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Abstract: Massive taxi trajectory data can be easily obtained in the era of big data, which is helpful
to reveal the spatiotemporal information of human travel behavior but neglects activity semantics.
The activity semantics reflect people’s daily activities and trip purposes, and lead to a deeper
understanding of human travel patterns. Most existing literature analyses of activity semantics
mainly focus on the characteristics of the destination. However, the movement from the origin
to the destination can be represented as the flow. The flow can completely represent the activity
semantic and describe the spatial interaction between the origin and the destination. Therefore, in
this paper, we proposed a two-layer framework to infer the activity semantics of each taxi trip and
generalized the similar activity semantic flow to reveal human travel patterns. We introduced the
activity inference in the first layer by a combination of the improved Word2vec model and Bayesian
rules-based visiting probability ranking. Then, a flow clustering method is used to uncover human
travel behaviors based on the similarity of activity semantics and spatial distribution. A case study
within the Fifth Ring Road in Beijing is adopted and the results show that our method is effective for
taxi trip activity inference. Six activity semantics and four activity semantics are identified in origins
and destinations, respectively. We also found that differences exist in the activity transitions from
origins to destinations at distinct periods. The research results can inform the taxi travel demand and
provide a scientific decision-making basis for taxi operation and transportation management.

Keywords: activity semantic; activity inference; Bayesian rules; flow clustering; travel behaviors;
taxi trajectory

1. Introduction

With the rapid development of information and communication technologies (ICTs)
and the widespread use of location-aware devices, there is an increasing availability of
mobility data, such as vehicle GPS trajectory data, mobile phone records data and social
media check-in data, which can offer high spatiotemporal resolution to observe human
travel patterns at the individual level [1]. Although such fine-grained human mobility data
include accurate location and temporal information, the semantic information relating to
travel patterns and activity types is usually lacking [2–5]. Daily activity information is vital
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to understanding human travel behaviors because travel demands originate from people’s
needs for participating in activities [6–8]. Previously, activity-based analysis in the literature
derived from traditional travel surveys that recorded interviewees’ recollections of travel and
activity information [2,9,10], namely when and where the respondent did what activities. Such
travel surveys are also expensive and time-consuming. In contrast, massive GPS tracking data
can effectively record individuals’ activities in real time and real space [11,12]. Taxis play an
important role in public transportation systems in metropolises. Moreover, taxi trajectory
data is a rich informative data source used to reveal travel patterns [13–16], identify urban
functions [17–21], and discover urban structure [22–24]. However, many existing studies
have focused on the spatial and temporal attributes of taxi trajectory data while ignoring
activity semantic characteristics. Therefore, identifying activity semantics and inferring
trip purposes from taxi trajectory data is an essential research topic, which can lead to a
deeper understanding of human travel patterns.

Point-of-interest (POI) information provided powerful data support to identifying
activity semantics. Previous work has proposed methods to infer activity semantics by
associating a stop point with a candidate POI. Some studies focused on the geographic
distance between the stop points and the candidate POIs. For example, Xie et al. [25]
proposed a distance-based measure to join the taxi drop-off points with the nearest POI.
Phithakkitnukoon et al. [26] proposed a count-based measure to associate the largest
number of POIs taken in each grid with the activity semantics of the taxi stop point.
Yue et al. [27] defined a simple buffer radius based on the shopping mall and considers
the stop point near shopping malls as shopping semantic trips. Furthermore, a probability
measurement has been used to reflect activity semantic. For instance, Furletti et al. [28]
defined a spatiotemporal constraint resulting in the selection of candidate POIs within the
maximum walking distance, and computed the visiting probability based on the gravity
model and opening hours; Huang et al. [29] presented an approach using the spatiotemporal
attractiveness of POIs, which was calculated by the POI size, to identify the activity from
the trajectory; Gong et al. [2] introduced a Bayesian activity inference framework that
takes both spatial and temporal constraints into consideration; Gong et al. [3] extended
Gong’s work [2] by using spatiotemporal clustering, Bayesian probability, and Monte Carlo
simulation; Li et al. [30] presented a framework for inferring trip purpose which considered
comprehensive factors including distance, time, environment, activity type proportion, and
the service capacity of the POIs.

These studies mainly relied on spatial and temporal constraints to select the candidate
POI with the maximum visiting probability in order to infer the activity semantic. How-
ever, the geographic context was ignored, resulting in some mistakes in activity semantic
inference. For example, a taxi drop-off at an airport area should be labelled as “transporta-
tion”. However, this location is surrounded by several internal affiliated restaurants, and
sometimes wrongly inferred as “dining”, especially at lunch times.

To take the geographic context into consideration, some researchers [5,10,31–33] in-
corporated word-embedding techniques to represent characteristics in a vector space.
Yao et al. [34] first proposed a novel method integrating POIs with the Google Word2Vec
model [35], computed the characteristic vector of each POI category based on the shortest
path, and then used vectors and a k-means clustering method to extract the functional
regions. However, the structure of geographic space differs substantially from the natural
language; POIs in cities are distributed in geographical space, and near POIs are more
strongly related to each other [36]. Therefore, converting POIs into sequence data directly
has some limitations in explaining the spatial interactions between POIs. To solve the
above problem, Yan et al. [37] considered the distance influence to extend the Word2Vec
model to the Place2Vec model. However, the above mentioned studies do not consider
the activity dynamic changes of POI attraction at different times when turning the POIs
into a sequenced document. For example, people going to a shopping mall by taxi can
be labeled as “shopping” activity in the evening but as “working” activity in the early
morning. Therefore, the sequence data should be different if the individual’s drop-off is at
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the same location in the early morning or in the evening. By only considering the influence
of distance, the sequence will be the same and cannot represent the activity dynamics.

