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Abstract: Traffic accidents in urban areas lead to reduced quality of life and added pressure in the
cities’ infra-structures. In the context of smart city data is becoming available that allows a deeper
analysis of the phenomenon. We propose a data fusion process from different information sources like
road accidents, weather conditions, local authority reports tools, traffic, fire brigade. These big data
analytics allow the creation of knowledge for local municipalities using local data. Data visualizations
allow big picture overview. This paper presents an approach to the geo-referenced accident-hotspots
identification. Using ArcGIS Pro, we apply Kernel Density and Hot Spot Analysis (Getis-Ord Gi*)
tools, identifying the existence of black spots in terms of location and context conditions, and evaluate
the possible human, environmental and circumstantial factors that may influence the severity of
accidents. The results were validated by an expert committee. This approach can be applied to other
cites wherever this data is available.

Keywords: road accidents; black spots; GIS; data analysis

1. Introduction

Mapping serious accident places and conditions in a large city, with millions of vehicles
in transit everyday is a task that can effectively contribute to save lives. More so when
this effort is integrated in a Public Administration living lab initiative, that insures the
knowledge generated is returned to the data holders. This paper describes in detail the
application of several techniques that gather and analyze an amount and diversity of
different data sources that has not been found in previous case-studies.

Geographic Information Systems (GIS) allows researchers to use various computa-
tional methods and tools to combine geographical, statistical, and mapping data to identify
the spatial characteristics of a hotspot [1]. According to Esteves [2], “GIS are computational
tools that allow the integration and manipulation of different types of information, espe-
cially suitable for spatial variables of global, regional or local nature. They are a decision
support system that involves integrating georeferenced data in a problem-oriented envi-
ronment, particularly those where the spatial component is strongly present”. Identifying
these critical spots through GIS is especially relevant, as it makes it possible to understand
the causes and factors associated with accidents, allowing consistent decisions by the city
council’s mobility department. For that, it is essential to identify the existence of a pattern
of spatial clusters in the accident data. In this work this is achieved using the following
two spatial analysis algorithms [3]: (1) Kernel density estimation (KDE) is a technique for
interpolating and analyzing spatial patterns of spots. A set of known spots identifies the
intensity with which a given variable occurs in space. It is ideal for formulating explana-
tions and illustrating conclusions and is an easily understandable statistical method for
non-mathematicians. With GIS, it is possible to visualize the concentration of processes and
describe process changes at the local level. (2) Hot spot analysis in a neighborhood context,
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which is based on the Getis-Ord Gi statistical calculation, presents the high (hotspot) and
low (cold spot) clustering values, resulting in the z-score (the number of standard devia-
tions from the mean of an information spot) and p-value (the probability of obtaining the
observed results of a test, assuming the null hypothesis is correct). An area with a high
p-value is not necessarily a statistically significant hotspot. A spot must have a high value
and be “surrounded” by other spots with equally high values to be a statistically significant
hotspot [4]. The local sum of a location and its neighbors is compared proportionally to the
sum of all the spots. When the local sum is quite different from the expected local sum, and
if this difference is too large, a statistically significant z-value occurs [5].

The object of this study was derived from a challenge using real data, originated from
the municipality, based on available data of the Lisbon City Council Mobility Office. This
initiative involves the municipality and the academy searching for solutions through data
analysis for real city problems. This challenge required the identification of areas prone to
traffic accidents (hotspots) in the municipality of Lisbon and their causes.

The “Lisboa Inteligente” challenge aims to give the municipal authorities the necessary
data responsible for mobility and the management of Protection and Rescue. It provides
the necessary information to improve the planning and management of the city’s traffic,
allowing the identification and implementation of mitigating measures that limit the
number of accidents and victims in these accident hotspots.

Thus, and to achieve the objective now materialized, a multivariable space–time
analysis of the road accidents that occurred between 2010 and 2019 was carried out to
identify the location of its hotspots.

The work began with a collection of data provided by the Lisbon Municipality (CML)
to the University Institute of Lisbon (ISCTE-IUL), which included a database dump of
Fire Brigade Regiment (RSB) occurrences for the year 2019 and some shapefiles with
geographical data of the municipality, namely, the slopes values traffic lights, intersections,
and altimetry. It seemed from the beginning and after analyzing the data provided that
it fell short of the real needs for an investigation of this nature. Thus began a meticulous
process to gather the necessary data to allow a robust and efficient analysis. This process
allowed the fusion of data from six different entities, which provided more information
and different possibilities for conclusions than any known previous study on this subject.

2. Literature Review

Our research goals are mainly to explore the results of data fusion and big data
analytics to extract knowledge from several disperse, large data-sets. We believe that this
fusion along with the adequate technique of data visualization will allow us to understand
the places and conditions that increase accident likelihood. The identification of the RTAs
Hotspots and the pinpointing of their causal factors was a request from Lisbon municipality.

A hybrid approach combining two methodologies was used to conduct the systematic
literature review. The PRISMA Statement—Preferred Reporting Items for Systematic
Reviews and Meta-Analyses [6], whose objective is to ensure that systematic reviews (SR)
and meta-analyses are done in a thorough, clear, and precise manner; and, complementarily,
the snowball sampling methodology (non-probabilistic sampling using reference chains), a
technique that searches for new sources of information based on the references used by the
documents that scientifically support this study.

