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Abstract: Time geography considers that the probability of moving objects distributed in an accessible
transportation network is not always uniform, and therefore the probability density function applied
to quantitative time geography analysis needs to consider the actual network constraints. Existing
methods construct a kernel density function under network constraints based on the principle of least
effort and consider that each point of the shortest path between anchor points has the same density
value. This, however, ignores the attenuation effect with the distance to the anchor point according to
the first law of geography. For this reason, this article studies the kernel function framework based on
the unity of the principle of least effort and the first law of geography, and it establishes a mechanism
for fusing the extended traditional model with the attenuation model with the distance to the anchor
point, thereby forming a kernel density function of time geography under network constraints that
can approximate the theoretical prototype of the Brownian bridge and providing a theoretical basis
for reducing the uncertainty of the density estimation of the transportation network space. Finally,
the empirical comparison with taxi trajectory data shows that the proposed model is effective.

Keywords: time geography; kernel density estimation; potential network area; space–time trajectory

1. Introduction

Time geography considers that the possibility of moving objects at different accessible
locations is not always equal, so quantitative spatiotemporal uncertainty analysis requires
measuring the actual visit probability distribution [1]. A common method is to assign
location probabilities to the potential path area (PPA), which is used in time geography
to describe the potential range of a moving object during two anchor points [2]. In prob-
ability theory, this spatiotemporal uncertainty during the period of two anchor points is
described by the Brownian bridge [3–6], whose density cloud is similar to a saddle formed
by superimposing the bimodal peak on a ridge. However, the Brown bridge, which is
inferred from random walks in a homogeneous space, is not suitable for heterogeneous
ones, especially transportation networks with restricted directions [7]. Therefore, we expect
a saddle-shaped probability distribution model consistent with the Brownian bridge in the
transportation network space.

Downs proposed a time-geographic density estimation (TGDE) method based on the PPA
kernel function [8] and extended it to the transportation network to be used in the estimation
of missing points in travel itineraries and the evaluation of food availability [9,10]. PPA
constrained by the transportation network is also called a potential network area (PNA) [11,12].
The TGDE kernel function corresponding to PNA is consistent with the principle of least
effort [13]. It believes that the smaller the cost of a point x, the greater the weight, and
the corresponding cost measurement is based on the least-cost path (denoted as LCP-x)
passing through that point. In this way, the minimum-cost path between two anchor points
(corresponding to the focal length in the geographic ellipse, referred to here as the focal line) is
assigned the same and maximum density at any point, and the density of other points around
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the focal line attenuates with cost. This kernel function corresponds in form to the base of the
saddle-shaped Brown bridge and is therefore effective for such a PNA with multiple paths
without intersections except for the endpoints.

So far, however, the PNA kernel function still only simulates the base of the saddle-
shaped Brown bridge. This article develops two important extensions based on the divide-
and-conquer strategy. First, the saddle-shaped Brown bridge is decomposed into a double-
layered peak and ridge. This peak is consistent with the first law of geography [1,14]. It is
based on the recognition that the observed track point should have a greater certainty or
visit probability than the surrounding unobserved potential location points. The first law of
geography is different from the principle of least effort mentioned above, and accordingly,
the density of the peak is different from that of the ridge. We will develop here the
mathematical foundations to calculate the peak density that decays with the cost distance
to the anchor point. Second, in the process of our development of these foundations, we
also expand the structural framework of the PNA kernel function by introducing the peak
model on the basis of the ridge model, now being able to build a saddle-shaped kernel
function on the transportation network. As a result, we will have a complete theory for the
kernel density function in PNA space.

The other parts of this article are organized as follows: Section 2 presents the related
concepts and density estimation of time geography and provides the relevant background
of this article. Section 3 describes in detail the kernel density function modeling method for
PNA, including the density modeling of the upper layer in accordance with the least-cost
economic law [13] and the density modeling of the lower layer in accordance with the first
law of geography. Section 4 describes the research process of this article, that is, using the
model proposed in Section 3 to generate a kernel function of the actual PNA and comparing
and analyzing it with the empirical model and the model before improvement. Section 5
summarizes the research in this article and discusses potential extensions.

2. Research Background

The space–time uncertainty measurement between the space–time locus points has
qualitative time-geographical methods and quantitative kernel density evaluation (KDE)
methods. The former provide the potential scope of activities but do not distinguish
internal differences, while the latter distinguish internal differences but have a scope of
action lacking a clear physical meaning. Both have become essential tools for GIS analysis
and also an important basis for the model proposed in this article.