Moreover, previous work has inferred trip activities using only drop-off positions and
temporal information from taxi trajectory data. However, pick-up locations and time in-
formation are also closely associated with trip purposes. For example, “home” activities
from the pick-up point and “work” activities from the drop-off point can help to focus on
extracting an individual’s travel patterns for commute activities. The movement between the
taxi pick-up point and the drop-off point can be regarded as a geographic flow and reflects
the spatial interaction between two places. For example, Żochowska et al. [38] proposed a
GIS-based method to assess the spatial integration of bike-sharing stations and adopted
the traffic flows between the stations to describe the demand for bike-sharing ridership.
Flow clustering can handle massive individual-level flows effectively and generalize spatial
connections and mobility trends. Exploring the activity semantics from the perspective of
flow is tightly coupled to the features of origin and destination, offers an insight on the
complete trip, and better uncovers human travel patterns.

To close the mentioned research gaps, the main aim of this paper was to develop a
two-layer framework to uncover human travel patterns from an activity semantic flow
perspective. We integrated taxi trajectory data and POI data to infer the activity semantic
of each taxi trip, and to generalize the similar activity semantic flow to reveal human
travel behaviors. Within this framework, the activity semantic is obtained in the first
layer. Specifically, we calculated Bayesian visiting probability-based ranking by extending
Gong’s Bayesian inference model [2]. Then, word-embedding technology (the improved
Word2vec model) was applied to build the latent representation of vectors of each pick-up
point and drop-off point. Next, we used vectors and the Affinity Propagation Clustering
method to annotate the activity semantics. In the second layer, an activity-based flow
clustering method is applied to explore the spatiotemporal travel patterns of different
activity semantic flows, which can be utilized for transport planning and management. To
summarize, the contributions of this work are highlighted as follows:

1. We propose a two-layer framework to effectively reveal human travel patterns based on
activity semantic flows, which can describe the spatial interaction between the origin
and destination and represent the activity semantics of both the origin and destination.

2. We consider the geographic context and the activity dynamics, integrating an im-
proved Word2vec model and Bayesian rules-based visiting probability ranking when
constructing the latent vector representation of each pick-up point and drop-off point.

The remainder of this paper is structured as follows. Section 2 introduces the study
region and datasets. Section 3 presents the proposed two-layer framework methods. In
Section 4, we discuss the activity semantic annotation, model validation results and un-
cover the activity semantic flow patterns. All the place names mentioned in Section 4 are
corresponded to Figure A1 of Appendix A. Finally, the conclusions of this paper are drawn,
and future research directions are discussed in Section 5.

2. Study Area and Data Description
2.1. Study Area

This research focuses on a case study of Beijing, which is the capital of China and
the political, cultural, and educational center. The region within the Fifth Ring Road in
Beijing was selected as the research area (Figure 1). As of the end of 2020, the area within
the Fifth Ring Road had a total area of approximately 668.65 km2, including six districts,
and a resident population of more than 10 million. It is a suitable area with complete urban
functions and includes the majority of human travel behaviors. The public transportation
system in Beijing includes buses, subways, taxis, and bicycles. The report from the Fifth
Comprehensive Survey on Urban Traffic in Beijing points out that public transportation
caters to 48.0% of travel in its core urban area. Taxi services provide an important option
for individuals’ travel accounting for about 10.0% of intra-urban travel. Traveling by taxi
offers flexible routes and is more time-efficient than other modes of transportation [39,40].
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Figure 1. The study area within Fifth Ring Road in Beijing.

2.2. Datasets

The taxi trajectory data were collected in Beijing Fifth Ring Road from 16 May (Mon-
day) to 20 May (Friday) in 2016. The statuses of taxis are automatically sampled about
every 10 s by GPS and the position accuracy is approximately 10 m. The taxicabs’ unique
ID, longitude, latitude, timestamps, velocity, orientation, and whether passengers are being
transported, are included in the raw taxi trajectory data. However, compared to the raw
taxi trajectory, we are more concerned about the origin and destination position for each
taxi trip. Hence, we aggregated the raw trajectory data with the taxi origin–destination
(O–D) trip data relying on the status of passengers as pick-up and drop-off.

Meanwhile, data preprocessing is necessary. Firstly, we removed the invalid point
caused by positioning errors or transfer errors. Secondly, we deleted the unreasonable trip
data, which was less than 500 m or more than 100 km. Thirdly, abnormal taxi speeds of
more than 120 km/h were also deleted. After cleaning, we obtained approximately 0.92
million taxi trips with the attributes shown in Table 1.

Table 1. Sample records of taxi trips.

Taxi_id Pick-Up
Location Pick-Up Time Drop-Off

Location Drop-Off Time Length
(km)

00efc27613968e2891adb0c93d1a6ae6 116.51623, 39.91026 2016/5/16 11:23 116.37353, 39.86447 2016/5/16 11:47 13.22

51145e28389e5849dbf4dd49ed76c72d 116.45577, 39.95000 2016/5/20 0:11 116.30730, 39.92255 2016/5/20 0:31 13.05

The POI data were collected from Gaode Map, a navigation company in China. The
dataset contains 513,549 POIs. The properties of each POI include the ID, name, longitude,
latitude, and category. Considering the taxi travel characteristics and urban functions, we
reclassified the primary POIs into 10 categories, including home, work, transportation,
dining, daytime recreation, nighttime recreation, tourist attraction, hotel, schooling, and
medical service (Table 2).
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Table 2. POI category classification.