Therefore, the systematic search was done in three academic search engines: Scopus [7],
Biblioteca do Conhecimento Online [8], and Web of Science [9]. The time interval considered for
these articles was the publication date between 2010 and 2020. The location of the articles
needed for this study was made through different combinations of groups of keywords.
Through them, the existing contents in the respective databases was extracted and filtered:

(“Road Traffic Accidents” AND “analysis” AND Portugal AND spatial pattern);
(RTA AND accident AND mapping AND spatiotemporal analysis);
(Traffic accident AND GIS, AND Kernel density estimator AND KDE+ OR “Getis-

Ord Gi”);
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(Lisbon AND RTA AND “GIS”; (KDE AND KDE+)) AND (hot spot analysis); (Lisboa
AND Acidentes de transito); (human factors AND road accidents).

The results obtained were filtered according to a rationale applied to the Covidence [10]
systematic literature review tool, consisting of three steps: (1) Eligibility Criteria—at this
stage, the results are approved or rejected according to the following criteria: Language
(only articles written in English or Portuguese are accepted); date of publication of the
article between 2010 and 2020; (2) scientific literature exclusively from scientific articles
or reviews, apart from grey literature from the Lisbon City Council, the National Road
Safety Authority, and the European Commission. These intervention plans, technical
documentation (e.g., Municipal Emergency Plan of the Civil Protection of Lisbon) and
reports, cannot be published in the scientific community; and the article The CRISP-DM
Model: The New Blueprint for Data Mining, for not meeting the publication date criterion.

After analyzing and filtering the results, the values obtained are depicted on Figure 1.
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Figure 1. PRISMA Diagram information flow used for literature review.

The map visibly highlights the term “GIS” as the central concept of the links and rela-
tionships established, followed by the term “Road Safety”, traffic accidents, and Hotspots.

A critical component of reducing road traffic accidents is analyzing the locations of the
accident. Road traffic accidents do not occur at random. They are prone to congregate in
particular locations for reasons that can be explained by a variety of circumstances referred
to as “influencing factors.” These clusters, or concentrations of RTAs, which are usually
referred to in the literature as “hotspots”, are described as locations that have “a higher
number of accidents than other similar spots due to local risk factors” [11]. This notion
refers to the concept that hotspots are prone areas where the geometry and the traffic design
(e.g., congested intersections, sharp curves, and inefficient vertical signalization) play a
significant role in accidents, which can be reduced if the influencing factors are identified
and corrected by the authorities. There is no universally accepted and precise definition
of accident hotspots [12] as definitions differ among scholars and are adapted to suit each
country’s features and governmental goals. Rune Elvik compiled hotspot definitions in
European countries [13] in order to demonstrate the differences.
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According to the literature review and the comparison of approaches for defining
hotspots, no European country has fully adopted an identical methodology for determining
hotspots as depicted on Table 1. Applied methods of identification, each with distinct
strengths and weaknesses in their field of application, are beneficial in locating hotspots.
In view of the above, this study uses the hotspot definition provided by the Portuguese
National Road Safety Authority (ANSR): “A stretch of road with a maximum length of
200 m, in which there were at least five accidents with victims in the year under review” [14].

Table 1. Summary of Hotspot definitions found in literature.

Country RTA Hotspot Definition

Austria Three or more similar accidents with injuries within three years period and
a risk coefficient of at least 0.8

Belgium Three or more severe accidents within 100 m stretch of road over the
period of 1 year

Czech Republic
Three or more accidents with injuries within 250 m stretch of road over the
period of 1 year, or, 3 similar accidents in the period of 3 years, or, 5 similar

accidents in the period of 1 year.

England More than Twelve accidents within 300 m stretch of road over the period of
3 years

Germany Three accidents within 300 m stretch of road over the period of 1 year, or,
5 accidents over the period of 3 year

Hungary Three or more accidents within 100 m stretch of road over the period of
3 year

Netherlands Five accidents on a single location over the period of 3 year, or, 10 accidents
over the period of 5 year

Norway Four or more severe accidents within 100 m stretch of road over the period
of 1 year

Portugal Five or more severe accidents within 200 m stretch of road over the period
of 1 year and indicators with severity up to 20 in one year of the analysis.

Spain

The country lacks consistency in its definition of the concept. The method
for calculating Hotspots differs per administrative division, e.g.,:

Andalucia—Five or more severe accidents within 1000 m stretch of road
over the period of 1 year, or, three accidents with injured victims (at least

1 deceased) in the last three years;
Valencia—Three or more accidents within 200 m stretch of road over the

period of 3 year

The academic world has used different statistical models to try to classify hotspots.
This topic gained momentum in the last quarter of the 20th century, specifically in the
late 1970s. Gaussian regression, Multivariate Poisson regression, and negative binomial
models were applied in several studies, taking into account the randomness of events
in space and time [15,16]. The results of the mentioned models were incorrect because
they considered the spatial characteristics of an RTA as constant for a given period, which
Lakshmi [1] described as occurring “when the assumption that mean and variance must
be equal is violated. When the accident data are over-dispersed (variance exceeds mean)
or under-dispersed (mean exceeds variance), it will lead to erroneous inference with the
parameters which determine the crash frequency.” The identification of a hotspot requires
a much more detailed analysis of the causes and factors—e.g., the severity of the crash, the
road conditions, the vehicle conditions, and the weather factors present/existing when the
accidents occurred [12–17].

