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Abstract: Spatial cluster detection is one of the focus areas of spatial analysis, whose objective is
the identification of clusters from spatial distributions of point events aggregated in districts with
small areas. Choi et al. (2018) formulated cluster detection as a parameter estimation problem to
leverage the parameter selection capability of the sparse modeling method called the generalized
fused lasso. Although this work is superior to conventional methods for detecting multiple clusters,
its estimation results are limited to point estimates. This study therefore extended the above work
as a Bayesian cluster detection method to describe the probabilistic variations of clustering results.
The proposed method combines multiple sparsity-inducing priors and encourages sparse solutions
induced by the generalized fused lasso. Evaluations were performed with simulated and real-world
distributions of point events to demonstrate that the proposed method provides new information
on the quantified reliabilities of clustering results at the district level while achieving comparable
detection performances to that of the previous work.

Keywords: spatial cluster detection; point event; Bayesian inference; sparse modeling; generalized
fused lasso

1. Introduction

Deeper understanding of the socio-economic activities in small areas is often essen-
tial for discussing and planning regional strategies. As open data policies have become
increasingly popular in many public sectors, a broad range of geospatial data are also
made publicly available with high spatial resolutions. The available geospatial data, when
combined with effective spatial analysis methods, are expected to provide detailed insights
into the geographical aspects of socio-economic activities.

One of the common forms of geospatial data is point event data, which are the focus
of the present study. Point event data are used to record event occurrences, such as crimes
or infectious diseases, along with their locations. The crucial aspect of point event data
is the unevenness of its spatial distribution. If we were able to know whether there are
any areas with elevated risk for these events and their corresponding locations, it would
be possible to implement effective measures against such events. Therefore, numerous
studies have proposed cluster detection methods to identify sets of subregions (referred
to as clusters) that are distinguished by higher event occurrences. These methods aim to
identify broadly local spatial dissimilarities and can be viewed as special versions of the
general hotspot/coldspot analyses such as the Getis–Ord Gi∗ [1] and Anselin local Moran’s
I [2].

The basic motivation of cluster detection methods is to obtain both reliable and
spatially detailed cluster information from point event data. Achieving this is challenging
because clusters exhibit spatially flexible shapes and we often have little prior knowledge
about them. With the ability to provide statistical evidence for detected clusters, the
spatial scan statistic [3] is a conventional and widely used (e.g., a freely available software
SaTScan [4]) detection approach. This method has been extended to deal with various
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types of point event data, such as Poisson [3], exponential [5], and case–control data [6].
However, in exchange for securing statistical validity, the spatial scan statistic outputs
single clusters rather than multiple clusters to avoid multiple testing problems that occur
in the statistical procedure. Moreover, the clustering results of this method depend on the
shape of predefined scanning windows, which sweep across the entire study area. As these
requirements prevent the detection of clusters with flexible shapes, some studies extended
the spatial scan statistic and enabled the detection of multiple clusters [7] and irregularly
shaped clusters [8,9]. Although these efforts alleviated the limitations of the spatial scan
statistic, multiple cluster detection faces computational difficulties, and prior settings are
still needed for the shape of scanning windows.

Among the other methods, the false-discovery-rate (FDR)-based approach [10,11]
applies the false discovery rate controlling technique in statistical testing theory for cluster
detection. This approach allows the inclusion of a certain number of false discoveries,
thereby enabling simultaneous detection of multiple clusters. However, the FDR-based
approach fails to provide the intensity of the concentration of event occurrences at the sub-
region level, which is particularly essential for identifying clusters that comprise groupings
of spatially contiguous subregions.

To develop a cluster detection method that outputs spatially flexible clusters, a sparse-
modeling-based method [12] is proposed to overcome some major drawbacks of conven-
tional methods. Choi et al. [12] formulated cluster detection as a maximum likelihood
estimation problem, where the likelihood function is derived from a Poisson regression
model with generalized fused lasso penalties [13]. In the proposed regression model,
each subregion-based intensity parameter represents the degree of concentration in that
subregion, while the covariate vector of parameters adjusts for the observed covariates.
The generalized fused lasso penalties induce zero values for the intensity parameters and
identical values for adjacent pairs of intensity parameters. By introducing regularization
penalties, the method achieves cluster detection through the estimated values of the inten-
sity parameters. Although Choi et al. [12] successfully reported overcoming the existing
limitations around multiple cluster detection by introducing parameter selection, there is
room for additional improvement in the parameter estimations.