POI Category POI Types in Gaode Map API

Home Residential Area

Work
Company, Famous Enterprise, Factory,
Building, Industrial Park, Farming, Forestry,
Animal Husbandry and Fishery Base

Transportation Airport Related, Railway Station, Coach
Station, Subway Station, Bus Station

Dining

Chinese Food Restaurant, Foreign Food
Restaurant, Fast Food Restaurant, Leisure Food
Restaurant, Coffee House, Tea House,
Ice-cream Shop, Bakery, Dessert House

Daytime
Recreation

Shopping Plaza, Sports Stadium, Golf Related,
Game Center, Theatre and Cinema, Concert
Hall, etc.

Nighttime
Recreation KTV, Pub, Disco, etc.

Tourist Attraction Park and Square, Scenery Spot

Hotel Hotel, Hostel

Schooling School, Research Institution, Training
Institution, Driving School

Medical Service
Hospital, Special Hospital, Clinic, Emergency
Center, Disease Prevention Institution,
Pharmacy, Veterinary Hospital

The travel survey data records the taxi passengers’ pick-up and drop-off time, address,
and trip purpose. Data from a total of 2112 individual trips in Beijing from September 2016
to January 2017 were collected and used as ground truth to reveal the effectiveness of the
proposed model in this paper.

3. Method
3.1. Assumptions of the Proposed Method

To reveal the human travel patterns from the perspective of activity semantic flow,
we proposed a two-layer framework. The flowchart of the proposed method is shown in
Figure 2, and it can be divided into two parts. In the first layer, we used taxi O–D trip data
and POI data to identify activity semantics and infer trip purposes (see Section 3.2). In the
second layer, a flow clustering method is used to group similar activity semantic flow (see
Section 3.3) and uncover the spatiotemporal distributions of the trips.
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Figure 2. Framework of the proposed method: activity inference (First Layer); and flow clustering
(Second Layer).

3.2. Activity Inference

The activity inference has four processes in total. We firstly established pick-up areas
(PA) and drop-off areas (DA), respectively, and selected the candidate POIs (Section 3.2.1).
Secondly, the Bayesian rules (Section 3.2.2) were used to compute the visiting probability
of each candidate POI. However, the activity semantics of each trip not only depend on
the single candidate POI’s visiting probability, but also rely on the geographic context and
spatial co-occurrence relationships [37,41]. Therefore, based on the visiting probability
ranking of each candidate POI, thirdly, we applied the improved Word2vec model to build
the latent vector representation of each pick-up point and drop-off point (Section 3.2.3).
Finally, we used the Affinity Propagation Clustering Algorithm [42] to cluster the similar
pick-up points/drop-off points and annotate the activity semantics (Section 3.2.4).
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3.2.1. Pick-Up/Drop-Off Area

The taxi trajectory data contain the pick-up point and drop-off point. However, the
recorded location is not the actual activity location. Thus, we cannot use these points
as the origin or destination directly. For example, when users go from home to scenic
spots, they must walk to the roadside to take a taxi, and then they must leave the taxi in
the parking area and walk to the actual destination. Although people tend to take a taxi
nearby, and drivers always drop off passengers as close to their destination as possible, the
exact origin or destination is uncertain. Due to the presence of several candidate points
distributed around the pick-up or drop-off location, therefore, the pick-up area (PA) and
drop-off area (DA) were defined to select “candidate POIs”. In this study, we take the real
road situation into consideration, allowing all points in the PA or DA within a real-time
walking distance threshold δ. The real-time walking distance was obtained using the
Gaode Maps Application Programming Interface (API). As shown in Figure 3, since the
existence of two-way roads, the POIs on the same side have a higher visiting probability
than those on the opposite side. The percentage of pick-up points and drop-off points
that could find at least one candidate POI with a δ ranging from 5 m to 250 m are shown
in Figure 4. The curve remains stable when the maximum walking distance threshold δ
reached approximately 100 m. Therefore, we set the maximum walking distance threshold
as 100 m for both the pick-up points and drop-off points, to define the PA and DA in
this study.

Figure 3. A schematic diagram of activity inference framework.

Figure 4. Percentage of origins and destinations that contain at least one POI within different walking
distances.
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3.2.2. Bayesian Rules-Based Visiting Probability

The Bayesian rules were widely employed to compute the visiting probability of
candidate POIs [2,3,30]. In this study, the visiting probability function to each candidate
POI Pi (i = 1, 2, 3, . . . . . . , n) is represented as follows:

Pr(Pi|(x, y), t) =
Pr((x, y)|Pi, t) ∗ Pr(Pi|t) ∗ Pr(t)

Pr((x, y), t)
(1)

where Pr(Pi|(x, y), t) denotes the probability that a taxi passenger visited or will visit Pi
if the passenger is picked up or dropped off at the location (x, y) at time t. Pr((x, y)|Pi, t)
denotes the probability that a person gets in or out of the taxi at the location (x, y) if he/she
has visited or decided to visit Pi at time t. Pr(Pi|t) is the probability of visiting Pi at time t.
Pr(t) is the visiting probability at time t. Pr((x, y), t) is the probability that a taxi passenger
gets in or out of the taxi at the location (x, y) at time t. The location and the time of pick-up
or drop-off are conditionally independent, given the candidate POI Pi and the distance
between the pick-up or drop-off point and the candidate POI Pi exhibiting the distance
decay effect. Hence, the probability function becomes [2]:

Pr(Pi|(x, y), t) =
Aid((x, y), Pi)