Nowadays, researchers are combining GIS and spatial analysis techniques to examine
the spatial distribution and spatial dependence of RTA events in a two-dimensional (2D)
planar space, utilizing global indices such as Global Moran’s I (spatial autocorrelation),
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Getis-Ord G, and Getis-Ord G*, which enable investigators to identify statistically signifi-
cant hot spots, cold spots, and spatial outliers. Moreover, local indices such as KDE and
Local Anselin Moran can be used to identify the spatial locations of RTA clusters. Geo-
graphic Information Systems (GIS) have established themselves as a critical and powerful
tool for spatial data analysis over time due to their multiple features and uses. These
systems enable the storage, modelling, analysis, and visualization of georeferenced data.
Spatial data analysis is the study of spatially referenced phenomena using approaches that
attempt to describe and explain why specific events occur in particular locations.

Khanh Giang Le et al. [18] used a combination of KDE and COMAP techniques
(comprehensive mitigation assessment process) to identify RTA hotspots. Both analyses
determined relatively similar hotspots, but the ranking of some hotspots was quite different
due to the integration of the severity index. In this evaluation, Khanh Giang Le proves that
in addition to accident frequency, accident severity level is also essential because it helps
to highlight the accidents that involve significant damage. Kaygsz et al. [19] conducted
a spatiotemporal analysis of traffic accidents on Turkish motorways. Due to data quality,
only the South Anatolian Motorway was numerically investigated. Both the KDE and
Network KDE techniques were used to identify hotspots, which mainly occurred during
the summer. The most common accident types in the study region were rear-end collisions,
stationary object collisions, and run-offs.

Using accident data from Pennsylvania between 1996 and 2000, Aguero-Valverde and
Jovanis [20] approximated the annual frequency of accidents in the United States at the
county level according to hierarchical models. Sociodemographic data, weather conditions,
transportation infrastructure, and journey time were among the elements considered. They
discovered that parameters such as low poverty, age range (specifically, 0 to 24 and over
64 years of age), road length and traffic flow density contribute to an increased likelihood
of road accidents.

Iyanda [21] used a smoothing method to predict two years of road accident events
based on previous historic RTA in all 36 states and the federal territory of Nigeria. This
study employed Moran’s I, a spatial autocorrelation statistic, to determine the degree of
randomness of RTA severity among the 36 states. It also used Anselin’s local indicator of
spatial association (LISA), which provides a statistic for each location with an assessment
of significance and establishes a proportional relationship between the sum of the local
statistics and a corresponding global statistic. According to the findings, the northern
portion of Nigeria has the highest RTA severity compared to the southern states. Local
research suggests that these clusters in the northern part of Nigeria did not happen by
chance; the geographic patterns are considerably clustered.

Kernel density estimation is a widely used and well-established spatial technique
for estimating crash intensity and identifying hotspots [12,22,23]. This method converts a
collection of point events into a continuous surface that indicates their density and enables
researchers to examine the variance in the mean value of the event under study over the
study area—i.e., how events are distributed in space.

Erdogan et al. [24] investigated accident hotspots and identified unsafe zones on
highways in the Turkish city of Afyon. KDE and repeatability analysis were applied to
analyze the data. Both assessments identified nearly identical locations as hot spots. The
majority of them were around junction points, crossroads and access routes to villages and
towns. They also discovered that the number of accidents increases in the summer and
winter, particularly in August and December. Weekends had higher frequencies as well.
Furthermore, they found that the majority of deadly accidents occurred after midnight.
Anderson [12] recommends utilizing GIS and KDE to examine regional patterns, such as
injury crash hotspots, and then merging the data with clustering techniques.

Prasannakumar et al. [3] studied 1468 accidents that were reported to the police in
Thiruvananthapuram, India, in 2008. Unlike many other work reports, these provided
each event’s coordinates. To conduct the investigation, researchers compared the spatial
autocorrelation methods of Moran’s I, Getis-Ord Gi* statistical index, and KDE.
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When the Getis-Ord Gi* and KDEs were applied, the Moran I revealed that the data
tend to cluster in specific time zones [25]. Furthermore, using methods such as the Moran
I, hotspot analysis, and KDE, Aghajani et al. [25] discovered a significant relationship
between accident density, topography, and rainfall maps—i.e., more mountainous regions
and locations with higher rainfall have a higher accident density. Of the studies described
above, few suggest accident prevention strategies. Instead, they focus only on the process
of discovering hotspots and providing a descriptive analysis. Taking into account this
scenario we performed data integration from different information sources to enrich this
data analytics process. This approach can be applied to any smart city with available data.
This data allows the discovery of important knowledge based on which local authorities
can act.

3. Materials and Methods

For the implementation of this study, we started contacts with ANSR and Instituto
Português do Mar e da Atmosfera (IPMA) to obtain the necessary data. From these contacts
was born a cooperation protocol between ISCTE and ANSR that will allow other students
and researchers to access a precious source of information.