Choi et al. [12] proposed a computational procedure to output point estimates of
the subregion-based parameters using the majorize–minimization (MM) algorithm [14].
Although the point estimates are the most fundamental parameter estimates, they do not
indicate the degree of reliability of the estimated parameters. As reliability assessments
are crucial to cluster detection results that vary across subregions, the estimation method
should be capable of handling uncertainties.

Bayesian estimation is a statistical framework that expresses parameter uncertainties
as probability distributions; it treats all the parameters of a statistical model as stochastic
variables and estimates the probability distribution of each parameter. In the Bayesian
framework, a probability distribution expressing prior knowledge can be considered as a
prior distribution. Among the different types of probability distributions, the Laplace distri-
bution [15,16] is known to encourage sparsity in the estimated parameters and is viewed as
a Bayesian extension of lasso. Kyung et al. [17] further formulated the Bayesian counterpart
of the generalized fused lasso for linear regression models as a prior distribution.

This study aimed to improve the spatial granularity of reliability assessment by
combining a sparse-modeling-based approach with a Bayesian framework. We developed
a new cluster detection method that extends the approach of Choi et al. [12] to the Bayesian
framework through a prior distribution equivalent of the generalized fused lasso penalties
and offers new information on the reliability of the clustering results. Analyses were
performed using simulated distributions and real data of crime incidents to illustrate
detection performance and improved reliability assessments of the proposed method.



ISPRS Int. J. Geo-Inf. 2022, 11, 187 3 of 14

2. Sparse-Modeling-Based Cluster Detection

Sparse-modeling-based cluster detection [12] leverages the parameter selection capa-
bility of the generalized fused lasso. This section first introduces the idea of the fused lasso
and generalized fused lasso, followed by that of the cluster detection method.

2.1. Fused Lasso and Generalized Fused Lasso

The fused lasso is a sparse modeling method proposed by Tibshirani et al. [18] for
detecting change points in time series data. Its core idea is to select parameters and identify
consecutive pairs of parameters that share the same value. This is realized by introducing
an L1 regularization term in both the parameter values and differences between consecutive
pairs of parameters.

The minimization problem for a linear regression model with the fused lasso is
formulated as:

min
β

[
‖y− Xβ‖2

2 + λ1

p−1

∑
i=1
|βi+1 − βi|+ λ2

p

∑
k=1
|βk|

]
(1)

where ‖ · ‖2 is the L2 norm, y = (y1, . . . , yn)> is a dependent variable vector, and X =
(x1, . . . , xp) is a design matrix; λ1 and λ2 are hyperparameters that govern the degrees of
the L1 regularizations.

The generalized fused lasso extends the concept of the fused lasso by offering more
flexibility to adjacency constraints. This extension broadened the applicable scope of
sparse-modeling-based methods to spatial analysis [19,20].

The generalized fused lasso is written as:

min
β

‖y− Xβ‖2
2 + λ1 ∑

(i,j)∈C

∣∣βi − β j
∣∣+ λ2

p

∑
k=1
|βk|

 (2)

where C is the set of adjacent pairs of parameters.
As the optimal values of the hyperparameters in Equations (1) and (2) are generally

unknown, information criteria such as the Akaike information criterion (AIC) [21] or
Bayesian information criterion (BIC) [22] are frequently used to compare and determine
the combination of hyperparameters.

2.2. Sparse-Modeling-Based Cluster Detection

Choi et al. [12] formulated cluster detection from the spatial distribution of point
events aggregated over small areas by introducing the generalized fused lasso penalty in
the Poisson regression model. First, the number of point events recorded in a subregion i
(i = 1, . . . , n) is expressed as:

yi ∼ Poisson(µi) (3)

log E(yi) = log µi = log ei + αi + x>β (4)

where ei is an offset term for subregion i, xi = (1, xi1, . . . , xip)
> is a covariate vector, and

β = (β0, . . . , βp)> is the corresponding parameter vector shared by the entire study region;
α = (α1, . . . , αn)> denotes a vector consisting of subregion-based intensity parameters that
represent the degree of concentration for each subregion. If the estimated value of αi is
equal to zero, then subregion i does not constitute a cluster, and if the estimated values of
αi are greater than zero, then subregion i constitutes a cluster.
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Here, the Poisson likelihood function L(α, β|X, Y) and Poisson log-likelihood function
l(α, β|X, Y) are given by:

L(α, β|X, Y) =
n

∏
i=1

µ
yi
i

1
yi!

exp(−µi) (5)

l(α, β|X, Y) =
n

∑
i=1

yi log µi − µi − log yi! (6)

where X and Y are sets of observed data defined as X = (x1, . . . , xn)
> and Y = (y1, . . . , yn)

>,
respectively.