−β ∗ Pr(Pi|t)
∑n

j=1 Ajd
(
(x, y), Pj

)−β ∗ Pr
(

Pj
∣∣t) (2)

where Ai is the attractiveness of the candidate POI Pi. The parameter d is the real-time
walking distance from the pick-up or drop-off location (x, y) to the candidate POI Pi and β
is the distance decay parameter. Pr(Pi|t) is the probability of visiting Pi at time t. Compared
to Gong’s method [2] that set the Ai range from 1 to 4 manually, according to the experts’
advice, we use the Term Frequency-Inverse Document Frequency (TF-IDF) method [43,44]
to reflect the attractiveness. In this study, we adopt β = −1.5 which is consistent with
the existing literature [3,45,46]. Additionally, Pr(Pi|t) is affected by activity dynamics. For
example, the probability of visiting a restaurant from 11:00 to 13:00 is higher than the
probability of visiting workplaces at that time on weekdays. Likewise, the probability of
visiting workplaces is higher than the probability of going to a restaurant from 8:00 to
10:00 on weekdays. Hence, social media check-in data are used here to reflect the vitality
of different types of candidate POIs. Finally, Pr(Pi|(x, y), t) ranges from 0 to 1, and the
visiting probability of all the candidate POIs equal to 1 in the sum. In Figure 3 we present
a schematic diagram of Bayesian rules-based activity inference. The non-candidate POIs
(marked in purple) that are outside the walkable space or closed will not be considered.
For the candidate POIs (marked in green), the circle sizes represent their attractiveness.
If only considering the distance factor, restaurant #1 is the nearest candidate POI. If only
considering the time factor, restaurant #1 and restaurant #2 are the places a person most
likely goes to since it is lunch time on a weekday. If only considering the attractiveness of the
POIs, the visiting probability of the hotel is higher than the others. However, considering
the comprehensive factors including distance, time, and the attractiveness of the POIs, the
ranking of the candidate POIs would be restaurant #1, hotel, shopping mall, restaurant #2.

3.2.3. Word2vec Model

Word-embeddings have become increasingly popular in Natural Language Processing
(NLP) and are in fact, a special type of distributed word representation that are constructed
by leveraging neural networks, mainly popularized after 2013, with the introduction of the
Word2vec model [35]. The Word2vec model is usually framed as an unsupervised method,
in that it does not require any manual annotation of the training data. The Word2vec
model can represent words to dense and low-dimensional vector spaces, based on context
relationships in documents, and similar context words are mapped to nearby points.
Therefore, the distance between two word vectors can be used to measure their semantic
similarity (e.g., “boat”–“ship”) [47]. Word2vec comes in two model architectures, the
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Continuous Bags-of-Words model (CBOW) and the Skip-Gram model. The CBOW model
predicts the target words using its surrounding context words, whereas the Skip-Gram
model aims to predict the surrounding context words given the target words.

As shown in Figure 3, the trip’s activity semantic should be inferred as “Dining” based
on the maximum visiting probability of Bayesian rules. However, geographic context is
ignored here. Few studies have investigated the latent co-occurrence relationships among
different candidate POIs and how they spatially interact with each other to support the
trip activity. For example, “Hotel Accommodation” activity is the spatial co-occurrence
among “hotel”, “restaurant”, and “bar”, etc. Railway station contains a large number of
restaurants, and the spatial co-occurrence among these POI types reflects Transportation
activity. The advantage of the Word2vec model is in capturing this spatial context and
co-occurrence relationships.

In this paper, we build analogous relationships between the PA/DA and documents.
A textual document is composed of words, whereas a PA/DA is composed of the pick-up
point/drop-off point and the candidate POIs. Therefore, in an analogy with the Word2vec
model’s use of textual materials, we take the PA/DA as a document, the internal “taxi stop
point” (pick-up point or drop-off point) as target words, and the internal “candidate POI”
as context words. The hypothesis behind this states that: “taxi stop point” appears in the
same contexts and shares the same activity semantic meaning. Therefore, we selected the
CBOW model; the details of this method are described in [35].

Since the structure of geographic space differs substantially from the natural language,
we further incorporate Bayesian visiting probability-based ranking instead of Euclidean
distance, to build a sequence of each pick-up point and drop-off point. The advantage of
using Bayesian visiting probability-based ranking is that we emphasize the activity dynam-
ics. Compared to using distance-based ranking, the sequence of surrounding “candidate
POIs” (context words) to “taxi stop point” (target words) differs during one day. Take
the schematic diagram in Figure 3 as an example. When using probability-based ranking,
“Hotel” is the closest context word to “taxi stop point” at midnight, and “Restaurant” is the
closest context word to “taxi stop point” at noon. In contrast, when using distance-based
ranking, “Restaurant” is always the closest context word to “taxi stop point” within a day.
This means that by only considering the distance-based ranking, the sequence of “taxi stop
points” will be the same within a day and cannot represent the activity dynamics. During
the process of building the improved Word2vec model, we set the dimension of the word
vectors to 200, the window size to 5, the number of iterations equal to 20, and the other
parameters set to the recommended values.

After training the model, the cosine distance of “taxi stop point” vectors are calculated to
indicate the similarity and higher similarity values, indicating stronger activity semantic similarity.

3.2.4. Activity Semantic Annotation

Based on the similarity obtained from the improved Word2vec model, we use the
Affinity Propagation Algorithm to cluster the similar trips into the same group and then
annotate activity semantics for each trip in three steps: (1) annotating each pick-up point
with an activity; (2) annotating each drop-off point with an activity; (3) linking the O–D
activity type to enrich the activity semantic of the trip. To annotate the activity semantic,
we considered the following aspects [48]:

(1) Internal density (ID). IDij = Nij/Nj.
(2) External density (ED). EDij = Nij/Ni.
(3) Temporal Distribution of different activities.

where Nij is the number of ith POIs in jth activity, Ni is the number of ith POIs, and Nj is
the number of POIs in jth activity.
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3.3. Flow Clustering

The taxi O–D trip is a directed flow from the origin to the destination, which can reveal
the travel patterns. In this paper, a taxi O–D flow is treated as a geometric object rather than
as a separated pick-up point and drop-off point. In contrast to the traditional local space,
these O–D flows form a flow space [49,50], and emphasize the spatial interactions of elements.
Michael Batty argues that to understand space, we must understand flows [51]. Therefore, we
explore spatial and temporal human travel patterns from the perspective of flow.