After a new analysis, we realized that it was still not possible to measure the volume
of traffic on the Lisbon roads at the time of the accident. IMTT and TomTom were essential
to get this answer.

Once the necessary data were gathered, we proceeded to cleaning and preparing data
from 6 different sources with georeferenced information and in different formats, carrying
out the whole process of feature engineering for the transformation and construction of
derived data, etc.

A single dataset was created recurring to different set of data requested to different
entities, such as

1. Meteorological Data from IPMA [26];
2. Wind Information from Windguru [27];
3. Hourly precipitation observations from the Open Weather Map History API [28];
4. Data from the Reports of the Statistical Bulletin of Traffic Accidents from ANSR [29];
5. Lisbon Fire Brigade Regiment Emergency Occurrences;
6. Historical Traffic Stats from TomTom [30].

All the different data sources mentioned used in this research study are depicted
in Figure 2.

Regarding 1, the records in this dataset showed several inconsistencies, particularly
concerning the recording of wind speed and direction (absences) and precipitation. Several
precipitation records had a value of “−990” (value expressed in mm/hour), which was
identified initially as a natural phenomenon known as negative rainfall, but was later
clarified by IPMA specialists as a weather station code error (sensor not working).

In 2 and 3, the records included in the dataset contained 87,829 lines of hourly wind
information speed and direction (for 2) and weather information (regarding 3) with very
few missing data.

For the dataset in number 4, the dataset is composed of 22,725 accident records. In this
dataset we only used data regarding the accidents that produced victims (Deaths, Serious
Injured, Light Injured).

Concerning 5, he dataset included 10,097 records from all occurrences related to
the three natures associated with an RTA—(1) accidents involving vehicles, (2) accidents
involving extrication operations, and (3) accidents involving pedestrians.

Lastly, for 6, it was not possible to obtain data for the whole period under analysis
due to the financial burden that this acquisition represented, so it was decided to limit the
acquisition to a period of one year (2019; organized in monthly datasets subdivided into
weekdays and weekend data). Due to the cost to obtain the data for a 10-year span, it was
assumed together with the experts for the purposes of this study that the values obtained
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are sufficiently representative of the dynamics of Lisbon traffic. Therefore, the data results
were applied to the full extent of the dataset.
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Figure 2. Data Sources and ETL Process performed.

After this step and having a new dataset that gave us the necessary data for the study,
we began the task of statistical data analysis, identifying patterns and deviations, and the
search for a justification for some of the results that proved challenging.

Once the ETL was finished, we proceeded to all the processing and geographic anal-
ysis work using ArcGIS PRO version 2.8 and the applicability of spatial autocorrelation
algorithms, namely, the Kernel density estimation, the Moran I index, and the Hotspot
analysis getis ord gi*.

Our goal is based on accident data using GPS identify hotspots. For that, global
Moran’s I was used to evaluate the data for spatial autocorrelation. Then we used the
Kernel Density Estimator to identify accident hotspots because it is a widely used method
that is simple to apply and implement and produces visually appealing results [31] similar
to those obtained by the authors mentioned above [12,21–23]. Moreover, when combined
with hot spot analysis (Getis-Ord Gi*), it allows for identifying problematic hotspots in
Lisbon’s road network. Moran’s Index values vary from –1 to 1, with a value near +1.0
indicating clustering, a value near −1.0 indicating dispersion [32], and a value of “0”
indicating perfect geographic randomness [33].

3.1. Global Moran’s I

Global Moran’s I is a widely used spatial autocorrelation indicator. The initial measure
on spatial autocorrelation for Road traffic accidents in this study was Global Moran’s I. we
used Global Moran’s I to identify whether the spatial output pattern is clustered, scattered,
or random, as well as is concentration levels [3]. The null hypothesis states that the feature
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values are distributed randomly throughout the research region. Moran’s Index values
vary from −1 to 1, with a value near +1.0 indicating clustering, a value near −1.0 indicating
dispersion [34], and a value of “0” indicating perfect geographic randomness [35].

The p-value is a probability that indicates whether the observed values were generated
by random processes or by other geographical activities. When the essential z-score values
are 1.655 at a 90% confidence level and the p-value is more than 0.10 (>0.10), the null
hypothesis can be accepted. The null hypothesis can be rejected when the crucial z-score
values are more significant than 1.65 at a 90% confidence level, and the p-value is less than
0.10 (0.10). This is because significant clustering exists beyond this region [24]. In the tails
of the normal distribution, very high (+2.58) or very low (−2.58) z-scores are discovered,
which are associated with very small p-values (0.01) and represent clustering or dispersion
at a 99 percent confidence level. Substantial hotspots (shades of red in Image 3.2) are
indicated by high z-scores linked with small p-values, whereas significant cold spots are
indicated by low z-scores coupled with small p-values [36].