By introducing the generalized fused lasso penalty to the Poisson log-likelihood
function, the cluster detection problem of [12] can be formulated as:

min
α,β

l(α, β|X, Y) + λ1 ∑
(i,j)∈C

∣∣αi − αj
∣∣+ λ2

p

∑
k=1
|αk|+ λ3

p

∑
l=1
|βl |

 (7)

where C is a set of adjacent pairs of parameters and λ1, λ2, and λ3 are the hyperparameters.
Clusters likely constitute small portions of the entire study area and are made up of

spatially contiguous subregions, which is considered in their detection. The generalized
fused lasso penalty fits this purpose as the penalty imposes constraints on both the parame-
ters themselves and adjacent pairs of parameters simultaneously. Therefore, Choi et al. [12]
introduced the generalized fused lasso penalty to the subregion-based intensity parameters
and realized cluster detection using the estimated intensity parameters.

As Equation (7) includes an L1 regularization term that is non-differentiable,
Choi et al. [12] proposed a computational procedure that outputs point estimates us-
ing the MM algorithm [14]. The MM algorithm is a parameter estimation technique that
updates the parameters iteratively using a surrogate function for the objective function.

3. Previous Studies on Sparsity-Inducing Priors

In the Bayesian framework, some of the prior distributions are referred to as sparsity-
inducing priors because of their ability to induce sparse solutions in the posterior distri-
butions. In particular, parts of the sparsity-inducing priors can offer approximate point
estimates of the lasso or its extensions, in addition to quantitative descriptions of the un-
certainties in the form of probability distributions. This section first explains the Bayesian
counterpart of the lasso and then that of the generalized fused lasso.

3.1. Bayesian Lasso

Tibshirani [15] first suggested that in linear regression models, placing the indepen-
dent Laplace distributions as the prior distributions for the regression coefficients can
shrink the posterior distributions toward zero and yield lasso estimates in the posterior
modes. Following this implication, Park and Casella [16] proposed the Gibbs sampling for-
mulation for Bayesian models with a Laplace distribution and called it the “Bayesian lasso”.
Equation (8) shows the Laplace distribution as a sparsity-inducing prior, as proposed
in [16]:

π
(

β
∣∣∣λ, σ2

)
=

p

∏
i=1

λ

2
√

σ2
exp

(
−λ|βi|/

√
σ2
)

π
(

σ2
)
=

1
σ2 (8)

where β =
(

β1, . . . , βp
)> is the covariate vector and λ is a hyperparameter comparable

to the regularization parameter in lasso. Park and Casella [16] stated that assuming an
improper prior on σ2 can avoid multiple posterior modes in some cases.
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3.2. Bayesian Generalized Fused Lasso

Kyung et al. [17] extended the Bayesian lasso and proposed the Bayesian fused lasso for
linear regression models. The formulated prior on the regression coefficients is given by:

π
(

β
∣∣∣λ1, λ2, σ2

)
∝

p−1

∏
i=1

exp

(
−

λ1

σ
|βi+1 − βi|

)
p

∏
j=1

exp

(
−

λ2

σ

∣∣β j
∣∣) (9)

where λ1 and λ2 are hyperparameters.
Equation (9) can easily be extended to the Bayesian generalized fused lasso, whose

formulation includes multiple Laplace distributions and is written as:

π
(

β
∣∣∣λ1, λ2, σ2

)
∝ ∏

(i,j)∈C
exp

(
−

λ1

σ

∣∣βi − β j
∣∣) p

∏
k=1

exp

(
−

λ2

σ
|βk|

)
(10)

where C is the set of adjacent pairs of parameters.
Equations (9) and (10) correspond to the Bayesian version of the fused lasso and the

generalized fused lasso, respectively.

