantic matching
techniques to measure similar land cover concepts. The user does not need to know the
terminology of the land cover domain; the algorithm understands the task objective in just
one sentence.

6. Conclusions

This paper proposed a domain constraints-driven automatic service composition
approach for online land cover geoprocessing. A land cover service ontology, consisting of
task ontology, service ontology, service chain ontology, and data ontology, is proposed to
add the required semantic information to the land cover service composition. A constraint-
aware GraphPlan algorithm is then proposed. It incorporates logical process constraints
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to optimize the search space in the forward search to generate a service planning graph.
The A* algorithm is used in the backward search process, and its calculation and search
strategy are improved to improve the accuracy of the generated service chain. The service
composition approach that considers domain constraints is suitable for complex land cover
application scenarios.

The algorithm was integrated into the service composition module of a prototype
web-based system to verify its accuracy. The module was used to solve automatic service
composition problems in case studies related to land cover. Users do not need sufficient
prior knowledge but only need to provide input data information and target demand
to obtain land cover change data products. The solution is, therefore, also suitable for
implementation and uses in realistic scenarios.

In future work, we will test our ontology and algorithm in multiple land cover applica-
tion scenarios, verifying the integrity of the ontology and the applicability of the algorithm.
In addition, we will consider creating a broader and more complex collection of land cover
semantic web services on which to test our method and discuss its performance. Next, we
will consider QoS’s impact on service discovery and selection during service composition.
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