2.1. PNA Measurement

Time geography provides an important theoretical framework for measuring the
continuous space–time uncertainty of moving objects during discrete space–time trajectory
points [15]. One of its key concepts is the geographic ellipse, PPA, which represents the
reachable range of a moving object under the constraints of two spatiotemporal trajectory
points. Mathematically, the sum of the minimum time costs for each point in the PPA to
reach the two anchor points does not exceed the time budget between the two anchor
points. The same applies to PNA:

PNA =
{

x
∣∣tp(s, x) + tp(x, e) ≤ t(s, e)− ta(s, e)

}
(1)

where t(s, e) is the time budget from s to e, during which the stationary activity time is
recorded as ta(s, e); tp(s, x) and tp(x, e) are the two minimum time costs from an anchor
point s to a certain point x and x to another anchor point e, respectively. For example,
the height of the green line in Figure 1 at e means tp(s, x2) + tp(x2, e). In addition, the
right formula represents the maximum time budget for movement, i.e., the minimum
time cost for an object to pass through the distance of the long axis (e.g., the path s-x3-e),
corresponding to the height of the blue line in Figure 1 at the point e(2a); the minimum
value of the left formula (denoted as tp(s, e)) represents the minimum time cost for an
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object to pass through the focal length (e.g., the path s-x1-e), corresponding to the height of
the red line in Figure 1 at the point e(2c).
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As an extended concept of time geography in the transportation network, PNA has
been applied in the fields of geography, ecology and transportation [16] in studies such as
accessibility analysis and planning [17–19], traffic flow simulation and optimization [20,21]
and behavior patterns and dynamic interaction analysis [22–25]. However, PNA only
describes the location range and does not distinguish the access probability of each location.
From the perspective of probability theory, PNA corresponds to the sample space, and
each position point corresponds to a sample point; this provides a theoretical basis for the
construction of the kernel density function on PNA.

2.2. Probabilistic PNA

Generally, there are two methods for constructing density clouds distributed on PNA:
one is to apply classic probability models, such as the aforementioned Brown bridge [3,5] and
Markov techniques [7], and the other is to apply attenuation functions, such as TGDE [26].
The Brown bridge has been used in the construction of probabilistic PPA. The basic principle
is to map the starting and ending points of the Brown bridge to two trajectory points and
integrate the normal distribution at all times (Figure 2a). This establishes a direct connection
between time geography and probability theory and also provides a prototype and reference
model from the field of probability theory for the study of time and space uncertainty in time
geography, that is, saddle double-layer architecture = ridge + peak (Figure 2b). The planar PPA
can be expressed as a mesh PNA in the GIS, which means that the probabilistic PPA inferred
by the Brown bridge can be converted into a probabilistic PNA. However, the Brown bridge
assumes that the space is homogeneous and isotropic, which is harsh for a nonhomogeneous
transportation network, so the PNA density distribution needs to be reconsidered.

Another probabilistic PNA was proposed [26], and its attenuation kernel function
instead of Brown bridge can be described as follows:

pt(x) = PPT∗
(

tp(s, x) + tp(x, e)
t(s, e)− ta(s, e)

)
(2)

where pt(x) is the density of any point x within the PNA; PPT∗() is a distance attenuation
function. The numerator and denominator respectively correspond to the left and right
forms in Equation (1), so the value of the fraction does not exceed 1. For the focal length
line with the smallest time cost, since the fractional value of each point is the same and
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the smallest, the density of each point (including two anchor points) is the same and the
largest in the PNA. This also means that other points that deviate from the focal line have a
smaller density due to increased cost.
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In morphology, the density cloud of pt(x) is a kind of “ridge” centered on the focal
length line and attenuated to the surroundings, corresponding to a saddle-shaped base
(Figure 2b). Compared with the complete structure of the ideal Brown bridge, the ker-
nel function of the actual PNA requires the construction of the “peak”. Its theoretical
cornerstone comes from the first law of geography, and its physical meaning is that the
track points based on observation are more certain than the potential points based on the
interpolation between the track points.