4. Proposed Method
4.1. Likelihood and Prior Distributions

This study extends sparse-modeling-based cluster detection to the Bayesian frame-
work. The extension offers information on the reliabilities of all the estimated parame-
ters. Consider a study region consisting of n subregions. Let yi be the number of point
events recorded in subregion i (i = 1, . . . , n) and ei be the offset term for subregion i.
xi = (1, xi1, . . . , xip)

> is a covariate vector, and β = (β0, β1, . . . , βp)> = (β0, β̃>)> is its
corresponding parameter vector. Then, α = (α1, . . . , αn)> denotes a vector consisting of
subregion-based intensity parameters.

Under the assumption of a Poisson point process, the number of points yi is given by
the following Poisson regression model:

log E(yi) = log µi = log ei + αi + x>β (11)

Subsequently, the Poisson likelihood function of Equation (11) can be written as:

π(X, Y |α, β) =
n

∏
i=1

µ
yi
i

1
yi!

exp(−µi) (12)

where X and Y are sets of observed data defined by X = (x1, . . . , xn)
> and Y = (y1, . . . , yn)

>,
respectively.

Now, we define the joint prior distribution for the intensity parameter vector α and
covariate vector β̃ as:

π(α, β̃|λ1, λ2, λ3) = ∏
(i,j)∈C

exp
{
−λ1|αi − αj|

} n

∏
i=1

exp{−λ2|αi|}
p

∏
i=1

exp{−λ3|βi|} (13)

where C is the set of adjacent pairs of parameters and λ1, λ2, and λ3 are the hyperparam-
eters. In this study, adjacency is defined as a pair of subregions that share geographi-
cal borders.

Equation (13) consists of multiple Laplace distributions and achieves a sparse so-
lution encouraged by the generalized fused lasso in the posterior mode. Additionally,
a non-informative prior π(β0) is placed on β0. The posterior distribution derived by
Equations (12) and (13) is equal to the penalized likelihood function proposed in [12] af-
ter logarithmic transformation. Therefore, the maximum a posteriori (MAP) estimators
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obtained from Equations (12) and (13) correspond to the estimated values of the cluster
detection problem in [12].

4.2. Tuning Hyperparameters with the Watanabe–Akaike Information Criterion

The proposed prior distribution π(α, β̃|λ1, λ2, λ3) includes the hyperparameters λ1,
λ2, and λ3, whose value should be set before parameter estimation. The Watanabe–Akaike
information criterion (WAIC) [23], an information criterion proven to be suitable for com-
paring Bayesian models [24], was used in this study to select the optimal set of hyperpa-
rameters. Tuning the hyperparameters starts with predefining multiple candidate values
for each hyperparameter. Then, Bayesian estimations are performed for all combinations
of the candidate values, and the WAIC value is calculated. Thereafter, a set of candidate
values that minimizes the WAIC value and passes a convergence test is adopted as the
optimal hyperparameters.

5. Evaluation
5.1. Evaluations with Simulated Distributions

This section illustrates the characteristics of the proposed method using simulated
distributions. A performance comparison is also presented between the proposed method
and [12].

5.1.1. Overview

We considered a two-dimensional grid-like study region with a cluster located at
the center of the region, as in Figure 1. The study region consists of 17 × 17 discrete
subregions, and the cluster consists of 5× 5 subregions. The objective of cluster detection is
to determine the locations of the clusters and their shapes, that is to list the sets of possible
subregions that constitute the clusters. Hereafter, the set of all subregions in the study
region is represented as N , the set of subregions inside the cluster by C, and the set of
subregions outside the cluster by CC.

Figure 1. Two-dimensional grid-like study region with randomly generated count data. The red
subregions in the center constitute a cluster.

Assuming a Poisson point process, we randomly generated count data (i.e., number of
point events) for each subregion from a Poisson distribution. To simulate the existence of
the central cluster that is characterized by a higher event occurrence, the expected number
of point events in the subregions in C was adjusted to several times higher than that in CC.
This was achieved by changing the parameter of the Poisson distribution that defines its
mean and variance. In this study, we generated simulated distributions for 15 scenarios
by choosing the expected number of points outside C from {10, 20, 30} and point density
ratio (i.e., ratio of expected numbers of points inside a cluster to outside a cluster) from
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{1.25, 1.5, 2.0, 2.5, 3.0}. For each scenario, this evaluation repeated the parameter estimation
process with the hyperparameter candidates listed in Table 1. This simulation did not
incorporate covariates because the primary focus was on assessing the regularization
mechanism for spatially adjacent parameters during cluster detection.