After the activity semantic annotation, we can obtain the taxi activity semantic flows.
Each activity semantic flow can be expressed as fi = oxi, oyi, oai, dxi, dyi, dai, odai, where
(oxi, oyi) and (dxi, dyi) are the spatial coordinates of the pick-up point and the drop-off
point, respectively, and oai and dai are the origin and the destination activity semantics,
respectively. odai is the activity semantic of fi.

In this paper, we proposed a flow clustering method based on the constraints of the
O–D points’ location and activity semantic. Three principles should be considered to
measure the spatial and semantic similarity between activity semantic flows:

(1) Flows have the same activity semantic.
(2) Flows are in spatial proximity to each other.
(3) Flow lengths and directions are approximately equal.

Figure 5 shows six flows. Only f1 and f2 satisfy all the principles and are similar.

Figure 5. Illustration of similar and dissimilar flows. Different colors denote different activity
semantics. Boundary circles identify all similar flows whose origin and destination points are within
the circle. f3 is dissimilar to f1 in direction. f4 is dissimilar to f1 in activity semantic. f5 and f6 are
dissimilar to f1 in length. Only f2 is similar to f1.

In our approach, a two-step strategy is adopted in which spatial flow clustering is
conducted after activity inference. For spatial flow clustering, the key issue is the spatial
similarity measurement between the flows. We use the following equation to calculate the
spatial dissimilarity SDij between fi and f j.
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SDij =
√

sdijo
2 + sdijd

2 (3)

where, 
sdijo =

dist(Oi ,Oj)
α×min(leni ,lenj)

sdijd =
dist(Di ,Dj)

α×min(leni ,lenj)

(4)

In the equations, sdijo and sdijd represent the origin spatial dissimilarity between
fi and f j and the destination spatial dissimilarity between fi and f j, respectively. dist()
represents the Euclidean distance between the points. leni and lenj returns the length of
flow fi and f j, respectively. α is a size coefficient and the product of α and the shorter length
equals the radius of the boundary circle. We select α = 0.3 which is consistent with the
existing work [52,53]. The smaller SDij is, the more similar the flows are. Subsequently, an
agglomerative clustering framework is used to implement flow clustering, which merges
activity semantic and spatially similar flows to form a hierarchy of flow clusters. The flow
clustering process is shown in Algorithm 1. For more detailed parameter settings, please
refer to [52].

Algorithm 1 Spatial Clustering of Activity Semantic Flow

Input: f = { fi|1 ≤ i ≤ n }—a set of activity flows; and
α—the size coefficient.
Output: A set of spatial and activity flow clusters FC = {FCi|1 ≤ i ≤ m }.
Steps:
1. Build kd-tree based on the midpoint of flow.
2. Make each flow a unique cluster to initialize the original
flow clusters: FC = {FCi} and FCi = { fi}, 1 ≤ i ≤ n.
3. For each flow fi, find its ki flows: ki is calculated by the midpoint-distance between fi and its

flow. Midpoint-distances are within the range of
√

2α · leni. Generate ki flow pairs
(

fi, f j

)
,

where 1 ≤ j ≤ ki.

4. For each flow pair
(

fi, f j

)
,

4.1 Find the clusters FCi and FCj that fi and f j belong to.
4.2 If FCi and FCj are different clusters,
4.2.1 Compare the activity semantic,
4.2.2 If FCi and FCj have same activity semantic
4.2.2.1 Calculate SDij between FCi and FCj.
4.2.2.2 If SDij ≤ 1, merge the two clusters: FCi ← FCi ∪ FCj and FC ← FC/FCj .

4. Results
4.1. Activity Semantic Annotation Results

As mentioned in Section 3.2.4, the taxi trip origins and destinations are divided into
six typical clusters and four typical clusters, respectively. Partial results for ID and ED are
presented in Table 3 and temporal distribution is illustrated in Figure 6. Based on these
results, we annotated each origin or destination with activity semantics as follows:

O1 and D1: Home-related. For O1: although “Dining” is the most characteristic POI
category with this origin, “Home” has the highest ED. From Figure 6, we can see that
O1 reaches the highest point between 6:00 a.m. and 8:00 a.m. In addition, “Dining” and
“Schooling” are auxiliary POIs for residential areas. For D1: “Home” is most associated
with D1 (ED is 99.1%), and the proportion of people arriving at D1 peaks occur at night.
Thus, we annotated O1 and D1 as Home-related.

O2 and D2: Work-related. For O2: the most characteristic POI category is “Work”,
which also has the highest ED. For D2: “Dining” and “Work” are regarded as workplaces.
As shown in Figure 6, O2 peaked the highest in the evening, whereas D2 peaked the highest
in the morning. Thus, we annotated O2 and D2 as Work-related.
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O3 and D3: Transportation. “Dining” and “Transportation” are usually spatial co-
occurrences, such as railway stations and airports. “Transportation” ED is 52.1% and 83.5%
in origin and destination, respectively. Both O3 and D3 have slightly higher vitality in the
daytime. Thus, we annotated O3 and D3 as Transportation.