3. Kernel Density Function in Time Geography

The main purpose of this paper is to realize that the kernel function on PNA has
a saddle shape which is close to the ideal Brown bridge. Considering that the classical
KDE and TGDE correspond to the “peak” and “ridge” of the saddle structure, respectively,
this paper adopts a divide-and-conquer strategy to construct this saddle density function
with a hierarchical structure. The basic idea is to first construct the PNA’s “ridge” and
“peak” density distributions independently and then compound them into a saddle shape
(Figure 3). The kernel density function is essentially a decay function, and the “ridge” and
“peak” are no exception. They are mainly different in attenuation center: the former is the
focal length line between two anchor points, and the latter is the two anchor points. This
strategy not only makes full use of existing models, but also realizes their complementary
advantages through integration.
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3.1. Ridged Density Function

The ridge-type density function is derived from the Equation (1) of PNA, and its
attenuation factor is related to the travel time budget and the least-time-cost path through
the weight point, which can be formalized as follows:

Wridge(x) = f
(

tp(s, e|x)− tp(s, e)
t(s, e)− ta(s, e)− tp(s, e)

)
(3)

where the weight of point x, Wridge(x), is a decay function f (*); tp(s, e|x) represents the
time cost of the least-cost path passing point x. The above equation can also be written as

Wridge(x) = f
(

tp(s,e|x)−2c
2a−2c

)
, where 2a and 2c are the long axis and focal length of the PNA,

respectively. The density cloud of Wridge(x) is consistent in shape with the kernel function
of TGDE (Equation (2)), which can be called a ridge (Figure 4a). In a homogeneous space,
the boundary of the PNA is an ellipse; the isodensity line of Wridge(x) is a sequence of
elliptic lines with the same focus and different elevations, due to the equal tp(s, e|x) at any
point x on the same elliptic line.

Taking time as a measure, the numerator is [0, 2a − 2c] and the denominator is a
constant 2a − 2c, so the value range of the fraction is [0, 1]. Note that 2c is subtracted from
both the numerator and denominator, which is one of the differences between Equations (3)
and (2). The purpose is to standardize the fraction range from [c/a, 1] to [0, 1]. Since the
inverse distance weights (IDWs) of the fractional values {0 (at the focal length line), c/a,
1 (at the boundary)} are {max, middle, min}, Equation (3) can expand the interval length
and weaken the boundary effect. Another difference is that the cost measure of path LCP-x
uses tp(s, e|x) instead of tp(s, x) + tp(x, e). Since the former considers the cost of turning
at point x and the latter does not, the two are not always equal. For example, in Figure 5,
the PNA is composed of three road sections R1, R2 and R3. Their minimum costs are 11, 12
and 13, respectively. The cost of turning right at x from R1 to R3 is 2, and the cost of going
straight at x from R2 to R3 is 0. Then, tp(s, e|x) = R2(12) + straight (0) + R3(13) = 25, while
tp(s, x) + tp(x, e) = R1(11) + R3(13) = 24 and R1(11) + right (2) + R3(13) = 26. Therefore, the
replacement of tp(s, x) + tp(x, e) in Equation (3) by tp(s, e|x) can improve the accuracy of
cost measurement and accordingly improve the density estimation.

3.2. Peak-Type Density Function

The peak-type density function is derived from the classic kernel function (such as
normal kernel function, triangular kernel function), and its attenuation factor is the distance
from the weight point to the anchor point. It can be described as follows:

Wpeak(x) = f

(
tp(s, x)[

t(s, e)− ta(s, e) + tp(s, e)
]
/2

)
+ f

(
tp(x, e)[

t(s, e)− ta(s, e) + tp(s, e)
]
/2

)
(4)
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where Wpeak(x) is the superposition of two attenuation functions, and their two distance fac-
tors are point x to the start and end anchor points, respectively;
tp(s, x) ∈ [0,

[
t(s, e)− ta(s, e) + tp(s, e)

]
/2], and the fractional value range is [0, 1]. The

above equation can also be written as Wpeak(x) = f
(

tp(s,x)
[2a+2c]/2

)
+ f

(
tp(x,e)

[2a+2c]/2

)
, which can

be regarded as a linear superposition of two classical nuclear densities in form.
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Figure 5. Schematic diagram of a PNA.

In terms of morphology, since the two anchor points are the attenuation centers of their
respective neighborhoods, the peak density distribution will independently form two maxima
at the two anchor points (Figure 4b). The shape of the two peaks has a theoretical basis from
the first law of geography and a clear physical meaning. For example, the flow of traffic has
the effect of diversion and confluence at the starting anchor point (source point) and ending
anchor point (meeting point), respectively. This undulating form is also applicable to the focal
line; that is, the density of the point in the middle of the focal line is different from (less than)
that of the anchor point, which is different from the density of the “ridge”.