The parameter estimation process is as follows: A Bayesian modeling platform Stan
samples the posterior distributions for all parameters through the Hamiltonian Monte
Carlo algorithm [25]. Each estimation process independently generates four Markov chain
sequences. The total number of iterations was 2000 for all parameters, where the first
500 burn-in iterations were discarded. After all iterations were complete, the Gelman–
Rubin statistic R̂ [26] was used to check convergence of the posterior distributions. The
threshold value of R̂ was set to 1.1.

The sampled posterior distributions of the intensity parameters determine if each
subregion constitutes a cluster. The threshold probability p was set in advance, and if the
lower p percentage point value of an estimated intensity parameter assigned to a subregion
exceeds zero, then that subregion is detected as constituting a cluster. In this study, p = 0.1
was adopted for the threshold probability because cluster classification with this threshold
produced results comparable to those of Choi’s method. From the clustering results for all
subregions, we calculated two performance measures, namely the power and false-positive
rate, which generally have a trade-off relationship. Their definitions are as follows:

Power =
Number of detected subregions inside C

Number of subregions inside C (14)

False-positive rate =
Number of detected subregions inside CC

Number of subregions inside CC (15)

In each scenario, the measures were averaged after repeating the data generation and
cluster detection steps 100 times. In addition, we compared the performance with the
method in Choi et al. [12] (“Choi’s method”) for the same dataset. Table 2 shows the candi-
date hyperparameters for Choi’s method. The optimal combination of hyperparameters
was selected on the basis of the BIC. In Choi’s method, if the point estimate of the intensity
parameter assigned to a subregion is greater than zero, the subregion is considered to be
detected.

Table 1. Candidate values for tuning the hyperparameters.

Hyperparameters (Equation (13)) Candidate Values

λ1 {100.0, 100.5, 101.0, 101.5, 102.0}
λ2 {10−1.0, 10−0.5, 100.0, 100.5, 101.0}
λ3 (Unnecessary because this evaluation introduces no covariates.)

Table 2. Candidate hyperparameter values for Choi’s method.

Hyperparameters (Equation (7)) Candidate Values

λ1 {100.0, 100.5, 101.0, 101.5, 102.0}
λ2 {10−5.5, 10−5.0, · · · , 101.0, 101.5}
λ3 (Unnecessary because this evaluation introduces no covariates.)

5.1.2. Results

To provide visualization examples of the clustering results, we first applied the pro-
posed method to a single simulated distribution (Figure 2). The distribution was generated
under conditions where the expected number of points outside a cluster was 10 and the
point density ratio was 2.0.
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Figure 2. Spatial distribution of the simulated data. Each subregion is colored according to the
number of point event occurrences.

The clustering results shown in Figure 3 involve two visualizations: estimated subregion-
based coefficients and their standard deviations. In particular, Figure 3b is based on the
proposed method. In Bayesian estimation, the standard deviation of a parameter is an
indicator of the reliability of the estimated parameter results. Figure 3 confirms that the
reliabilities were relatively lower in subregions closer to the boundaries of a cluster, thus
implying that the cluster boundaries were not adequately identified from the given count
data. These visualizations suggest that the proposed method provides information on the
reliability of the detection results.

(a) (b)

Figure 3. Results of the proposed method for Figure 2. (a) Estimated subregion-based coefficients. The
color of each subregion corresponds to the degree of concentration, and subregions enclosed within
bold lines are detected as constituting a cluster. (b) Standard deviation of the estimated subregion-
based coefficients. The darker colors represent lower reliabilities for the estimated coefficients in the
corresponding subregions.

Performance measures of the proposed and Choi’s methods are summarized in
Tables 3 and 4. Table 3 shows the power, and Table 4 shows the false-positive rates for
all 15 scenarios. In both methods, the power (Table 3) increased similarly as the expected
numbers of points outside the cluster or point density ratio increased and reached a value
close to 1.000 when the point density ratio exceeded 2.0.

The false-positive rate remained low between 0.000 and 0.030, thereby showing the
similarity between the two methods. The above results confirm that the proposed method
detects clusters with an accuracy comparable to Choi’s method and further provide new
information on the probabilistic variations of clustering results.