The Spatial Autocorrelation tool was performed for each iteration with distance criteria
defined by the ArcGIS Incremental Spatial Autocorrelation. The direct distance between
two points was utilized to determine the locational proximity of data events, whereas the
inverse distance weighting approach was employed to determine the locational proximity
of neighboring points. Because each data point is analyzed in terms of its neighbors,
determined by a distance threshold, it is important to pick a distance threshold that
maximizes spatial autocorrelation [3]. The Global Moran I-Index is calculated using the
following equation:

I =
N ∑n

i=l ∑n
j=l Wij(xi − µ)

(
xj − µ

)(
∑n

i=l ∑n
j=l wij

)
∑n

i=l(xi − µ)2
. (1)

3.2. Kernel Density Estimator for Road Accident Analysis

One of the most popular techniques for identifying hotspots is spatial point pattern
analysis, and there are several methods for doing so. We have followed the recommendation
in [12] to utilize GIS and KDE to examine patterns as explained in the state of the art. These
can be divided into two categories [25]: first-order methods, which measure the variation
of the process’s mean value, such as quadrant counting or KDE, and second-order methods,
which examine the spatial dependence of points and use functions to explain this level of
spatial dependence.

As previously stated, KDE is the most widely used non-parametric statistical method
for smoothing data because it is simple to understand and implement. It uses a kernel,
K(x), centered in the estimation location (Xi), to calculate the density value of a set of point
events (n) in a given area, interpolating them and generating a continuous, more or less
smooth surface. The kernel is a weighted function that can be Gaussian, quadratic, or
conic in nature. In other words, the function counts the number of points within a region
of influence, weighting them according to their distance from the location of interest; the
bandwidth h determines the region of influence.

Equation (2) expresses the Kernel density function f :

f̂ (x) =
1

nh2 ∑n
i=1k

(
x − xi

h

)
. (2)

The chosen kernel and the bandwidth are two parameters that can influence the final
result. However, according to several authors, including Wand and Jones [35], the final
result is relatively unaffected by the type of kernel used. The bandwidth is the most
crucial parameter and has the most significant impact on the final result. It determines the
smoothness of the surface produced; bands that are too small produce non-smooth results,
while bands that are too wide produce the opposite effect. Because it varies with the study
area and data and sometimes requires a subjective judgment when applied, there is no
universal formula for determining this parameter.
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This study applied the KDE method in ArcGIS PRO 2.8 [34] with the Spatial Analyst
extension. After testing several bandwidths, a bandwidth of 500 m was chosen. The
hotspots covered a large portion of the study area with larger bands, making it impossible
to pinpoint hotspot concentration locations on specific roads. In comparison, only a few
hotspots were identified with smaller bands, resulting in an uneven surface that required
multiple attempts to achieve [36].

3.3. Hotspot Analysis (Getis-Ord Gi*)

The Getis-Ord Gi* are a group of statistics with several properties that make them
appealing for quantifying dependence in a geographically distributed variable, particularly
when combined with Anseli Moran’s I [37].

The Getis-Ord Gi* analyze evidence of spatial patterns, according to is creators, Getis
and Ord [4], “deepen the knowledge of the process that give rise to spatial dependence and enhance
detection of local pockets of dependence that may not be detected when using the global statistic”.

The Getis-Ord Gi* statistical computation is used in this study to determine where
the spatial clusters (hotspots) of road accidents with victims occur in the study area. In
addition to identifying these clusters, the algorithm uses the z-score and p-value values to
determine where the highest/lowest values for spatial clusters occur.

The Getis-Ord Gi* spatial cluster analysis analyses the characteristics of each occur-
rence of road accidents with victims, accessing each record in a neighborhood context and
looking for the distance that ensures that each record (accident) has at least one neighbor.
A high-value occurrence does not necessarily imply a hot zone.

To be statistically significant, it must have a high value and be surrounded by addi-
tional high-value occurrences.

The sum of a given characteristic, [accident], with its neighbors is proportionally
compared to the sum of all attributes. When the local sum differs significantly from what is
predicted, and this difference is not a random outcome, a z-score with statistical significance
is produced.

G∗
i =

∑n
j=1 wi,jxj − X∑n

j =1wi,j

s√
[n ∑n

j=1 w2
i,j−(∑n

j=1 wi,j)
2 ]

n−1

(3)

a = 1, x =
∑n

j=1 Xj

n
(4)

S =

√
∑n

j=1 x2
j

n
−X2 (5)

where: Gi* is the spatial autocorrelation statistic of an event i over n events. The term, xj is
the attribute value for feature j, wi, j is the spatial weight between feature i and j, n is equal
to the total number of features.

Once calculated, t the determined value is a z-score, and the greater the score, the
stronger the clustering of high values (hot spot). When the z-score number is negative
(low-value), more cold spot values are clustered.