“Peak” and “ridge” are also related in form. Equation (4) can be regarded as a
separation of Equation (3); that is, one IDW based on double anchors in Equation (3) is
separated into two sub-IDWs based on single anchors in Equation (4). Each sub-IDW uses
a single anchor point as the center to assign a weight that decays with the distance from the
center to the weight point. The above connection also means that “peak” and “ridge” have
no clear boundary between them and can be transformed into each other under certain
conditions, such as when the two anchor points are colocated.

3.3. Saddle-Shaped Kernel Density Function

The “peak” and “ridge” models have their own rationality. For the “ridge”, under
the condition of limited time and resources, most people will choose the least-cost path
(economic law), while a few people will choose other paths for various reasons, such
as avoiding congestion or passing fewer traffic lights. For the “peak”, the closer to the
observation point, the greater the certainty of geographic events according to the first law
of geography. The rationality of each exhibits certain limitations and one-sidedness due to
the failure to integrate under a unified framework. For the midpoint of the focal length
line, for example, “ridge” gives the same maximum density as the anchor point, while
“peak” gives a value less than the density at the anchor point. Therefore, it is necessary to
integrate the “peak” and “ridge” models on the same PNA in order to take into account the
rationality of each and give full play to the overall advantages.

Here, an integration method based on dot multiplication is adopted:

px =
Wpeak(x)·Wridge(x)

∑x∈PPN Wpeak(x)·Wridge(x)
(5)

where px is the PNA kernel function composed of “peak” and “ridge”, which has a saddle-
shaped characteristic (Figure 4c). Since “peaks” and “ridges” are based on different princi-
ples from two different disciplines, namely the principle of least effort in economics and
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the first law of geography, they can be reasonably assumed to be independent. Note that
the components of the kernel function that are constrained by time geography include not
only the domain of definition (PNA), but also the analytical equation. In addition, because
the PNA kernel function has the characteristics of a probability density function (the cumu-
lative density is 1), there is no need to set a coefficient that responds to a variable network
structure, such as the dimensionality correction coefficient of Downs and Horner [26].

The negative exponential decay model, which has been applied to potential accessibil-
ity assessment and access probability simulation [13,27], is also used in this article:

f (t) = exp(−βt), β > 0, t ∈ [0, 1] (6)

where the β coefficient affects the degree of attenuation (as shown in Figure 6a): the smaller
the β, the smoother. Under the condition of the same β coefficient, the weight functions
of two different intervals [0, 1] and [2/3, 1] (Figure 6b) are normalized to generate the
probability density function (Figure 6c). The boundary effect of the interval [2/3, 1] is more
significant than that of the interval [0, 1]. This also explains the reason why the numerator
and denominator of Equation (3) increase the −2c term to make the fraction interval [0, 1].

There is no uniform standard for setting the β value in the negative exponential
model [13]. Mathematically, Wpeak(x) can be regarded as the zoom factor of Wridge(x) in
Equation (5), which adjusts the height difference between the top of the peak and the
bottom of the saddle. The height difference is positively correlated with the β value in
Wpeak(x). When the β value is 0, the proposed saddle shape degenerates into a “ridge”;
this means that the traditional “ridge” model is a special case of the proposed model.
In addition, the difference in the utility of the economic law and the first law in specific
applications also affects the magnitude of the two β values.
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4. Application
4.1. Methods

To illustrate, the PNA kernel function proposed in this article will be applied to an
actual transportation network. The study area is located in the second ring road of Xi’an,
China (Figure 7a), and the transportation network involved is composed of 611 nodes and
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1015 road sections. The data are mainly derived from the “GAIA” Open Dataset of Didi
Travel, an online car-hailing service provider (https://outreach.didichuxing.com/research/
opendata/ (accessed on 10 January 2022)), including arterial roads and their (average)
driving speeds and more than 2 million driving trajectories that have been desensitized.
The time frame of the study is from 17:00 to 20:00 every day during the period from 8–13
October 2018. This time range was selected because the trajectory data during this period
were sufficient, and the speed distribution on the transportation network was relatively
stable due to the simple evening peak. In addition, the trajectory data of the positioning
offset were filtered before the analysis.
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Figure 7. Study area (a) and a pair of anchor points in the transportation network (b).