Focusing on the differences of detection performances, we see that the false-positive
rate (Table 4) for the proposed method did not decrease when the point density ratio
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increased and the cluster was detached from the background, as opposed to Choi’s method.
This difference was attributed to the information criteria adopted in the respective methods.
The BIC used in Choi’s method favors a strongly penalized solution as its value improves
if a single parameter or the difference of adjacent pairs of parameters is estimated to be
zero. In contrast, the WAIC adopted in the proposed Bayesian model does not prefer a
strongly penalized solution as simply estimating the parameters as zero does not improve
the criterion. The weakly penalized solution determined by the WAIC possibly results
in a constant false-positive rate for the proposed model, where the point density ratio is
large. Given these differences between the two methods, this comparison confirms that the
proposed method can detect clusters as accurately as Choi’s method in the overall sense.

Table 3. Evaluation results for the power.

Method Expected Points Outside a Cluster
Point Density Ratio

1.25 1.5 2.0 2.5 3.0

Choi’s method
10 0.035 0.733 0.997 1.000 1.000
20 0.096 0.927 0.999 1.000 1.000
30 0.153 0.994 1.000 1.000 1.000

Proposed method
10 0.071 0.599 0.964 0.998 1.000
20 0.258 0.882 0.998 1.000 1.000
30 0.470 0.942 1.000 1.000 1.000

Table 4. Evaluation results for the false-positive rate.

Method Expected Points Outside a Cluster
Point Density Ratio

1.25 1.5 2.0 2.5 3.0

Choi’s method
10 0.003 0.018 0.020 0.026 0.013
20 0.003 0.011 0.006 0.003 0.001
30 0.006 0.009 0.008 0.008 0.012

Proposed method
10 0.005 0.009 0.018 0.020 0.017
20 0.006 0.012 0.015 0.014 0.014
30 0.009 0.018 0.018 0.017 0.019

5.2. Evaluations with Real-World Data

To examine the proposed method in practical settings, this section presents application
of the proposed method to real-world crime data.

5.2.1. Target Area and Data Description

The target area of this analysis (Figure 4) was the central Tokyo region, which com-
prises five municipalities, namely Chiyoda, Chuo, Shinjuku, Minato, and Shibuya. The
point event dataset used in this analysis was non-intrusive theft data from 2019. This point
event dataset was chosen because one of the typical applications of cluster detection is
crime analysis [8,27]. This publicly available dataset records the number of non-intrusive
theft cases recognized by local police agencies for 2019 at the subregion level (“Cho” in
Japanese). As shown in Figure 5, the target area has 546 districts, and the number of
crimes in the corresponding area totals 12,396 cases. The average number is 22.7 cases per
district, with the lowest being zero and highest being 837. This analysis used the areas
of the districts for the offsets and number of employees engaged in the retail sector as
the covariate.
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0 1 2km

Roppongi Station
Shibuya Station

Shinjuku Station

Minato

Shibuya

Shinjuku

Chiyoda

Chuo Railway

Figure 4. Target area and its spatial partition into district units. Railway networks and several large
stations are also shown on the map.

0 1 2km

0
250
500
750
1000

Figure 5. Choropleth map showing non-intrusive theft occurrences in the target area.

5.2.2. Estimation Settings

As with the simulation analysis in the previous section, practical analysis was per-
formed to estimate the parameters via Monte Carlo sampling on Stan. The estimation
process generated four Markov chain sequences independently. The total number of iter-
ations per sequence was 2000, with the first 500 burn-in iterations being discarded. The
threshold value of the Gelman–Rubin statistic was set to 1.1. Table 5 shows the candidate
values of the hyperparameters. This analysis contained repeated estimations with all possi-
ble combinations of the candidate values and adopted the WAIC-minimizing combination
for the optimal hyperparameters.
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Table 5. Candidate values for tuning the hyperparameters. The numbers in bold font indicate the
optimal combination in this example.