O4 and D4: Recreation-related. In both ID and ED, “Dining” makes up the highest
proportion of the POIs. In O4: the following two POI types are Nighttime and Daytime
recreation, similarly, followed by “Hotel” and “Daytime Recreation” in D4. It is worth
noting that the ED remained stable among these POIs. Thus, we use “Recreation” to
aggregate these POIs.

O5: Hotel-Related. The most popular POI category in O5 is “Dining” but it is an
auxiliary POI for “Hotel”. In addition, “Hotel” has the highest ED. Thus, we annotated O5
as Hotel-related.

O6: Medical-related. “Medical Service” is the significant POI type in O6. Meanwhile,
the “Medical Service” associated with restaurants and hotels, is generally for arriving
patients. Thus, we annotated O6 as Medical-related.

Table 3. Overall POI density and ranking.

Origin POI ID ED Destination POI ID ED

O1
Dining 0.577 0.252

D1
Dining 0.518 0.39

Schooling 0.123 0.314 Work 0.185 0.431
Home 0.029 0.389 Home 0.042 0.991

O2
Work 0.421 0.649

D2
Dining 0.434 0.221

Dining 0.349 0.208 Work 0.293 0.463
Daytime
Recreation 0.024 0.311 Schooling 0.117 0.371

O3
Dining 0.465 0.067

D3
Dining 0.465 0.168

Transportation 0.229 0.521 Transportation 0.455 0.835
Work 0.109 0.041 Hotel 0.028 0.094

O4
Dining 0.725 0.396

D4
Dining 0.668 0.221

Nighttime
Recreation 0.033 0.394 Hotel 0.071 0.212

Daytime
Recreation 0.024 0.286 Daytime

Recreation 0.013 0.224

O5
Dining 0.434 0.057
Hotel 0.233 0.312
Nighttime
Recreation 0.023 0.083

O6
Dining 0.385 0.019
Medical
Service 0.214 0.257

Hotel 0.074 0.039
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Figure 6. Time distribution of different activities in origin (a) and destination (b).

4.2. Comparisons of Inferred Activity Semantics from the Three Methods

We take the method proposed by Gong [2] and Yao [34] as Method I and Method II,
respectively, to conduct the comparative experiments. In this study, a total of 2112 individual
travel activity survey data, related to taxi travel in Beijing from September 2016 to January
2017, were collected and used as ground truth to reveal the effectiveness of our proposed
method (Method III). We computed the proportions of activities generated by the mentioned
three methods in Table 4. As can be seen from Table 4, the results of Method III match the
travel survey data well. The proportion of Recreation activities in Method I and Method
II are much greater than that from the travel survey. And the Transportation activities in
Method I and Method II are much lower than those from the survey data, which account
for 3.50% and 2.27%, respectively. We speculate that this is caused by the quality of the POI
dataset. In Method I, the attractiveness of POIs is set manually, and POIs are specified to
the same weight during the construction of the vector in Method II. The sequence of POIs
in Method III considers dynamic changes during the construction of vectors. When using
the travel survey data as a reference, we find that the performance of Method III exceeds
that of the other two methods. Thus, the validated results reveal that Method III is effective
for activity inference.
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Table 4. Activity proportions of the three methods and travel survey data.

Home Work Transportation Recreation Others

Travel
Survey

32.10% 19.40% 18.80% 17.90% 11.90%

Method I 28% 26% 3.50% 37.80% 2.60%

Method II 20.34% 33.94% 2.27% 37.31% 6.14%

Method III 33% 17.20% 21.40% 22% 6.40%

4.3. Spatial Distribution of Different Travel Activities

We map the hotspots of different activities using the kernel density estimation (KDE)
method. Figure 7 represents the spatial density distribution of each identified activity of ori-
gin. Figure 7a,e, show that the areas of Home-related and Hotel-related activities, which are
related to daily accommodation, are more widely distributed. Specifically, Home-related
activities are concentrated in the major residential areas, such as Tuanjiehu, Dawanglu,
Wangjing, Suzhoujie, and Yuetan. In contrast, Hotel-related activity is mainly distributed
close to transportation hubs (Dongzhimen, Beijing West Railway Station and Beijing Rail-
way Station), hospitals (Peking University Third Hospital and Anzhen Hospital) and work
and business areas (Xidan, Dongdan and Wudaokou). Work-related activity (Figure 7b) is
mainly located in CBD (Central Business District), Financial Street, Zhongguancun, and
Liangmaqiao. High-tech enterprises and scientific research institutes are mostly concen-
trated in Zhongguancun, while Liangmaqiao includes the embassy district. The spatial
pattern of Recreation-related activity (Figure 7d) is partly similar to that of Work-related
activity; except for some commercial places, it is mainly distributed around Sanlitun, in-
cluding shopping and dining plazas, bars, and a stadium. As shown in Figure 7c,f, the
hotspot regions of Transportation and Medical-related activity are concentrated in specific
locations. As for Transportation activity, the quantity is very small, which is distributed in
Beijing West Railway Station and Beijing Railway Station. As for Medical-related activity,
it is mainly concentrated around tertiary level-A hospitals and clinics, such as Peking
University Third Hospital, Peking Union Medical College Hospital, Peking University
People’s Hospital, and Beijing Children’s Hospital.