PNA is constructed for one pair of anchor points (s (108.960000◦ E, 34.230000◦ N), e
(108.950000◦ E, 34.240000◦ N)) using Equation (1), with a fixed activity time of 0 and a time
budget of 1.5 times the minimum cost (Figure 7b). The reason for setting the value to 0 is

https://outreach.didichuxing.com/research/opendata/
https://outreach.didichuxing.com/research/opendata/
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that taxis are usually point-to-point commuting, and the only known space–time trajectory
data do not include activity time. Turning cost is a part of the transit cost based on time
measurement. According to Song et al. [7], it can be set to 3 s for right turns, 15 s for left
turns and 40 s for U-turns. The other part is the cost of passing roads, and its calculation
needs to set the corresponding maximum traffic speed: the main road is generally 20–55
km/h according to the “GAIA” plan, and the general road is 20 km/h. The time budget,
according to Papinski and Scott [28], is set to 1.5 times the cost of the focal length to allow
moving objects to be uncertain because they can deviate from the focal line. The calculation
of transit cost applies the extended A* algorithm to the weighted highway network [29],
and the display of PNA uses ArcGIS v.10.7 (ESRI, Inc. Redlands, CA, USA).

4.2. Results

Figure 8 illustrates a PNA in the study area, where the thin line represents the trans-
portation network and the thick line represents the PNA. In the thick line, the dark black
line represents the focal length line, and the light black line represents other potential paths.
As the domain of the kernel function, PNA determines the position and shape of the kernel
density cloud: the two anchor points in the PNA determine the two maximum “peaks” in
the cloud, and the focal length line in the PNA determines the “ridge” in the cloud.
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Figure 9 illustrates the kernel function distributed on the PNA, indicating that the
higher the height, the greater the probability. Figure 9a,b illustrate the distribution of the
kernel function on the node and on the transportation network, respectively. The latter
based on continuous distribution is a linear fitting of the former based on discrete distri-
bution. They show the three-dimensional characteristics of the kernel function: “peaks”
(high at the anchor and low around it) and “ridges” (high at the focal line and low on
both sides). Figure 9c,d show two views of the kernel function from the perspective of
dimensionality reduction: the front view, with a projection plane with the straight line s-e
as the horizontal axis and probability as the vertical axis, highlighting the saddle shape; a
side view, with a projection plane perpendicular to the straight line s-e, highlighting the
attenuation characteristics.
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4.3. Verification

In order to test the validity of the proposed model, an empirical model is generated
by calculating the frequency of the actual trajectory from the data source through the
pair of anchor points. Subsequently, the coefficient of determination is used to evaluate
how close the proposed theoretical distribution is to the empirical model: R2 = 1 −
∑(px − p′x)

2/ ∑(px − px)
2, where px and p′x are the theoretical and actual values at point

x, respectively, and px is the mean value of px. Note that the point x in the equation is
located on the actual trajectory within the PNA as per Song et al. [7]; when R2 is a positive
value, the larger the value, the better the fit. In addition, we also calculated the R2 of the
empirical distribution and the simple “ridge” distribution to show the improvement of the
double-layer structure compared to the single-layer structure.
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Figure 10 illustrates the actual distribution of 154 trajectories on the PNA, including
three-dimensional discrete and continuous density clouds (Figure 10a,b) and two-dimensional
views (Figure 10c,d). It can be seen from Figures 9 and 10 that the theoretical and actual
distributions are similar in both two dimensions and three dimensions, R2 = 0.941. This
similarity also validates the method of setting two β values in the PNA kernel function. For
the β value in the “ridge”, it cannot be set too small (the smaller the value, the flatter the
density curve), in order to avoid the overestimation at the boundary caused by the too-small β
value. Dominated by economic laws, people who move directionally between paired anchor
points usually do not deliberately detour beyond the PNA boundary, which is the physical
meaning of the low or even zero probability of boundary. For the β value in the “peak”, it
should not be set too large (the larger, the steeper), to avoid the underestimation of the saddle
caused by the excessive β value. Subject to the first law of geography, the saddle (which
has a higher density due to its location on the “ridge”) is not higher than the anchor point.
This is the theoretical basis for the greater visit probability of the saddle. In addition, we also



ISPRS Int. J. Geo-Inf. 2022, 11, 184 14 of 19

measured the R2 between the single-layer “ridge” model and the actual distribution, 0.833.
The falling value indicates the necessity of superimposing the “peak”.