4. Major Outputs Applied to Lisbon City Data

Using a GIS-assisted technique (ArcGIS Pro) to identify accident hotspots within
the Lisbon municipality area will aid in the identification of contributing causes and will
assist the city council and its departments in implementing mitigation measures to make
driving safe in these areas. The Kernel Density Estimation (KDE) and Getis-Ord Gi* hotspot
analysis were used to identify hotspots of road traffic accidents with victims in the Lisbon
city area based on the location and characteristics of the road accident. Using Kernel density
analysis and Getis-Ord Gi* hotspots analysis, different densities and levels of confidence
were determined for each year’s data. The map produced by the Kernel density analysis
and Getis-Ord Gi* hotspots analysis from the decade 2010–2019 is displayed on Figure 3.
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Several hotspot areas occurred in the study area consistently throughout the study period.
The data were checked for spatial autocorrelation using global Moran’s I before performing
KDE and Getis-Ord Gi* hotspot analysis to ensure that the data contained spatial clustering
required for hotspot analysis. The ANSR definitions (5 victims, 200 m) of a hotspot were
aggregated and used to determine an appropriate search radius distance for KDE and
Getis-Ord Gi*.
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In order to obtain the parameters required to proceed with the hotspot analysis, the
data for the biennium were selected in ArcGis Pro 2.8 using a SQL Query that allowed us
to select only the road accidents with victims for the years in review (2010–2011; 2012–2013;
2014–2015; 2016–2017; and 2018–2019), after which the five biennia were subjected each
one to the Moran I calculation to assess the existence of clusters of RTAs. The inverse
distance and the Euclidean distance method were introduced to conceptualize spatial
relationships; no threshold was used. The results obtained demonstrate a strong cluster
Padron of accidents, with a positive Moran’s Index of 0.99, a z-score of 65, and a p-value of
0.01, giving us less than 1% likelihood for the clustering pattern result of random chance.
Thus, we can reject the null hypothesis.

The next step after identifying spatial clustering of road traffic accidents in 2010 and
2011 was to conduct a Kernel Density Estimation (KDE) in ArcGis 2.8 utilizing the tool
spatial analyst tool. Anderson [12] identifies cell size and search radius (bandwidth) as the
two most important elements influencing the KDE technique. According to several experts,
the bandwidth is the most critical parameter for determining the best density surface [38].
As a result, the selection of bandwidth will have a considerable impact on the outcome of
the hotspots. Specifically, the smaller the bandwidth, the smaller the hotspots.

The value of bandwidth will influence the smoothness of the density surface. The
smoother the density surface, the larger the bandwidth. As a result, it is critical to select an
ideal bandwidth.

To determine the desired bandwidth, we used Fumiya’s study [39], which suggests
making incremental 50-m jumps until the hotspot plot reaches the equilibrium, i.e., larger
bands, hotspots cover a large portion of the study area, making it challenging to identify
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hotspot concentration points on specific roads correctly. In comparison, only a few hotspots
are identified with smaller bands, resulting in a rough surface. In our case, we reached a
balance in the bandwidth of 250 m.

The 2018–2019 biennium presents the second outlier in our data. There is a decrease
in the number and location of hotspots, particularly in the city center, the spots that were
previously spread across the 3rd Level, 4th Level, and 5th Level roads are practically
non-existent. If in 2012–2013 the economic crisis justified the reduction in traffic and
consequently the reduction in accidents with victims, the current biennium cannot justify
the same. Portugal is in total economic growth, according to the Tourism of Portugal [40],
and Lisbon is one of the European cities with the highest demand, registering numbers in
the order of 7.5 million tourists only in 2018. To understand this phenomenon, we asked
the Lisbon Municipal Civil Protection and the Lisbon Municipal Police what could justify
this decrease. The conclusion we reached is both surprising and revealing. Once again,
explaining the thesis defended in this study that human factors are undoubtedly the most
significant contributor to a road accident with victims.

Comparing Figure 4, with the decade from Figure 3 there is a marked decrease in the
number and location of hotspots, particularly in the city center.
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This phenomenon is explained since in 2019, the Lisbon Municipal Police (PML), in
addition to the 21 fixed speed cameras, started to control the speed with mobile speed
cameras strategically placed in areas where the speed limit is 30 km/h (4th Level and
5th Level roads) such as residential areas or schools. The control of mobile speed control
in the municipality allowed PML to record a record number of offenses, with a total of
61,540 severe infractions, ten times more than in 2015 (6842). This data and the study of
the average speeds recorded by TomTom showed that drivers adjusted their speed to the
limit imposed by law mainly on the roads mentioned above, resulting in a clear decrease in
road accidents.
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A seasonal analysis was performed, and Figure 5 depicts the temporal study of the
kernel density for the seasons of the year of accidents with victims, which allows us to
identify that in spring, there is a lower concentration of hotspots in the outlying areas
of the city in comparison with the other seasons of the year, being observable that it is
the city center, as well as downtown area around the Marquês de Pombal roundabout that
concentrates the accidents, an example of this being Avenida da República, Avenida Fontes
Pereira de Melo, and Avenida Liberdade. In the summer, there is an increase in accidents
and frequency of accidents in the central area of the city, in the area of the Eixo Norte-Sul,
accesses to the 25 de Abril bridge, General Norton de Matos Avenue with the Benfica Road,
and at the end of the A5 towards the Duarte Pacheco viaduct at the exit to the bridge. The
aforementioned roads continue to be hotspots throughout the autumn and winter. However,
there is a greater accident concentration on the outskirts of Lisbon, specifically along with
Avenida General Norton de Matos and the Eixo Norte-Sul, with the highest concentration of
accidents in the area that overlaps Avenida Engenheiro Duarte Pacheco.
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In order to be able to perform an assessment and identification of the hotspots of traffic
accidents with victims existing in the area of the municipality of Lisbon that reflects the real
problems without suffering the influences or deviations that may exist in spatio-temporal
analyses of lower temporal amplitude, we performed, as in the biannual analyses, the
KDE analysis of all road accidents with victims that fulfilled the ANSR hotspot cluster
requirement (5 victims, 200 m). The results obtained demonstrate a strong cluster pattern
of accidents, with a positive Moran’s Index of 0.99, a z-score of 200, and a p-value of 0.0001,
giving us less than 1% likelihood for the clustering pattern result of random chance.