Hyperparameters (in Equation (13)) Candidate Values

λ1 {10−1.5, 10−1.0, 10−0.5, 100.0, 100.5, 101.0, 101.5, 102.0}
λ2 {10−1.5, 10−1.0, 10−0.5, 100.0, 100.5, 101.0, 101.5, 102.0}
λ3 {10−1.5, 10−1.0, 10−0.5, 100.0, 100.5, 101.0, 101.5, 102.0}

5.2.3. Results

Figures 6 and 7 show the estimated subregion-based coefficients and their standard
deviations, respectively. We set the same threshold p = 0.1 as in the previous evaluation
with simulated distributions. The proposed method detected 166 districts as clusters.
The estimated parameter of the covariate was 0.30, and its standard deviation was 0.08.
Figure 6 shows the spatial distribution of the clusters after adjusting for covariates. First,
we confirmed that the bustling downtowns near Shinjuku and Shibuya stations were
distinctly detected. Although this observation is easily assumed when we first see the
choropleth map and may not be notable, Figure 6 detects several neighborhoods around
Roppongi station that are not sufficiently highlighted in the choropleth map. This indicates
the possible existence of spatially concentrated crime hotspots where the crime counts
are relatively low. Figure 7 confirms that the proposed method estimated the standard
deviations of subregion-based coefficients for different values across the target area. The
spatial unevenness of the estimated standard deviations suggests the capability of the
proposed method to identify spatially varying reliabilities in real-world data and enhance
data interpretation.

0 1 2km

-2.5
0.0
2.5

Figure 6. Estimated subregion-based coefficients. Subregions bounded by bold lines are detected as
constituting clusters.
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Figure 7. Standard deviations of estimated subregion-based coefficients.

5.3. Discussion

This study evaluated the proposed method from the viewpoint of detection perfor-
mance and reliability assessment capabilities. The first evaluation with the simulated
dataset primarily compared the detection performance with Choi’s method. This com-
parison confirmed that the proposed method maintains comparable performance to the
baseline method. The following evaluation with the real-world crime dataset confirmed
that the proposed method outputs the quantified reliability for each subregion.

These results support that the proposed method advances Choi’s method by newly
providing reliability assessments at the subregion level, the minimal spatial unit of analysis.
The real-world application demonstrated that the reliability of detection results could
be spatially varying at the subregion level rather than uniform. This fact can affect the
interpretation of the results and thereby reveals the significance of reliability assessments
with sufficient spatial granularity. However, as most existing detection methods including
Choi’s method provide no or spatially aggregated representation of reliability information,
these findings might be overlooked without the proposed method. Thus, this study
contributed to the improvement of reliability assessments, a crucial element of cluster
detection, from the aspect of spatial granularity.

6. Conclusions

This study proposed a Bayesian cluster detection method that can provide information
on the reliability of the clustering results. The proposed method extends the sparse-
modeling-based cluster detection approach formulated by Choi et al. [12] to the Bayesian
framework. The extension was achieved by constructing a Bayesian model using multiple
sparsity-inducing priors to encourage a sparse solution equivalent to that obtained by the
above work. This study first formulated the likelihood function and prior distribution of the
proposed Bayesian model with mathematical equivalence to the model by Choi et al. [12]
Then, analyses were performed using simulated distributions and real-world crime data of
central Tokyo. The simulation analysis revealed that the proposed method could quantify
the reliability of clustering results at the subregion level and detect clusters with an accuracy
comparable to that of the previous work for most of the scenarios evaluated. The crime data
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analyses confirmed that the proposed method could capture spatially varying reliability
in real-world data. These findings underpin the validity and contribution of the present
study to the cluster detection methods by improving the spatial granularity of reliability
assessments. This improvement led to obtaining a more reliable interpretation of the
clusters.

The proposed method can be improved to incorporate the temporal nature of the
point event data. Although the present study only considered the geographical aspect
of the phenomena, the proposed method can model adjacency in a flexible fashion. This
extension should be useful, especially for phenomena that change rapidly along time.

There are also possible improvements that may contribute to better performance. Fan
and Li [28] demonstrated that lasso estimators are biased towards zero; as the proposed
method introduces a Laplace distribution, a Bayesian counterpart of the lasso, biased
estimations may worsen the detection accuracy. In the Bayesian context, some studies have
proposed alternative sparsity-inducing priors for the Laplace distribution. Notably, the
normal-exponential-gamma (NEG) distribution [29] and Horseshoe prior [30,31] have been
theoretically shown to alleviate the biases of the lasso estimators. Adopting these instead
of the Laplace distribution may be a worthy line of future investigations.
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