In addition to the above-mentioned overall perspective, the PNA kernel function can
also be tested from a single perspective of the path. Figure 11 shows the three distributions of
the proposed model, the “ridge” model, and the empirical model for each of the red, green,
and blue paths in Figure 10a. In terms of cost, the red line is the smallest and the blue line is
the largest. It can be seen from the figure that the proposed model is closer to the empirical
model than the “ridge” model: the red line of the two-tuple R2 between the proposed model
and the empirical model, R2 between the “ridge” model and the empirical model is (0.718,
−0.531); the green line, (0.927, 0.624); and the blue line, (0.842, 0.454). This also explains the
statistical significance that the PNA kernel function must include the “peak”.
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5. Conclusions and Discussion

This paper extends a previous work on the single-layer “ridge” model of the PNA
kernel function [26]. It develops the mathematical foundation for the double-layer “ridge”
+ “peak” model of the PNA kernel function and takes into account the economic law with
the least cost and the first law of geography. It shows that the pure fact that a moving
object is continuously observed in two geographic scenes breaks the previous assumption
that the kernel density function is only restricted by economic laws. Therefore, the two
laws of economy and geography must be introduced in the kernel density function in
order to cooperatively assign locational probabilities. The two laws not only lead to the
double-layer structure of the kernel density function, but also lead to a saddle shape that
approximates the Brown bridge and the actual distribution. The formalization of this
model is no longer just a function of constant coefficients, but a framework that can adjust
coefficients (β) according to specific applications. With the Brown bridge model [3] and the
two-layer model at hand, the spatial types (homogeneous and heterogeneous) covered by
the time-geographic PPA kernel function are complete.

This model has been successfully implemented in Python and ArcGIS, which are used
for geographic computing and geographic visualization, respectively. In addition, the
resulting values of the model have saddle characteristics similar to Brownian bridges and
can now be used for kernel density estimation of transportation network space, providing
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a basis for the prediction of visiting intensity and dynamic interactions of moving objects.
When the space–time trajectory points of a moving object on the transportation network
are known, its probability of visiting any location at any point in time can be calculated.
The estimated density value can be further used to analyze the meeting probability of two
moving objects at any moment and the dynamic interaction within a period of time. The
development of related algorithms and queries is part of future work.

Another future work is to generalize the proposed model into a planar area. Since the
plane area can be expressed as a network structure through nodes and edges respectively
representing grids and their neighboring relationships, the proposed model can theoreti-
cally be extended to a nonhomogeneous continuous surface space. Considering that the
real space is composed of the network and the area, another extension of the presented
model is required for composite spaces, such as urban space.

The model proposed in this article tends to be theoretical, and future work obviously
needs to discuss its actual value or its limitations in actual scenarios. Globally deterministic
and locally random spatial activities, for example, are suitable for this theory. In reality, the
activities of moving objects (such as humans and animals) are random in the local area and
regular in the overall situation [1], which is related to the variability of the geographical
environment and the periodicity of the life course. On a certain transportation network,
the frequency statistics of the periodic trajectory flow of an object or the trajectory flow
of multiple objects in the same time period can form the probability density function on
the PNA. On the other hand, we can estimate the probability of a mobile object visiting
each location based on the limited track points and realize the spatiotemporal interpolation
with probability between the track points for those applications that try to seek continuous
footprints. For example, according to the traffic flow data of limited observation points, the
traffic volume distribution on the whole transportation network is estimated to evaluate
vehicle exhaust emission data over time [17] and support applications such as traffic
flow simulation and quantitative optimization, accessibility analysis and planning. As
another example, when COVID-19 is still prevalent, the access probability of the activity
space is evaluated based on the limited trajectory points of the cases, which assists in the
epidemic risk assessment and epidemic prevention and control in areas with no footprint
records [30]. These applications will serve as examples of our model and provide a basis
for the localization of the model in specific applications, such as the setting of β parameters
for specific applications.

The ideal Brown bridge provides an approximation of the PNA kernel density function.
This approximation provides a theoretical basis for the comparison of different PNA kernel
density functions and the β parameter setting of the presented model. A feasible method
for the latter is as follows: first, construct a dense enough transportation network to
approximate the continuous homogeneous space assumed by Brownian motion; then,
analyze the degree to which the PNA kernel density function approximates the Brownian
bridge, and thus clarify the relationship between the β parameters and the spatiotemporal
information of the two anchor points.

Although more work needs to be done to empirically test the results across a wide
range of fields and applications, it is obvious that (a) the kernel density function for
directional movement involves the laws of economics for movement and the laws of
geography for its scene; (b) time geography and KDE provide effective and computationally
feasible methods to express this density, further supporting the analysis of movement
uncertainty; and (c) some empirical studies seem to provide results that support the two-
tier model.
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