As illustrated in Figure 8, differences exist between destinations and origins. The
activity semantics of destinations are less than that of origins. Four activities have been
identified in the destination. Compared to origins, Home-related activity (Figure 8a) is
much more concentrated in the destination. The Yongdingmen residential area found in the
southern part of the study area, except Dawanglu, Wangjing, Suzhoujie, and Yuetan, is a
densely residential area. Conversely, Recreation-related activity is distributed more widely
than in the origin. Integrated places with the multi-functions of shopping, dining, and
entertainment are identified, such as Sanlitun, Dongdan, Xidan, Financial Street, Zhong-
guancun, Wangjing, Gongzhufen, and Panjiayuan. Additionally, Wangfujing Pedestrian
Street, the National Stadium, Yonghe Palace, 798 Art District, and other famous attractions
all appear in these areas. Transportation activity (Figure 8c) and Work-related activity
(Figure 8b) have similar spatial distribution to origin, respectively. As for Work-related
activity, the workplaces near Beijing West Railway Station are discovered in the destination.
It is interesting to note that Beijing South Railway Station is the hotspot of Transportation
activity in the destination. However, we could not identify Beijing South Railway Sta-
tion as the Transportation hotspot in the origin. The reason might be the existence of the
phenomenon that people find it hard to take taxis at Beijing South Railway Station. This
suggests that the relevant operators need to pay attention to the demand for taxi travel
connections around Beijing South Railway Station. These results seem reasonable, which
proves that our method is effective for inferring the activity semantic of taxi O–D trips.
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Figure 7. The spatial distribution of different travel activities (origin).
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Figure 8. The spatial distribution of different travel activities (destination).

4.4. Spatiotemporal Patterns of Activity Semantic Flows

To better obtain spatial and temporal visualization results, we divided one day into
six typical periods: dawn (01:00–04:59), early morning (05:00–08:59), morning (09:00–12:59),
afternoon (13:00–16:59), evening (17:00–20:59), and midnight (21:00–00:59). The Sankey
Diagram (Figure 9) is used to observe activity transitions from origins to destinations in the
six distinct periods. Flow clustering allows us to analyze travel patterns given their spatial
and activity semantic distribution. By mapping large activity semantic flow clusters, we
find that the parameter α setting will affect the clustering results. If the parameter α is set
too large, the clusters will be chaotic, whereas pattern loss will occur when the parameter
α is small. In this paper, the top 25 activity semantic flow clusters with α = 0.3 are retained
to explore human travel patterns.
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As shown in Figure 9a, many flows change from Recreation-related activity to Home-
related activity during 01:00–04:59. Combination Figure 10a, shows that the activity se-
mantic flow of “Recreation–Home” is mainly concentrated from Beijing Workers’ Sports
Complex to Shifoying, Dawanglu and Shuangjing, and from Sanlitun to Dawanglu, Hu-
fangqiao and Shuangjing. Meanwhile, working overtime is discovered in this period,
around Liangmaqiao and Chaowai. After work, individuals return home, mainly from
Liangmaqiao to Shuangjing and from Chaowai to Baiziwan. Partial “Home–Home” flow
occurred from Beixinqiao to Xueyuanlu, where there might have been a social event or party.
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Figure 10. The spatial distribution of significant taxi activity semantic flow clusters at different
periods. The flow color represents the activity semantic type, and the flow width is proportional
to the number. O1 and D1: Home-related activity; O2 and D2: Work-related activity; O3 and
D3: Transportation activity; O4 and D4: Recreation-related activity; O5: Hotel-related activity; O6:
Medical-related activity.
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Figure 9b shows the observed transitions between home and work and between home
and transportation, indicating commuting and travel or business. In Figure 10b, for “Home–
Transportation” activity, the destination is distributed in Beijing West Railway Station and
Beijing South Railway Station. The origins are more dispersed than the destinations, and
mainly distributed around Chongwenmen, Maliandao, Yuetan, Hepingli, and Dawanglu.
The length of the “Home–Transportation” activity semantic flow is much longer than the
others. Due to the irreplaceability of the railway station, the influence of distance on travel
is less significant. As for “Home–Work” activity, large bidirectional spatial clusters exist
between Liangmaqiao and CBD. Longer distance commute flow can also be identified from
Wangjing to Dawanglu.

From 09:00 to 12:59, the activity transitions from origins to destinations have a rela-
tively uniform distribution (Figure 9c). As shown in Figure 10c, the destinations are also
concentrated in Beijing South Railway Station and Beijing West Railway Station, while
the activity semantic of the origins is more diverse, except for “Home–Transportation”
activity semantic flow, and the origins from Sanlihe and Xueyuanlu to Beijing South Rail-
way Station denoted “Hotel–Transportation” activity semantic flow clusters. More longer
distance commute flow clusters appeared in this period, such as from Sijiqing and Wangjing
to Jianguomen, and from Sanlitun to Zhichunlu. Some Transportation activity semantic
origins start from Beijing Railway Station and Beijing West Railway Station and end at a
Work-related activity destination (Wanshoulu) and a Recreation-related activity destination
(Qianmen), respectively.

In the afternoon period (13:00–16:59), the origins are mainly concentrated in the “Work-
related” activity type, while the destination is mainly concentrated in Work-related activity
and Home-related activity (Figure 9d). In Figure 10d, “Work–Work” activity semantic flow
clusters also exist, with bidirectional connections between Liangmaqiao and CBD. This is
also significant from Financial Street to CBD. People also tend to do “Recreation-related”
activity around Wangjing and return home around CBD. We also found that some people
who live in Zhongguancun will go to work at CBD, while some people who live around
CBD will go to work at Zhongguancun. The reason might be Zhongguncun includes a
large number of information technology-related workplaces and research institutes, while
CBD mainly includes commercial-related workplaces.