Thus, we can reject the null hypothesis; Getis-Ord Gi* analysis. The previous analysis
(KDE) permitted the identification of the RTAs hotspots. However, as previously stated, the
KDE technique lacks an evaluation of the statistical significance of the discovered hotspots.
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As a result, it is critical to look into the statistical significance of the hotspot and identify
the most prone regions with statistical significance. According to many researchers, it
is preferable if the statistical value of the discovered hotspot is determined objectively
and proactively [24]. Our statistically significant evaluation procedure began with the
null hypothesis: “accidents in a roadway segment occurred at random.” As previously
stated, we initially used spatial autocorrelation global Moran’s I test to verify the statistical
testing for the null hypothesis and determine whether RTAs points were organized in
clusters of identical values. Accordingly to Prasannakumar [3], this is a required step before
performing the Hotspot Analysis (Getis-Ord Gi*) on ArcGIS PRO. In this way and for the
identification of hotspots of road accidents with victims in the municipality of Lisbon, the
Hotspot Analysis Getis-Ord Gi* was applied to our database, presenting a clustering of
high values (hot spots) with a confidence level of 99%, as demonstrated on Figure 6 for the
following locations: Avenida Dom João II, Eixo Norte-Sul, Avenida General Norton de Matos,
Avenida Marechal Craveiro Lopes, Avenida Eusébio da Silva Ferreira, Itinerário Complementar 17,
Estrada de Monsanto, A5, Acesso Avenida da Ponte, Ponte 25 de Abril, Avenida Vinte e Quatro de
Julho, Campo dos Mártires da Pátria, Rua Joaquim António de Aguiar, Tunel Marquês. At a 95%
confidence interval were identified as statistically hotspots: Avenida Fontes Pereira de Melo,
Rua Sousa Lopes, Avenida da República, Avenida Álvaro Pais, Avenida General Roçadas, Avenida
Mouzinho de Albuquerque, Avenida de Brasília, Avenida Infante Dom Henrique e Avenida da India.
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Hotspot identification and characterization is depicted in Figure 7. After the identifica-
tion of the location of statistically significant hotspots performed by the Hotspot Analysis
Getis-Ord Gi* algorithm, the results were analyzed, and a selection of the most active
hotspots was arranged by the number of accidents and severity of victims was made. If
Lisbon Municipality had already applied the Municipal Road Safety Index (ISRM) we could
compare this classification with the one calculated by CML.
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Figure 7. Lisbon Road traffic Accidents Hotspots and problematic roadways.

The data shows that the Segunda Circular is the most problematic roadway in this
study. It comprises three avenues: Avenida General Norton de Matos, Avenida Marechal
Craveiro Lopes, and Avenida Eusébio da Silva Ferreira, the later only exists from 2015 onwards.

Major Findings from This Big Data Analytics Process of City Data

An analysis was made regarding hotspots represented on the map of Figure 7, and it
was made a summarization on Table 2, where in each location we have the identification
number of the hotspots in the map. Table 2 summarizes the main knowledge extracted
from smart city data to local municipality helping them to deal with the increasing acci-
dent numbers. The growth of the urban mesh and the population density has not been
accompanied by the development or sizing of the road infrastructure in Lisbon. It is a fact
that the number and severity of road accidents in Portugal have been decreasing over the
last thirty years, bringing us closer to the European average. However, despite these facts,
the situation remains a source of concern. To help deal with these problems data on road
accidents has started to be georeferenced to allow for a better understanding of spatial
patterns and risk factors. In this section a data analytics process to this collected data to
extract useful information for local management authority.

During our analysis and regarding Avenida Eusébio da Silva Ferreira (Hotspot 1), there
were on average only 100 days of precipitation per year and that these conditions (rain)
only correspond to 17% of the RTAs cases in our study.

From Table 2, we believe that the leading causes for the existence of this hotspot are
undoubtedly the human factors that, combined with atmospheric conditions, potentiate
the occurrence of RTA in these locations.

Regarding Segunda Circular, as a suggestion and extending the concept to the rest of
locations, we believe that the reduction of speed from 80 km/h to 50 km/h combined with
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the existence of average speed cameras (located near the airport, Campo Grande viaduct,
and after the exit to Benfica/Buraca) would drastically reduce the number of accidents on
this roadway.

The main reason of the road accidents are due to human factors, where in eixo norte-sul
(Hotspot 7) there is a mix between this human factors and environmental ones (roadway
with poor drainage and weather conditions).

Table 2. Analysis between hotspots.

Hotspot Location Accident Typology Weather Conditions Common Factor Time Distribution

(1) Av. Eusébio de
Silva Ferreira

skidding rear-end
collision crash
with rollover

41% of the records
occurred on rainy days

Excessive speed
disrespect for the
safety distances

Night, lunchtime rush,
and morning rush
(good weather
conditions) During the
morning rush and
dawn (precipitation)

(2) Av. General Norton
de Matos rear-end collision

74% of the RTAs
occurred with
good weather

Excessive speed
disrespect for the
safety distances

Morning rush (car and
pedistrian) afternoon
rush (car) Night
(pedestrian)
Dawn (pedestrian)

(3) Av. Marechal
Craveiro Lopes

rear-end collision
multiple vehicle
collision crash with
rollover

69% of the RTAs
occurred with
good weather

Excessive speed
disrespect for the
safety distances

Morning rush
Afternoon rush

(4) Avenida de Berlim Pedestrian collision
Side collision

75% of the RTAs
occurred with
good weather

Excessive speed
disregard for vertical
signs disregard for
traffic lights signals

Morning rush
Afternoon rush

(5) Avenida
Almirante Reis

Pedestrian
collisionSide collision

87% of the RTAs
occurred with
good weather

Excessive speed
disregard for vertical
signs disregard for
traffic lights signals

Afternoon rush Night

(6) Avenida da
República

Pedestrian
collisionSide collision

84% of the RTAs
occurred with
good weather

Excessive speed
disregard for
vertical signs

Morning rush
Afternoon rush

(7) Eixo Norte Sul
crashes with a retaining
device
rear-end collisions

57% of the RTAs
occurred in good
weather conditions

Excessive speed failure
to observe
safety distances

Morning rush
Afternoon rush

(8) Avenida 24 de Julho
Pedestrian collision
collision with
other situations

89% of the RTAs
occurred with
good weather

Excessive speed
irregular maneuvering Afternoon rush Dawn

(9) Avenida das India
Rear-end collision
Collision with
other situations

85% of the RTAs
occurred with
good weather

Excessive speed
Disregard traffic
light signals

Morning rush
Afternoon rush

(10) Ponte 25 de Abril

Crash with side
restraint in place
Collision with
other situations

71% of the RTAs
occurred with
good weather

excessive speed
irregular maneuver

Morning rush
Afternoon rush

(11) Avenida Infante
Dom Henrique side collision

81% of the RTAs
occurred with
good weather

Excessive speed
Disregard traffic
light signals

Morning rush
Afternoon rush

(12) A5 -Highway rear-ended collision
simple crash

74% of the RTAs
occurred with
good weather

excessive speed
irregular maneuver Afternoon Night
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5. Conclusions

We identified that an ideal period for data collection when conducting a study on road
accidents should be between 5 and 10 consecutive years since this interval represents a
compromise between the number of years required to have a reasonable sample of seasonal
patterns and still be in the processable range.

Therefore, the first task was to fuse six major databases with relevant data for this work.
This data fusion allows to improve knowledge extraction. Once the necessary data were
gathered, they were cleansed and prepared. The use of data visualization methodologies
over this fusion allows a new view regarding accident location and conditions in Lisbon.

After this step we proceeded with the necessary data-exploration phase and afterwards
the processing and geographic analysis work using ArcGIS PRO version 2.8 and the
applicability of spatial autocorrelation algorithms, namely, the Kernel density estimation,
the Moran I index, and the Hotspot analysis Getis-Ord Gi*.

The results allowed us to identify twelve streets considered problematic and the
location of fourteen hotspots of traffic accidents in the municipality. The analysis of each
hotspot statistics allowed us to state that the major contributing factor to traffic accidents in
the city of Lisbon is the human factor as concluded from Table 2. The vast majority, if not
the totality of the causes of RTAs in the places under consideration, are due to excessive
speed or disrespect of traffic signs and traffic signals. Local municipality used this hot spot
geographic information to locate new speed radars in the city. Around 22 new speed radar
were placed using this hot spot information.

We have seen that environmental factors (weather) have little influence on road traffic
accidents in the study area, with the exception of two cases identified, namely, in an area
prone to flooding located in the North-South axis, near the Duarte Pacheco viaduct and in
the Segunda Circular at the end of Avenida Eusébio de Silva Ferreira, near the exit to the IC19.
With the exception of these factors, we were unable to identify any other factors that could
potentiate a traffic accident. This is other example of useful information generated from
this data analytics process over smart city fusion data.

As the product is a digital artifact, an output, and not a framework, it had to be
validated, so the whole process was accompanied by a panel of four experts from various
branches related to the project’s scope. There were several iterations made, as well as
changes/corrections suggested.

Studies such as this one should be conducted regularly and would benefit from the
existence of an integrated database with the used data-sources as well as others.

In order to correct the problems faced during the data survey process to have a
consistent database it is essential to develop a set of recommendations to fill the information
gaps identified during the said data survey process:

1. Integration between IPMA and ANSR, so that when the accident is entered in ANSR’s
database, the meteorological values for that date, time and location are automatically
added to the BEAV;

2. Integration between ANSR and the georeferenced data of the recent e-secured appli-
cation from the Portuguese Insurers Association [40] will allow the coordinates of the
accident to be compared with those recorded by the security forces and registered in
the BEAV;

3. The causes of the accident could also be analyzed, i.e., densification of the data
identifying the cause of the crash: were the drivers under the influence of alcohol?
Was the reason for the distraction of the accident because they were on their mobile
phones? Why was the pedestrian hit by a car? Was he or she wearing headphones
or on a mobile phone? These and other questions would allow researchers, in the
future, to develop more detailed studies according to the reality of road accidents
with victims in the municipality of Lisbon.
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