As shown in Figure 9e, when people are off duty and return home, Work-related and
Recreation-related are the main activities in origins, while destinations mainly related to
Home-related activity. Figure 10e shows, after work, people who work at Zhichunlu will
participate in Recreation-related activities at Beijing Workers’ Sports Complex, a famous
area with shopping plazas, restaurants, bars, and a stadium. “Recreation–Home” activity
semantic flow clusters are mainly distributed from Chaowai to Wanliu, from Xidan to
Datunlu, and from Beijing Workers’ Sports Complex to Wangjing. Some people work
overtime, and so commute flow also appears in this period. For example, “Work–Home”
activity is concentrated from Chaowai and Dawanglu to Wangjing. The Transportation
activity transitions happened from Beijing West Railway Station to Beijing Railway Station.

As shown in Figure 9f, the activity changes from origins to destination are similar
to Figure 9e. Figure 10f indicates the activity semantic flow clusters are distributed more
widely from 21:00 to 00:59, especially “Work–Home” activity and “Recreation–Home”
activity. For example, individuals working at Chaoyangmen return to the Yongle residential
area and individuals entertaining at Taiyanggong return to the Lugu residential area. CBD
shows both Work-related activity and Recreation-related activity in this period. People
working overtime at CBD return home around Beijing West Railway Station, while activity
semantic flow cluster shows people entertaining at CBD returning home to Xinjiekou. We
also find that people working overtime at Zhonguancun return home to Shaoyaoju along
the fourth ring road. This might be related to the subway shutdown.

All of the findings are consistent with the well-known facts. Additionally, it is inter-
esting to note that places show different activity semantics at different periods, such as
Chaowai, CBD and Beijing West Railway Station.
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5. Discussion and Conclusions

Inferring travel activity semantics and clustering flow patterns may contribute to a
deeper understanding of human travel behavior and mobility, which can assist with trans-
portation planning and management. In this paper, we proposed a two-layer framework to
investigate human travel patterns from an activity semantic flow perspective.

In the first layer, we developed an activity inference method to infer trip activity
semantics, based on the improved Word2vec model and Bayesian rules-based visiting
probability ranking. The results demonstrate that taxi trip origins and destinations are
divided into six and four typical activity semantic clusters, respectively. Specifically, the
activities of origin are Home-related, Work-related, Transportation, Recreation-related,
Hotel-related, and Medical-related, while the activities of destination are Home-related,
Work-related, Transportation, and Recreation-related. Then, we compared inferred activity
semantics from the three methods. The activity proportion of our method is close to the
results of the travel survey data. The spatial distribution of the different activity semantic
hotspots further reveals that our method is effective for taxi O–D trip activity inference.
Our method takes geographic context and activity dynamics into consideration and can
better infer some important activities with a low proportion of POIs but high attraction
(such as a railway station) and represents the activity changes within a day.

Based on the obtained activity semantics, the flow clustering method is proposed to
identify dominant activity semantic flow clusters and to investigate human travel patterns
in the second layer.

Several conclusions and findings can be drawn from the spatial and temporal patterns
of the different activities in the study area:

(1) Differences exist in the activity transitions from origins to destinations at distinct
periods. From 01:00 to 04:59, “Recreation–Home” is the main activity semantic. Meanwhile,
the phenomenon of working overtime is identified in this period. In the early morning
(05:00–08:59), because of the morning peak, “Home–Work” and “Home–Transportation”
occupied a large proportion of the observed activity, indicating commuting and travel or
business flows. From 09:00 to 12:59, the activity transitions from origins to destinations
has a relatively uniform distribution. In the afternoon (13:00–16:59), origins were mainly
concentrated in Work-related activity, while destinations were mainly concentrated in Work-
related activity and Home-related activity. From 17:00 to 20:59, when people are off duty
and return home, “Work–Home” and “Recreation–Home” are the main activity semantics.
In the midnight period (21:00–00:59), the activity changes from origins to destinations are
similar to the previous period.

(2) From 01:00 to 04:59, activity semantic flow is concentrated in Beijing Workers’
Sports Complex and Sanlitun, which is characterized by Recreation-related activity and
scattered to some residential areas, such as Shifoying and Dawanglu. In the daytime (05:00–
16:59), the destination is mainly distributed in Beijing West Railway Station and Beijing
South Railway Station, while origins are more dispersed than destinations. In addition,
large bidirectional activity semantic flow clusters exist between Liangmaqiao and CBD,
denoting “Home–Work” and “Work–Work” activity. Zhongguancun and CBD were also
discovered as bidirectional activity semantic flow clusters which represent “Home–Work”
activity. From 21:00 to 00:59, some commercial areas showed both recreation and work
activity semantics (such as Chaowai) and indicate the activity dynamics.

(3) Because of the irreplaceability of the railway station, the activity semantic flows
starting or ending at railway stations is much longer than others. One interesting finding
is that we could not identify Beijing South Railway Station as the transportation hotspot
in the origins. It is worth noting the phenomenon that people find it hard to take a taxi at
Beijing South Railway Station.

This research provides a novel activity semantic flow perspective for understanding
human travel patterns. However, there are some limitations regarding the data and ap-
proach. Firstly, combining multiple data sources will lead to more reliable activity inference
results and human travel patterns. As a future study, we will involve area of interest (AOI)
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data in the method, which can help to infer travel activity more accurately. Meanwhile,
it should be noted that taxi data inevitably encounters issues of representativeness [16].
Therefore, integrating mobile phone records data, transit smart card data, and social me-
dia check-in data, can describe different travel modes and reveal different human travel
patterns more comprehensively. Secondly, we divided one day into six periods based on
a fixed 4 h time interval. However, the time scale will influence human travel patterns.
Therefore, in further work, we will develop a unified measurement of spatial-temporal-
activity semantic similarity to cluster similar flows. Finally, this paper investigated human
travel from the perspective of flow. However, the route choice between the origin and the
destination is unknown. In future work, we can refer to the framework of the four-step
model [54], and completely describe human travel behaviors.
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